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Abstract: The abundance of medical data available, ranging from electronic health records to medical images, presents a 

unique opportunity to gain valuable insights into disease processes, improve treatments, and enhance patient outcomes. 

However, the complexity, high dimensionality, and heterogeneity of these datasets pose significant challenges to their 

analysis and interpretation. One technique that has gained popularity for addressing these challenges is data embeddings. 

Data embeddings are low-dimensional representations of high-dimensional data that preserve the underlying structure and 

relationships between data points. In the medical domain, data embeddings have found numerous applications, such as 

disease diagnosis, patient risk stratification, and drug discovery. This survey paper aims to provide a comprehensive 

overview of data embeddings techniques and their applications in the medical domain. The paper introduces the concept of 

data embeddings and their properties, and provides a detailed discussion of popular embedding techniques, including 

principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders. The paper 

also reviews various applications of data embeddings in the medical domain, such as disease diagnosis, patient clustering, 

and drug discovery. The paper concludes with a discussion of future directions and emerging trends in data embeddings for 

medical applications, emphasizing the need for more robust and interpretable embedding techniques and the importance of 

considering clinical context when developing and applying these techniques. 

Keywords: data embeddings, medical data, principal component analysis, t-distributed stochastic embedding, 

autoencoders 

1. Introduction 

In recent years, the field of medical and healthcare has 

experienced a rapid surge in the adoption of artificial 

intelligence (AI) and machine learning (ML) techniques, 

thanks to the abundance of electronic health records 

(EHRs) and the growing need to improve patient care 

and reduce costs. One of the key ML approaches that has 

gained significant attention is the use of data embedding 

techniques, particularly for natural language processing 

(NLP) tasks. Data embedding methods, such as word 

embeddings, enable the conversion of text data into 

numerical vectors, capturing the semantic meaning of 

words and phrases. These embeddings have been 

successfully applied to a wide range of medical and 

healthcare applications, including clinical text 

classification, named entity recognition, relation 

extraction, and adverse drug event detection, among 

others [1-57]. 

This Table 1provides a list applications in the medical 

and healthcare domain that utilize data embeddings. For 

each application, a brief description is given, along with 

an explanation of how data embeddings are used in that 

application.
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Table 1:  List of applications in the medical and healthcare domain that utilize data embeddings 

Application Description Usage of Data Embeddings 

Clinical Decision Support 

Systems (CDSS) 

CDSS provide clinicians with 

patient-specific assessments or 

recommendations to improve 

patient outcomes. 

CDSS use data embeddings to learn from large amounts of 

data to make accurate predictions, such as predicting which 

patients are at risk for developing certain conditions or 

which treatment options are most effective for certain 

patients. 

Disease Diagnosis 

Disease diagnosis involves 

identifying a patient's disease or 

condition based on their 

symptoms, medical history, and 

test results. 

Data embeddings can be used to learn from large amounts of 

medical data to create a model that can accurately predict 

the likelihood of a patient having a particular disease or 

condition based on their symptoms and other relevant 

factors. 

Electronic Health 

Records (EHRs) 

EHRs are digital records of a 

patient's health information, 

including medical history, test 

results, and medications. 

Data embeddings can be used to analyze EHRs and identify 

patterns that can help clinicians make better decisions about 

patient care. For example, data embeddings can be used to 

identify patients at risk for developing certain conditions or 

to identify patterns in medication use that could lead to 

adverse drug reactions. 

Medical Image Analysis 

Medical image analysis involves 

analyzing medical images, such 

as X-rays or MRI scans, to 

identify abnormalities or 

diagnose conditions. 

Data embeddings can be used to learn from large amounts of 

medical image data to create models that can accurately 

identify abnormalities or diagnose conditions based on 

specific features of the image. 

Personalized Medicine 

Personalized medicine involves 

tailoring medical treatment to an 

individual's unique 

characteristics, such as their 

genetic makeup, lifestyle, and 

medical history. 

Data embeddings can be used to analyze large amounts of 

data to identify patterns that can help clinicians personalize 

treatment plans for individual patients. For example, data 

embeddings can be used to identify which patients are most 

likely to respond to a particular treatment or to predict which 

patients are at risk for developing certain conditions based 

on their genetic makeup. 

 

Various embedding techniques have been employed in 

medical NLP tasks, including traditional word 

embeddings like Word2Vec [27,37,45] and more recent 

contextual embeddings such as BERT [15,31]. These 

techniques have been integrated into diverse ML 

architectures, including convolutional neural networks 

(CNNs) [17,33,47], recurrent neural networks (RNNs) 

[19,35,39], long short-term memory (LSTM) networks 

[41,43,51], and graph convolutional networks (GCNs) 

[14,49]. The growing body of literature demonstrates the 

efficacy of data embedding techniques in various 

applications within the medical domain. For instance, 

research has shown that embedding methods can 

improve the classification of X-ray images for COVID-

19 diagnosis [1], predict mortality in critically ill patients 

with diabetes [4], and identify genomic mutation-

associated cancer treatment changes from patient 

progress notes [54]. Moreover, these techniques have 

been applied to tasks such as de-identification of clinical 

notes [25], extraction of clinical concepts from nursing 

notes [22], and automated domain-specific healthcare 

knowledge graph curation [16]. 

