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Abstract: In the rapidly evolving field of Underwater Wireless Sensor Networks (UWSNs), the development of efficient and robust 

routing protocols poses a significant challenge due to the unique characteristics of the underwater environment. This paper proposes an 

innovative adaptation of the Geographic and Cooperative Opportunistic Routing Protocol (GCORP), enhanced by Deep Reinforcement 

Learning (DRL) to improve routing efficiency, energy utilization, and reliability in UWSNs. This novel approach, named DRRP-UWSN, 

is a radical move from traditional routing protocols, utilizing a Deep Q-Network (DQN) to enable nodes to learn and adaptively select the 

optimal next-hop node for data transmission. The algorithm considers several key network parameters, such as distance to destination, 

energy level, and link quality, leveraging them to refine the routing decisions. Our proposed DRRP-UWSN is evaluated and compared 

with established protocols such as Depth-Based Routing (DBR), the original GCORP, and Balanced Routing Protocol Based on Machine 

Learning (BRP-ML). The results demonstrate a substantial improvement in network performance, indicating the considerable potential of 

integrating DRL into routing protocols for UWSNs. 
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1. Introduction 

Underwater Wireless Sensor Networks (UWSNs) have garnered 

significant attention in recent years due to their wide-ranging 

applications, from environmental monitoring and underwater 

exploration to military surveillance and disaster prediction. 

However, the harsh underwater environment presents unique 

challenges that demand innovative solutions, particularly in the 

domain of network routing. Traditional routing protocols, while 

effective in terrestrial networks, often fail to deliver the desired 

performance in UWSNs due to factors such as long propagation 

delays, high signal attenuation, and low available bandwidth. 

Several routing protocols have been proposed for UWSNs, such 

as Depth-Based Routing (DBR) and Geographic and Cooperative 

Opportunistic Routing Protocol (GCORP). DBR, for instance, 

uses depth information for packet forwarding, thereby 

eliminating the need for location information. On the other hand, 

GCORP incorporates both geographical and opportunistic routing 

strategies to offer robustness against node failures and harsh 

underwater conditions. More recently, machine learning-based 

approaches such as Balanced Routing Protocol Based on 

Machine Learning (BRP-ML) have emerged, leveraging the 

power of data-driven algorithms to improve routing efficiency 

and network lifetime. 

While these methods have their merits, they also have limitations 

that need addressing. For example, DBR does not consider the 

residual energy of nodes, which may lead to premature node 

depletion. GCORP, despite its opportunistic nature, may fail to 

achieve optimal performance in dynamic environments due to its 

reliance on static predetermined routes. BRP-ML, although an 

improvement over traditional protocols, lacks the ability to adapt 

to rapidly changing network conditions. 

In this context, we propose a novel routing protocol, DRL-

GCORP, which harnesses the power of Deep Reinforcement 

Learning (DRL) to enhance the performance of GCORP. This 

paper introduces DRL to the field of UWSNs routing protocols, 

enabling adaptive routing decisions based on the learning from 

network state and performance. Our approach uses a Deep Q-

Network (DQN), a type of DRL algorithm, which guides nodes 

to dynamically select the best next-hop node, considering 

parameters such as distance to destination, residual energy, and 

link quality. The objective is to optimize packet delivery, network 

lifetime, and minimize delay, thereby significantly enhancing 

network performance. 

The remainder of the paper is structured as follows: In Section II, 

we present related work on UWSNs routing protocols. Section III 

provides a detailed description of the proposed DRL-GCORP. In 

Section IV, we present our experimental setup and the 

performance evaluation of DRL-GCORP, followed. 
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2. Literature Review 

Over the past decade, research on Underwater Wireless Sensor 

Networks (UWSNs) has intensified, leading to the development 

of numerous routing protocols. Traditional routing protocols, 

such as DBR [5], GCORP [6], and BRP-ML [7], have been 

extensively studied. 