The wide range of applications and the success of data 

embedding techniques in the medical and healthcare 

domain underscore their potential to revolutionize patient 

care, disease diagnosis, and treatment planning. As the 

field continues to advance, it is anticipated that these 

techniques will play an increasingly critical role in 

addressing the complex challenges faced by the medical 

and healthcare community. 

1.1 Significance and Relevance 

Data embeddings have the potential to revolutionize the 

medical and healthcare domain by improving the 

accuracy and effectiveness of diagnosis, treatment, and 

patient outcomes. For example, data embeddings can be 

used to analyze medical records and identify patterns that 
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may not be apparent in the original data. This can help 

healthcare professionals to make more informed 

decisions and provide personalized treatment plans that 

are tailored to the unique needs of each patient. 

Furthermore, data embeddings can be used to develop 

predictive models for diseases and conditions, enabling 

healthcare professionals to intervene early and prevent 

adverse outcomes. For instance, by using data 

embeddings to analyze genomics data, researchers can 

identify genetic mutations that increase the risk of certain 

diseases. This can lead to the development of targeted 

interventions that reduce the risk of disease and improve 

patient outcomes. 

The study of data embeddings in the medical and 

healthcare domain is particularly relevant due to the 

increasing availability of healthcare data from various 

sources. Electronic health records, wearable devices, and 

other sources of healthcare data are generating vast 

amounts of data that can be used to improve patient 

outcomes. However, this data is often complex and 

challenging to analyze, requiring sophisticated 

techniques such as data embeddings. Data embeddings 

can be used to integrate and analyze these disparate data 

sources, leading to a more comprehensive understanding 

of a patient's health. For example, by combining 

electronic health records with genomics data, researchers 

can identify genetic factors that contribute to the risk of 

certain diseases. This can lead to the development of 

personalized treatment plans that are tailored to the 

unique needs of each patient. 

1.2 Evolution of data embeddings 

Data embeddings have also evolved significantly in the 

medical and healthcare domain. In the early days, data 

embeddings were used for tasks such as clustering and 

visualization of medical data. With the advent of deep 

learning models, data embeddings have been applied to a 

wide range of medical tasks, including disease diagnosis, 

drug discovery, and personalized medicine. Techniques 

such as autoencoders, convolutional neural networks, 

and graph embeddings have been developed to learn 

embeddings from various types of medical data, such as 

electronic health records, medical images, and genomics 

data. The future of data embeddings in the medical and 

healthcare domain is promising, with the potential for 

more accurate diagnosis, personalized treatment plans, 

and improved patient outcomes. 

Data embeddings have become increasingly important in 

the field of medical and healthcare research. Over the 

years, various types of data embeddings have been 

developed to tackle different types of data, such as 

dimensionality reduction for numerical data, sequence 

modeling for sequential data, graph embedding for 

relational data, image embedding for medical imaging 

data, and text embedding for textual data. Some of the 

most popular techniques used for dimensionality 

reduction include Principal Component Analysis (PCA) 

and t-Distributed Stochastic Neighbor Embedding (t-

SNE). For sequence modeling, Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRUs) are 

commonly used. Graph embedding techniques such as 

Node2Vec and Graph Convolutional Networks (GCNs) 

have been developed for relational data, while 

Convolutional Neural Networks (CNNs) are often used 

for image embedding. In addition, popular techniques 

used for text embedding include Word2Vec, GloVe, and 

FastText. Figure 1, shows distribution for same.

 

 

Fig 1:  Distribution of various embedding architectures of data embeddings 

 

2. Research Methodology 

Systematic literature reviews are critical in providing a 

comprehensive and unbiased understanding of a research 

area. The PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) approach has 

been widely adopted as a guideline for conducting such 

reviews. In this survey paper, we will outline the usage 
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of the PRISMA approach for the selection of papers in 

our study on the current state of research on the use of 

artificial intelligence (AI) in healthcare. The PRISMA 

approach provided a comprehensive and systematic way 

to conduct our literature review. Our study findings 

suggest that the use of AI in healthcare has shown 

promising results in various areas, including diagnosis, 

treatment, and disease prediction. However, the use of AI 

in healthcare is not without challenges, including ethical 

and legal considerations, as well as issues with data 

privacy and security. 

The images below provide a visual representation of 

various statistics collected during our systematic review 

on the use of artificial intelligence (AI) in healthcare. 

The first image shows, majority of the papers were 

published in the United States, followed by China and 

the Spian. Other countries represented include Canada, 

Germany, India, South Korea, and Australia. The second 

image shows the distribution of selected papers by year 

of publication. The third image shows the distribution of 

selected papers by subject area of healthcare research. 

The most common areas covered were diagnostic 

imaging, drug discovery, and disease prediction. Other 

areas covered included electronic health records, medical 

imaging, and telemedicine. The final image shows the 

distribution of selected papers by study design.

 

 

Fig 2:  Distribution of selected papers by country 

 

Fig 3:  Distribution of selected papers by year of publication 
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Fig 4:  Subject area of healthcare research 

3. Systematic Literature Review 

In recent years, natural language processing (NLP) and 

machine learning (ML) have become increasingly 

popular in the healthcare industry for a variety of 

applications. For example, COVID-19 classification of 

X-ray images has been done using deep neural networks 

[1], and COVID-19 detection has also been explored 

through voice, cough, and breathing patterns using 

datasets and preliminary results [2]. Ensembling classical 

machine learning and deep learning approaches has been 

used for morbidity identification from clinical notes [3], 

while machine learning and clinical notes have been used 

to predict mortality in critically ill patients with diabetes 

[4]. Prediction of stroke outcome has been done using 

natural language processing-based machine learning of 

radiology report of brain MRI [5], and biomedical named 

entity recognition has been improved with syntactic 

information [6]. Deep representation learning of 

electronic health records has also been used to unlock 

patient stratification at scale [7], and prediction of breast 

cancer distant recurrence has been explored using natural 

language processing and knowledge-guided 

convolutional neural network [8]. These are just a few 

examples of the many applications of NLP and ML in 

healthcare. 

The table 2 provides lists various data embedding 

techniques commonly used in the medical and healthcare 

domain along with the type of data they are applied to 

and a brief description of each technique. The techniques 

include dimensionality reduction, sequence modeling, 

graph embedding, image embedding, audio embedding, 

and text embedding. The table provides a useful 

summary of the different techniques used to transform 

different types of data into a continuous vector space for 

downstream machine learning tasks. 

 

Table 2: Data Embedding Techniques for Medical and Healthcare Domain 

Technique Data Type Description 

Dimensionality 

Reduction 
Multidimensional Data 

A technique used to reduce the number of features in the data while 

retaining as much information as possible. It involves transforming high-

dimensional data into a lower-dimensional space by projecting it onto a 

subspace that captures the most important information. Common 

algorithms used for this technique include Principal Component Analysis 

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). 

Graph Embedding Relational Data 

A technique used for learning representations of relational data, such as 

drug interaction networks. It involves transforming graph data into a 

continuous vector space, enabling the use of traditional machine learning 

algorithms. Common algorithms used for graph embedding include 

node2vec and Graph Convolutional Networks (GCNs). 
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Image Embedding Image Data 

A technique used for learning representations of medical imaging data, 

such as CT or MRI scans. It involves using convolutional neural networks 

(CNNs) to extract features from the image and map it to a continuous 

vector space. This allows for the use of traditional machine learning 

algorithms on medical imaging data. 

Audio Embedding Audio Data 

A technique used for learning representations of audio data, such as 

electrocardiograms or speech signals. It involves transforming audio data 

into a continuous vector space, enabling the use of traditional machine 

learning algorithms. Common algorithms used for audio embedding 

include Mel-frequency cepstral coefficients (MFCCs) and Deep Belief 

Networks (DBNs). 

Text Embedding Text Data 

A technique used for learning representations of text data, such as 

electronic health records or clinical notes. It involves mapping text data to a 

continuous vector space, allowing for the use of traditional machine 

learning algorithms. Common algorithms used for text embedding include 

Word2Vec and GloVe. 

 

3.1 Multidimensional Data 

Table 3: A sample of multidimensional records of patient 

Patient ID Age Gender 
Blood 

Pressure 

Heart 

Rate 
Respiratory Rate Temperature Diagnosis 

001 45 Female 
120/80 

mmHg 
72 bpm 18 breaths/min 98.6°F 

Hypertension, Type 2 

Diabetes 

002 32 Male 
130/85 

mmHg 
78 bpm 16 breaths/min 99.1°F Migraine, Anxiety Disorder 

003 58 Female 
140/95 

mmHg 
82 bpm 20 breaths/min 97.9°F 

Coronary Artery Disease, 

Osteoporosis 

004 25 Male 110/70 mmHg 68 bpm 14 breaths/min 99.8°F Acute Bronchitis, Sinusitis 

005 72 Male 
150/90 

mmHg 
70 bpm 18 breaths/min 98.2°F 

Congestive Heart Failure, 

Chronic Kidney Disease 

Multidimensional patient record data embeddings have 

become a valuable resource in the medical and 

healthcare fields. Electronic health records (EHRs) hold 

a vast amount of patient information, including medical 

histories, diagnoses, medications, and laboratory test 

results[47]. However, analyzing and interpreting this 

data can be difficult due to its complexity and high 

dimensionality. Multidimensional patient record data 

embeddings can transform this data into a lower-

dimensional space that captures essential aspects of a 

patient's health[51]. By representing patient records in 

this manner, healthcare providers can gain insights into 

patterns and trends that may not be evident in the 

original data. For instance, multidimensional patient 

record data embeddings have been employed to identify 

patient subgroups based on their clinical data, assisting 

healthcare providers in developing more personalized 

treatment plans[49]. 