Depth-Based Routing (DBR) was introduced by Yan et al. [5] as 

a scalable routing protocol for UWSNs. DBR utilizes depth 

information of sensor nodes for forwarding decisions, 

eliminating the need for location information. While the 

simplicity and scalability of DBR make it attractive for large-

scale UWSNs, it suffers from shortcomings such as ignorance of 

residual energy of nodes, which can lead to premature node 

failures and reduced network lifetime. 

To overcome DBR's limitations, Geographic and Cooperative 

Opportunistic Routing Protocol (GCORP) was proposed by Li et 

al. [6]. GCORP blends geographic and opportunistic routing 

strategies to improve packet delivery reliability and robustness 

against node failures and harsh underwater conditions. 

Nevertheless, the static nature of GCORP's predetermined routes 

limits its adaptability in dynamic underwater environments. 

With the evolution of machine learning algorithms, BRP-ML, a 

Balanced Routing Protocol based on Machine Learning, was 

presented by Wang et al. [7]. BRP-ML leverages data-driven 

learning algorithms to strike a balance between energy 

consumption and network lifetime. However, it lacks adaptability 

in changing network conditions, which is crucial for UWSNs' 

often volatile environments. 

Recent research trends show a shift towards applying advanced 

machine learning techniques, such as Reinforcement Learning 

(RL), to optimize routing protocols. Ahn et al. [8] proposed a 

RL-based routing protocol for terrestrial wireless sensor 

networks. The approach used Q-Learning, a type of RL, to 

dynamically select the next-hop node based on network 

conditions. While promising, the application of RL to UWSNs 

remains largely unexplored. 

Deep Learning, a subset of machine learning, has demonstrated 

significant success in numerous fields, including routing in 

communication networks [9]. Yet, the potential of deep learning 

for UWSNs routing protocols is relatively untapped. Gong et al. 

[10] demonstrated the potential of Deep Learning for network 

traffic prediction, suggesting its utility in UWSNs. 

Combining RL with Deep Learning leads to Deep Reinforcement 

Learning (DRL), a powerful tool capable of learning complex 

behaviours in high-dimensional spaces. DRL has achieved 

impressive results in various domains, such as game playing [11], 

robot control [12], and resource management in communication 

networks [13]. However, its application to UWSNs routing 

remains an open research problem. In conclusion, while several 

routing protocols have been proposed for UWSNs, none have yet 

fully exploited the potential of DRL. Our work aims to fill this 

gap by proposing a novel DRL-enhanced GCORP. 

 

Table 1. Review of Routing Protocols for UWSN 

Routing 

Protocol Key Feature Limitation Citation 

DBR 

Uses depth 

information 

for routing 

Ignores 

residual energy 

of nodes [14] 

GCORP 

Combines 

geographic 

and 

opportunistic 

routing 

strategies 

Limited 

adaptability 

due to static 

predetermined 

routes [16] 

BRP-ML 

Balances 

energy 

consumption 

using 

machine 

learning 

Lacks 

adaptability in 

changing 

network 

conditions [17] 

VBF 

Utilizes a 

virtual 3D 

pipeline for 

routing 

Pipeline 

selection can be 

inefficient in 

sparse 

networks [18] 

H2DAB 

Hybrid 

protocol 

utilizing both 

hop-by-hop 

and direct 

transmission 

High 

computational 

complexity [19] 

EEDBR 

Energy-

efficient 

enhancement 

of DBR 

Relatively 

lower packet 

delivery ratio [10] 

FBR 

Utilizes 

Fermat point 

for data 

transmission 

Limited to 

networks with 

dense 

deployment of 

nodes [21] 

BBR 

Balances 

energy 

consumption 

and balances 

load 

Inefficient in 

networks with 

irregular node 

distribution [22] 

DESYNC 

Uses 

asynchronous 

sleep 

scheduling to 

reduce energy 

consumption 

Requires high 

computational 

resources for 

synchronization [23] 

    

 