Multidimensional patient record data embeddings can 

also be utilized for clinical decision-making[38]. By 

representing patient records in a lower-dimensional 

space, healthcare providers can pinpoint patients at risk 

for specific conditions or those who may benefit from 

particular treatments[44]. For example, multidimensional 

patient record data embeddings have been used to predict 

the risk of readmission for patients with heart failure and 

to estimate the likelihood of diabetic retinopathy in 

patients with diabetes. In addition to clinical decision-

making, multidimensional patient record data 

embeddings can be used for healthcare quality 

improvement[33,35]. By analyzing patterns and trends in 

patient records, healthcare providers can identify areas 

for improvement and devise strategies to enhance patient 

outcomes. For example, multidimensional patient record 

data embeddings have been employed to identify patients 
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at risk for hospital-acquired infections and to develop 

interventions to prevent these infections[29,31]. 

Numerous architectures and methods have been 

examined for multidimensional patient record data 

embeddings in the medical and healthcare domain. One 

well-known approach is principal component analysis 

(PCA), a statistical method employed to reduce data 

dimensionality while maintaining as much original 

information as possible[51]. PCA has been used to 

pinpoint important features of patient records, such as 

demographic and clinical variables, and to transform this 

data into a lower-dimensional space. Another technique 

is t-SNE, a nonlinear dimensionality reduction method 

particularly well-suited for visualizing high-dimensional 

data[49]. T-SNE has been employed to identify patient 

subgroups based on their clinical data, assisting 

healthcare providers in developing more personalized 

treatment plans. 

Deep learning methods, including autoencoders and 

variational autoencoders (VAEs), have also been 

investigated for multidimensional patient record data 

embeddings[45,46]. Autoencoders are neural networks 

trained to reconstruct input data, while VAEs are a type 

of generative model that can learn a lower-dimensional 

representation of the data. These models have 

demonstrated promising results in identifying essential 

features of patient records and predicting patient 

outcomes[38,44]. Lastly, graph-based approaches, such 

as graph autoencoders and graph convolutional 

networks, have been explored for multidimensional 

patient record data embeddings[33,35]. These models are 

particularly suitable for representing data with complex 

relationships, like patient records with multiple 

diagnoses and medications. Graph-based approaches 

have been used to identify patient subgroups based on 

their clinical data, predict patient outcomes, and develop 

personalized treatment plans[29,31]. 

Multidimensional patient record data embeddings offer 

significant potential for enhancing patient outcomes and 

advancing the field of healthcare. However, several 

limitations and research gaps need to be addressed. One 

of the primary challenges is the lack of standardization in 

electronic health record (EHR) data. EHRs can exhibit 

considerable variation in terms of data types, structure, 

and coding, making it difficult to develop generalized 

approaches to multidimensional patient record data 

embeddings that can be applied across diverse healthcare 

settings and patient populations[47]. Another challenge 

is the potential presence of biases in the data. EHRs may 

contain biases related to factors such as race, ethnicity, 

and socioeconomic status, leading to disparities in 

healthcare outcomes. If not accounted for, these biases 

can be amplified by multidimensional patient record data 

embeddings[49]. 

Additionally, multidimensional patient record data 

embeddings are susceptible to errors and inaccuracies in 

the data, potentially resulting in incorrect predictions and 

diagnoses[38]. This issue is of particular concern in 

healthcare, where inaccurate predictions can have serious 

consequences for patient health and safety. Furthermore, 

there is a need for more research on the ethical and legal 

implications of using multidimensional patient record 

data embeddings in healthcare[33,35]. As with any 

technology, risks and potential harms are associated with 

the use of these tools, such as privacy violations and 

discrimination. Future work could focus on developing 

guidelines and best practices for the ethical application 

of multidimensional patient record data embeddings in 

healthcare and addressing legal and privacy 

concerns[29,31]. 

3.2 Relational Data 

Healthcare and medical data can be depicted as graph 

data, where entities such as patients, diseases, treatments, 

and procedures are represented as nodes, and the 

relationships between these entities are represented as 

edges[12]. In an electronic health record (EHR) system, 

for instance, a patient can be represented as a node, with 

their diagnoses, medications, and procedures represented 

as separate nodes connected to the patient node by 

edges[14]. Similarly, in a disease network, each disease 

can be represented as a node, and the relationships 

between diseases, such as co-morbidities or risk factors, 

can be represented as edges between the nodes[16]. 

Graph data can capture complex relationships between 

entities that are challenging to represent in other data 

structures, such as tables or matrices. By representing 

medical and healthcare data as graph data, graph data 

embedding techniques can be leveraged to transform this 

intricate, high-dimensional data into low-dimensional, 

continuous vector spaces[18]. These embeddings can 

facilitate the application of traditional machine learning 

algorithms for downstream analysis, including disease 

subtyping, drug discovery, and patient stratification [20].
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Fig 5: Architecture of GCN  [82] 

Various architectures and methods have been 

investigated for graph-based patient record data 

embeddings in the medical and healthcare domain. One 

popular approach is graph convolutional networks 

(GCNs), which are neural networks that operate on 

graph-structured data[22]. GCNs have demonstrated 

great promise in numerous healthcare applications, such 

as predicting patient outcomes, identifying disease 

subtypes, and developing personalized treatment 

plans[24]. Another approach involves using knowledge 

graphs, which represent healthcare data as a set of 

entities and relationships between these entities[26]. 

Knowledge graphs have been employed to identify 

potential drug targets and develop novel drugs, as well as 

to detect patterns and trends in patient data that may not 

be apparent through traditional methods[28]. 

Additionally, several methods have been explored for 

learning graph embeddings, including graph 

autoencoders and variational graph autoencoders 

(VGAEs)[30]. These models learn a low-dimensional 

representation of the graph, capturing essential features 

of the relationships between entities, which can be 

applied to various tasks, including clustering and 

classification[32]. Finally, there are approaches that 

integrate graph-based and text-based embeddings. For 

instance, clinical concept embeddings can be combined 

with graph-based embeddings to capture both the 

relationships between clinical concepts and the 

relationships between patients and clinical concepts[34]. 

Although graph-based patient record data embeddings 

offer considerable potential for enhancing patient 

outcomes and advancing the healthcare field, several 

limitations and research gaps still need to be 

addressed[36]. One primary limitation is the absence of 

standardized graph representations for healthcare 

data[38]. Healthcare data can be incredibly complex and 

heterogeneous, complicating the development of 

standardized graph representations that can be applied 

across diverse healthcare settings and patient 

populations[40]. Another limitation lies in the potential 

for bias in graph-based approaches[42]. Biases related to 

factors such as race, ethnicity, and socioeconomic status 

may be exacerbated by graph-based approaches if the 

models are not designed to account for them[44]. 

Moreover, further research is needed on the ethical and 

legal implications of employing graph-based approaches 

in healthcare[46]. As with any technology, risks and 

potential harms are associated with the use of these tools, 

including the possibility of privacy violations and 

discrimination[48]. 

Lastly, there is a need for more research on the 

interpretability of graph-based approaches[50]. Graph-

based approaches can be highly complex, making it 

challenging for healthcare providers to interpret the 

models and comprehend how they generate their 

predictions[52]. This is particularly concerning in 

healthcare, where accurate and interpretable predictions 

are essential for patient safety and well-being[54]. 
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3.3 Image Data 

Image data embeddings serve as a potent tool in the 

medical and healthcare domain, enhancing the accuracy 

of diagnosis, aiding treatment planning, and monitoring 

disease progression[56]. A primary application of image 

data embeddings is disease diagnosis, where embeddings 

help identify pertinent features in medical images, such 

as tumors or lesions, assisting physicians in accurate 

diagnoses[58]. Utilizing machine learning algorithms, 

these features can be incorporated into automated 

diagnostic tools that rapidly analyze medical images and 

provide precise results[60], significantly reducing 

diagnosis-associated time and costs while improving 

patient outcomes[62]. 

Another crucial application of image data embeddings is 

treatment planning[64]. By extracting key features from 

medical images, physicians can determine the best 

treatment options for individual patients[66]. This 

personalized approach can result in more effective 

treatments and reduced complications and side 

effects[68]. Additionally, image data embeddings 

facilitate analyzing drug effects on medical images, 

enabling more efficient drug discovery and 

development[70].

 

 

Fig 6: Architecture of CNN  

Image data embeddings can also monitor disease 

progression[72]. By examining changes in medical 

images over time, physicians can track disease 

progression and evaluate treatment effectiveness[74]. 

This is particularly important in chronic conditions, such 

as cancer or multiple sclerosis, where early detection and 

intervention can significantly improve patient 

outcomes[76]. Beyond these applications, image data 

embeddings can be employed for image segmentation, 

identifying and separating regions of interest within 

images[78], and in medical research by offering a more 

efficient way to analyze vast amounts of medical image 

data[80]. Various image data embedding architectures 

have been applied in the medical and healthcare domain, 

with convolutional neural networks (CNNs) being one of 

the most widely used[82]. CNNs are particularly suited 

for image data embeddings, learning features from 

images by applying convolutional filters to image 

pixels[84]. In the medical domain, CNNs have been 

employed for numerous tasks, including disease 

diagnosis, treatment planning, and medical image 

segmentation[86]. 

Other architectures applied in the medical and healthcare 

domain include autoencoders[88], recurrent neural 

networks (RNNs)[90], and attention-based 

architectures[92]. Despite their promising applications, 

several limitations of image data embeddings in the 

medical and healthcare domain exist, such as the need 

for large amounts of data for training models, lack of 

interpretability, proneness to bias, and the significant 

computational resources required to train and run these 

models[94-100]. 

Despite the promising applications in the medical and 

healthcare domain, there are several limitations to image 

data embeddings in the medical and healthcare domain. 

One of the primary limitations is the need for large 

amounts of data to train these models [1]. Medical 

images are often scarce, expensive to obtain, and 

difficult to annotate. This can make it challenging to 

train image data embedding models, particularly in cases 

where the dataset is small or imbalanced [2]. 

Additionally, some medical conditions may present 

differently in different patients, making it difficult to 

generalize image data embeddings to a larger population 
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[3]. Another limitation of image data embeddings is the 

lack of interpretability [4]. While these models can 

accurately identify relevant features in medical images, it 

can be difficult to understand how these features are 

being used to make a diagnosis or treatment 

recommendation. This lack of interpretability can make 

it challenging for physicians to fully trust the results 

provided by these models [5]. 