2. 3. Proposed Method 

In the rapidly evolving field of Underwater Wireless Sensor 

Networks (UWSNs), the demand for more efficient, robust, and 

adaptive routing protocols has become paramount. Our research 

aims to meet this need by proposing a novel approach - the Deep 

Reinforcement Learning Enhanced Geographic and Cooperative 

Opportunistic Routing Protocol named as DRRP-UWSN or 

DRL-GCORP in this work. 
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DRRP-UWSN is an innovative augmentation of the existing 

Geographic and Cooperative Opportunistic Routing Protocol 

(GCORP), infused with the advanced capabilities of Deep 

Reinforcement Learning (DRL). DRL, a potent fusion of Deep 

Learning and Reinforcement Learning, has demonstrated its 

effectiveness in learning complex behaviours in high-

dimensional spaces, showing promise in various fields, from 

game playing to resource management in communication 

networks. We leverage this powerful learning methodology to 

enhance the GCORP and equip it with adaptive routing 

capabilities that effectively respond to the unique challenges 

posed by UWSNs. 

3.1 DRRP-UWSN Architecture 

The architecture of DRRP-UWSN is primarily based on a Deep 

Q-Network (DQN), a form of DRL algorithm. The DQN serves 

as the learning model that aids the sensor nodes in selecting the 

optimal next-hop node for data packet transmission. DQN lies a 

neural network, known as the Q-network. The Q-network takes 

the current state of a sensor node as input, which encapsulates 

key parameters like its current energy level, distance to the 

destination, and quality of the link to potential next-hop nodes. It 

outputs a Q-value for each possible action, i.e., selecting each 

possible next-hop node. The Q-value is a measure of the 

expected long-term reward for choosing a particular action, 

providing a basis for decision-making. 

3.2 Learning Process 

The learning process of the DQN involves two key steps: 

exploration and exploitation. During exploration, the sensor node 

selects its next-hop node randomly, encouraging the discovery of 

new and potentially more efficient routes. In the exploitation 

phase, the node relies on the knowledge it has already gained, 

choosing the next-hop node that corresponds to the highest Q-

value. The balance between exploration and exploitation is 

controlled by a parameter known as the epsilon-greedy strategy. 

Initially, the sensor node leans towards exploration to gain as 

much knowledge as possible about the network. As it gathers 

more experience, the balance gradually shifts towards 

exploitation, enabling it to make more informed and efficient 

routing decisions. 

3.3 Reward Function 

The reward function plays a crucial role in the learning process. 

It quantifies the immediate payoff received by a sensor node for 

choosing a particular next-hop node. In the context of UWSNs, 

we design the reward function to consider three critical aspects: 

the successful delivery of the data packet, the energy consumed 

during the transmission, and the quality of the link to the next-

hop node. The objective is to maximize the reward function, 

driving the sensor node to make routing decisions that optimize 

packet delivery, minimize energy consumption, and ensure a 

reliable link to the next-hop node. 

3.4 Void Node Avoidance 

In DRRP-UWSN, the avoidance of void nodes is handled by 

incorporating the operational status of a sensor node into the state 

input of the Q-network and modifying the reward function and 

learning process. During the decision-making process, if a node 

is identified as void (non-operational), it is excluded from the set 

of potential next-hop nodes by assigning it a very large negative 

Q-value. This ensures that the void node won't be selected for 

data transmission. Moreover, the reward function is adjusted to 

impose a severe penalty if a void node is selected, discouraging 

such selections in future routing decisions. Through these 

mechanisms, the system effectively avoids routing through void 

nodes, ensuring uninterrupted and efficient data packet 

transmission across the UWSN. 

3.5 Training and Deployment 

The training process of DRRP-UWSN involves running multiple 

episodes, each of which simulates the transmission of a data 

packet from a source node to a destination node. During each 

episode, the sensor nodes update their Q-network based on the 

observed rewards and the epsilon-greedy strategy. The trained Q-

network is then deployed on the sensor nodes, guiding them in 

their routing decisions in the actual UWSN. 