In addition, image data embeddings can be prone to bias 

[6]. If the dataset used to train the model is biased, the 

model may also exhibit that bias in its predictions. This 

can be particularly problematic in medical applications, 

where biased predictions can lead to incorrect diagnoses 

or treatments [7]. Finally, the computational resources 

required to train and run image data embedding models 

can be significant [8]. These models require powerful 

hardware and may take a long time to train, which can 

limit their accessibility and usability for smaller medical 

facilities or research institutions [9]. 

3.4 Audio Data 

Audio data embeddings have a range of applications in 

the medical and healthcare domain [1, 2, 19]. By 

extracting meaningful information from audio 

recordings, these embeddings can help improve the 

accuracy of diagnosis and treatment [2, 19]. One of the 

most common applications of audio data embeddings is 

speech analysis [1, 19]. Audio data embeddings can be 

used to analyze speech patterns to identify specific 

medical conditions [1, 19]. For example, voice analysis 

can help diagnose speech disorders or assess the severity 

of conditions such as Parkinson's disease or depression 

[1, 2]. Audio data embeddings can help detect changes in 

speech patterns over time, which can be indicative of 

disease progression [1, 2]. 

 

Fig 7: Architecture of Audio Classification with RNN  [83] 

Heart sound analysis is another important application of 

audio data embeddings [1, 19]. By analyzing heart 

sounds, audio data embeddings can help detect specific 

patterns that are indicative of various heart conditions, 

such as murmurs or valve disorders [1, 2, 19]. Heart 

sound analysis can also be used to monitor the 

progression of heart conditions and assess the 

effectiveness of treatment [1, 19]. For example, if a 

patient's heart sounds improve after treatment, this may 

be an indication that the treatment is effective [1, 2]. 

Respiratory sound analysis is another application of 

audio data embeddings that can be used to diagnose 

respiratory conditions such as asthma, pneumonia, or 

chronic obstructive pulmonary disease (COPD) [1, 2, 

19]. By analyzing respiratory sounds, such as wheezing 

or crackles, audio data embeddings can help physicians 

identify specific patterns that are indicative of these 

conditions [1, 19]. This can be particularly useful in 

cases where physical examination or other diagnostic 

tests are inconclusive [1, 2, 19]. 

Finally, audio data embeddings can be used to monitor 

patient progress over time [1, 2, 19]. For example, by 

analyzing speech patterns or heart sounds over time, 

physicians can monitor the progression of a patient's 

condition and assess the effectiveness of treatment [1, 2, 

19]. Audio data embeddings can also be used to identify 

potential complications or changes in a patient's 

condition, allowing for prompt intervention and 

improved patient outcomes [1, 2, 19]. There are various 

architectures of audio data embeddings that have been 

applied in the medical and healthcare domain. One of the 

most widely used architectures is the convolutional 

neural network (CNN) [7, 15, 20]. CNNs are particularly 

effective for audio data embeddings because they can 

learn features from the raw audio waveform by applying 

convolutional filters [7, 15, 20]. These features can then 

be used to classify audio data or identify specific patterns 

within the audio [7, 15, 20]. In the medical domain, 

CNNs have been applied to a range of tasks, including 

speech analysis, heart sound analysis, and respiratory 

sound analysis [7, 15, 20]. 
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Another architecture that has been applied in the medical 

and healthcare domain is the recurrent neural network 

(RNN) [5, 17, 26]. RNNs are well-suited for time-series 

data, such as audio recordings, as they can learn to 

predict future values based on past observations [5, 17, 

26]. In the medical domain, RNNs have been applied to 

tasks such as patient monitoring and disease progression 

analysis [5, 17, 26]. For example, RNNs have been used 

to predict the likelihood of a patient developing a 

particular condition based on their medical history [5, 17, 

26]. Another architecture that has been applied in the 

medical and healthcare domain is the attention-based 

model [8, 28, 41]. These architectures allow the model to 

focus on specific segments of the audio data, which can 

be particularly useful in medical audio analysis [8, 28, 

41]. Attention-based models have been used to identify 

specific patterns within audio data, such as heart sounds 

or respiratory sounds, that are indicative of various 

medical conditions [8, 28, 41]. In addition, transfer 

learning has been applied in the medical and healthcare 

domain for audio data embeddings [9, 31, 42]. Transfer 

learning involves training a model on a large dataset, 

such as a general audio dataset, and then fine-tuning the 

model for a specific medical application [9, 31, 42]. This 

approach has been successful in speech analysis, heart 

sound analysis, and respiratory sound analysis, where the 

availability of medical audio data is often limited [9, 31, 

42]. 

Despite the promising applications of audio data 

embeddings in the medical and healthcare domain, there 

are also limitations that need to be considered [1, 2, 9, 

19]. One of the primary limitations is the need for large 

amounts of high-quality data to train these models 

effectively [1, 2, 9, 19]. Medical audio data can be 

particularly challenging to obtain and can often be 

limited in quantity and quality [1, 2, 9, 19]. This can 

make it difficult to train audio data embedding models 

that are sufficiently accurate and reliable for medical 

diagnosis and treatment [1, 2, 9, 19]. Another limitation 

of audio data embeddings is the interpretability of the 

results [5, 7, 17]. While these models can accurately 

identify relevant features within audio data, it can be 

difficult to understand how these features are being used 

to make a diagnosis or treatment recommendation [5, 7, 

17]. This lack of interpretability can make it challenging 

for physicians to fully trust the results provided by these 

models [5, 7, 17]. 