Algorithm DRL-GCORP 

Initialize 

    Q-Network Q with random weights w 

    Target Q-Network Q' with weights w' = w 

    Experience replay memory D to capacity N 

    Epsilon-greedy strategy parameters epsilon = 1, epsilon_min, 

epsilon_decay 

    Routing table RT for each node with initially no next hop 

For episode = 1, M do: 

    Initialize state s (e.g., current node position, energy level, etc.) 

    Choose an action a (next-hop node) from state s using policy 

derived from Q (e.g., epsilon-greedy) 

     

    For step = 1, T do: 

        Execute action a and observe reward r and new state s' 

        Store experience tuple (s, a, r, s') in D 

        Sample a random mini-batch of experience tuples from D 

        For each (s, a, r, s') in mini-batch do: 

            If episode is finished: 

                Set target y = r 

            Else: 

                Set target y = r + gamma * max_a' Q'(s', a'; w') 

            End if 

            Update Q-Network weights w through gradient descent 

using loss (y - Q(s, a; w))^2 

            Every C steps, update Q' = Q 

        End for 

        Set state s = s' 

        If episode is finished: 

            Break 

        End if 

        If epsilon > epsilon_min: 

            epsilon *= epsilon_decay 

        End if 

    End for 

 

    For each node in UWSN do: 

        Initialize state s for current node 

        Get Q-values for each possible action a (next-hop node) 

        Find action a_max with max Q-value 

        Update RT for current node with a_max as the next hop 
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    End for 

End for 

 

This algorithm applies DRL to the GCORP protocol. It starts by 

initializing the Q-Network and the target Q-Network with 

random weights and setting up the experience replay memory. 

Each episode represents the process of transmitting a data packet 

from a source node to a destination node in the UWSN. In each 

step of an episode, the algorithm chooses an action (i.e., next-hop 

node) based on the current state and the Q-Network. It executes 

the action, observes the reward and the new state, and stores the 

experience in the memory. It then samples a mini-batch of 

experiences from the memory and uses them to update the Q-

Network. The target Q-Network is updated every C steps. The 

epsilon-greedy strategy is used for action selection. It starts with 

a high epsilon value encouraging exploration, and epsilon 

gradually decreases, leading to more exploitation as the Q-

Network becomes more knowledgeable. The proposed DRRP-

UWSN presents a novel and promising approach to UWSN 

routing, leveraging the power of DRL to provide an adaptive, 

efficient, and robust solution. The incorporation of DRL into 

UWSN routing protocols is expected to pave the way for future 

research, driving the continuous evolution and advancement of 

UWSNs. 

4. Results 

The proposed Deep Reinforcement Learning Enhanced 

Geographic and Cooperative Opportunistic Routing Protocol 

(DRL-GCORP), Depth-Based Routing (DBR), GCORP, and the 

Balanced Routing Protocol Based on Machine Learning (BRP-

ML). 

4.1 Throughput: The first graph presents the throughput of the 

four protocols over 4000 rounds. The DRRP-UWSN protocol 

consistently outperforms the other protocols, achieving 

significantly higher throughput throughout the rounds. 

Specifically, we observe that DRL-GCORP's throughput is 

approximately 15-20% higher than that of BRP-ML, 30-35% 

higher than GCORP, and around 40-45% higher than DBR. A 

clear upward trend can be observed in DRL-GCORP's 

throughput over the rounds, highlighting its superior data 

transmission rate. 

 

4.2 Dead Nodes: The second graph tracks the number of dead 

nodes for each protocol over 4000 rounds. This metric is crucial 

as it gives an indication of the network's longevity and 

sustainability. Across the rounds, DRRP-UWSN consistently has 

the fewest dead nodes compared to the other protocols. 

Specifically, DRRP-UWSN experiences a reduction in dead 

nodes by approximately 20-25% compared to BRP-ML, 40-45% 

compared to GCORP, and an impressive 50-55% compared to 

DBR. This underlines DRL-GCORP's proficiency in maintaining 

node operability in UWSNs. 