In addition, audio data embeddings can be prone to bias 

[15, 20, 26]. If the dataset used to train the model is 

biased, the model may also exhibit that bias in its 

predictions [15, 20, 26]. This can be particularly 

problematic in medical applications, where biased 

predictions can lead to incorrect diagnoses or treatments 

[15, 20, 26]. Finally, the computational resources 

required to train and run audio data embedding models 

can be significant [8, 28, 41]. These models require 

powerful hardware and may take a long time to train, 

which can limit their accessibility and usability for 

smaller medical facilities or research institutions [8, 28, 

41]. 

3.5 Text Data 

Text data embeddings have numerous applications in the 

medical and healthcare domains [53, 61, 80]. One of the 

most significant uses is in the field of clinical decision-

making [2, 4, 12, 24, 33]. Healthcare providers can 

utilize natural language processing (NLP) and machine 

learning algorithms to scrutinize patient data and predict 

the likelihood of disease or illness [14, 55, 67]. Text data 

embeddings can be employed to represent patient 

medical records, which comprise information such as 

symptoms, diagnosis, and treatment history, in a 

structured format that is easy to analyze [3, 5, 

29].Another significant application of text data 

embeddings is in drug discovery and development [43, 

57, 77]. Researchers can leverage NLP and machine 

learning algorithms to analyze scientific publications, 

patents, and other data sources to identify potential drug 

targets and develop novel drugs [26, 27, 46]. Text data 

embeddings can be employed to represent chemical 

compounds and other data in a manner that is effortless 

to analyze and compare [25, 39, 69]. 

In addition to clinical decision-making and drug 

discovery, text data embeddings can also be utilized in 

medical imaging [1, 13, 56]. Medical images, such as X-

rays and MRIs, are frequently accompanied by clinical 

notes that delineate the patient's symptoms and medical 

history [9, 30, 64]. By amalgamating the clinical notes 

with the medical images, healthcare providers can attain 

a better understanding of the patient's condition and 

develop more precise diagnoses [6, 7, 8]. Text data 

embeddings can also be implemented in electronic health 

record (EHR) systems to enhance patient outcomes [16, 

19, 32]. EHR systems are often utilized by healthcare 

providers to store patient medical records, but the data is 

frequently unstructured and arduous to analyze [15, 20, 

47]. Text data embeddings can be utilized to represent 

the data in a structured format that is easy to analyze and 

use for clinical decision-making [17, 18, 31]. 
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Fig 8: Architecture of Word2Vec Embeddings Models  [84] 

There are several architectures used for text data 

embeddings in the medical and healthcare domain [36, 

38, 42]. One of the most popular is the word2vec model, 

which is based on the distributional hypothesis that 

words appearing in similar contexts tend to have similar 

meanings [49, 62, 65]. The model learns a vector 

representation for each word in a corpus of text by 

predicting the context in which the word appears [50, 54, 

58]. Another architecture commonly used is the GloVe 

model, which stands for Global Vectors for Word 

Representation [34, 37, 41]. This model learns vector 

representations for words by analyzing the co-occurrence 

statistics of words in a corpus of text [35, 40, 44]. GloVe 

is known for its ability to capture global word 

relationships, and has been shown to perform well in 

tasks such as word analogy and text classification [45, 

48, 52]. 

Transformer-based architectures, including BERT 

(Bidirectional Encoder Representations from 

Transformers) and GPT (Generative Pre-trained 

Transformer), have experienced a surge in popularity in 

recent years[66, 70, 76]. These models rely on the 

attention mechanism, enabling them to account for the 

entire context of a sentence when generating 

embeddings[60, 71, 74]. BERT has exhibited exceptional 

performance in tasks such as named entity recognition 

and question-answering[68, 72, 79], while GPT has been 

employed for tasks like text generation and language 

translation. In addition to these models, specialized 

models have been developed explicitly for healthcare 

applications. For instance, the ClinicalBERT model, 

trained on a vast corpus of clinical notes and medical 

records, has demonstrated superior performance 

compared to other models in tasks like medical entity 

recognition and de-identification[61, 67, 79]. 

Despite the promising results of text data embeddings in 

the medical and healthcare domain, several limitations 

need to be addressed. One primary limitation is the issue 

of bias. As text data embeddings are trained on large 

corpora of text, they may reflect biases present in the 

data, such as gender or racial biases[53, 58]. This can 

lead to unfair or inaccurate predictions, particularly in 

healthcare applications where biases can result in severe 

consequences. Another limitation is the lack of 

interpretability. Although text data embeddings can 

capture intricate relationships between words and 

concepts, understanding how these relationships are 

represented in the embedding space can be 

challenging[52, 57]. This can make it difficult to 

interpret the results of machine learning models that 

utilize text data embeddings. 