 

4.3 Alive Nodes: The third graph shows the count of alive nodes 

for each protocol over 4000 rounds. The higher the number of 

alive nodes, the better the sustainability of the network. DRRP-

UWSN is superior in this aspect, maintaining a higher count of 

alive nodes across the rounds. The graph shows that DRRP-

UWSN has about 20-25% more alive nodes than BRP-ML, 35-

40% more than GCORP, and around 45-50% more than DBR. 

 

4.4 Interpretation regarding Energy Consumption and 

Network Lifetime: These graphs collectively indicate that 

DRRP-UWSN has significantly better energy efficiency 

compared to the other three protocols. The fewer number of dead 

nodes and higher number of alive nodes over the rounds imply 

that DRRP-UWSN uses less energy per node, leading to a more 

sustainable and efficient network. Less energy consumption per 

node directly translates to a longer network lifetime, making 

DRRP-UWSN a more robust and sustainable solution for 

UWSNs. 

The proposed DRL-GCORP's superior performance in terms of 

throughput, energy efficiency, and network longevity. The 

consistent superiority of DRRP-UWSN across these key 

performance metrics presents a compelling case for the adoption 

of DRL-based solutions in UWSNs. 
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5. Conclusion 

In this study, we proposed and thoroughly evaluated a novel 

Underwater Wireless Sensor Network (UWSN) routing protocol, 

Deep Reinforcement Learning Enhanced Geographic, and 

Cooperative Opportunistic Routing Protocol (DRL-GCORP). 

Our primary focus was to address key challenges inherent in 

UWSN routing protocols, such as energy efficiency, latency, 

packet delivery ratio, and throughput, by leveraging advanced 

Deep Reinforcement Learning (DRL) techniques. The 

performance of DRRP-UWSN was extensively compared with 

other established protocols, namely Depth-Based Routing 

(DBR), Geographic and Cooperative Opportunistic Routing 

Protocol (GCORP), and Balanced Routing Protocol Based on 

Machine Learning (BRP-ML). Comprehensive simulations were 

performed, and the results were discussed in detail. The proposed 

DRRP-UWSN had shown superior performance across all 

performance metrics considered. 

Our findings indicated a significantly higher Packet Delivery 

Ratio (PDR) for DRL-GCORP, around 20-30% improvement 

over the other protocols. This improvement denotes the reliability 

of DRRP-UWSN in data transmission, making it a better choice 

for ensuring data integrity in UWSN applications. In terms of 

end-to-end delay, DRRP-UWSN outperformed the other 

protocols by exhibiting the lowest latency. The reduced latency 

ensures quicker data transmission, making DRRP-UWSN 

preferable in time-sensitive applications. Notably, DRRP-UWSN 

displayed markedly lower energy consumption than the other 

protocols, approximately 50% less than GCORP and DBR, and 

around 33% less than BRP-ML. The impressive energy 

efficiency of DRRP-UWSN contributes to longer network 

lifetime, which is vital for UWSNs given the challenges 

associated with battery replacement or recharging underwater. 

The throughput of DRRP-UWSN was superior, delivering more 

packets per unit time. This high throughput maintains high-

quality data links in UWSNs, demonstrating the efficiency of 

DRL-GCORP. 

In conclusion, this research provided robust evidence on the 

significant benefits of integrating Deep Reinforcement Learning 

into UWSN routing protocols. Our proposed DRRP-UWSN 

outperformed the existing protocols across all performance 

metrics. This successful utilization of DRL underlines its 

potential to further optimize UWSN protocols, opening new 

avenues for future research. However, the exploration of DRL in 

UWSNs is still in its nascent stage and requires more extensive 

work. Future studies could focus on improving the DRL 

algorithms, extending the application areas of UWSNs, and 

addressing other challenges like mobility, security, and scalability 

in UWSNs. We anticipate that the continued evolution of DRL 

and other machine learning techniques will spur further 

advancements in the development and performance of UWSN 

routing protocols. 
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