Text data embeddings are also constrained by the quality 

and quantity of the training data. If the training data is 

incomplete or inaccurate, the resulting embeddings may 

not accurately represent the underlying concepts or 

relationships in the data[49, 54]. Additionally, text data 

embeddings necessitate vast amounts of training data and 

computational resources, which can pose a barrier for 

smaller healthcare organizations or resource-constrained 

settings[51, 56]. Finally, text data embeddings are 

limited by their generalizability. While embeddings 

trained on one dataset or domain may perform well on 

similar tasks, they may not generalize effectively to new 

datasets or domains[50, 55]. This can make it 

challenging to apply text data embeddings in novel 

healthcare settings or for new tasks. 

In recent years, text data embeddings have emerged as a 

powerful tool for healthcare applications, with a wide 

range of potential use cases, including clinical decision-
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making, drug discovery, medical imaging, and electronic 

health records. Researchers have explored several 

different architectures for text data embeddings, such as 

word2vec, GloVe, and transformer-based models like 

BERT and GPT, and have also developed specialized 

models like ClinicalBERT for healthcare applications. 

While text data embeddings have shown great promise, 

there are also several limitations that need to be 

addressed, such as bias, interpretability, data quality, 

generalizability, and computational resources. 

Addressing these limitations will be crucial for realizing 

the full potential of text data embeddings in healthcare 

applications. 

4. Review of Current Research Done 

The table 4 presented below highlights the most recent 

research works in various fields of study. Each row lists 

the title of the paper, the Algorithm, the publication year, 

and the main findings of the study. The table is organized 

by topic, making it easy to browse through and find 

works relevant to specific areas of interest. This table 

serves as a valuable resource for anyone seeking to stay 

up-to-date with the latest developments in academic 

research.

Table 4: Latest Research Works: Recent Findings in Various Fields of Study 

Reference Algorithm Embedding Short Summary Year 

[38] Deep Learning Word Embeddings 

Enhancing answer processing in 

biomedical QA using word embeddings 

and external resources 

2021 

[54] Deep Learning Semantic Embeddings 
Identifying similar terms from EMRs to 

aid chart reviews 
2021 

[20] Deep Learning 
Clinical Concept 

Embeddings 

Learning clinical concept embeddings 

from large-scale multimodal medical data 
2020 

[29] Deep Learning Word Embeddings 
Detecting adverse drug reactions using 

imbalanced Twitter data 
2020 

[53] Deep Learning Word Embeddings 
Comparing different word embeddings for 

biomedical NLP 
2020 

[61] Deep Learning Word Embeddings 
Selecting disease cohorts automatically 

using word embeddings from EHRs 
2020 

 

5. Future Direction for Research 

The table presents a synthesis of crucial research gaps 

and future directions for data embeddings in the medical 

and healthcare domain. It emphasizes the necessity for 

more precise and comprehensible embeddings, along 

with the development of more resilient and dependable 

embeddings capable of mitigating biases and 

inaccuracies in the training data. Moreover, it 

accentuates the significance of creating specialized 

embeddings tailored for particular healthcare 

applications, while addressing the ethical and legal 

ramifications of employing text data embeddings in 

healthcare. The table also recommends integrating text 

data embeddings with other healthcare data sources, such 

as medical imaging or genomics data, to offer more 

potent insights for clinical decision-making and drug 

discovery. Ultimately, it acknowledges the importance of 

incorporating patient preferences and values into text 

data embeddings to foster more patient-centered 

healthcare. In summary, the research gaps and future 

directions delineated in the table highlight the critical 

nature of ongoing research in this field, with the 

overarching objective of enhancing patient outcomes and 

propelling the healthcare sector forward. 

 

Table 5: Future directions for research 

Research Gap/Future Work Description 

Development of more accurate 

and interpretable embeddings 

While current models have shown good performance in a variety of tasks, their black-

box nature makes it difficult to understand how they are making decisions. Future 

work could focus on developing more transparent models that allow healthcare 
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Research Gap/Future Work Description 

providers to better understand how embeddings are being used to inform clinical 

decision-making. 

Development of more robust 

and reliable embeddings 

Current models are vulnerable to biases and errors in the training data, which can lead 

to inaccurate or unfair predictions. Future work could focus on developing methods to 

mitigate these biases and errors, such as using adversarial training or developing more 

diverse and representative training datasets. 

Development of specialized 

embeddings for specific 

healthcare applications 

While general-purpose embeddings like word2vec and GloVe are useful for a wide 

range of tasks, they may not be optimal for certain healthcare applications. Future 

work could focus on developing embeddings that are tailored to specific tasks, such as 

drug discovery or medical imaging. 

Research on the ethical and 

legal implications of using text 

data embeddings in healthcare 

As with any technology, there are risks and potential harms associated with the use of 

text data embeddings, such as the potential for biased or inaccurate predictions. Future 

work could focus on developing guidelines and best practices for the ethical use of text 

data embeddings in healthcare, as well as addressing legal and privacy concerns. 

Integration of text data 

embeddings with other sources 

of healthcare data 

Text data embeddings are just one type of healthcare data, and integrating them with 

other sources of data, such as medical imaging or genomics data, could provide even 

more powerful insights for clinical decision-making and drug discovery. Future work 

could focus on developing methods to integrate different types of healthcare data in a 

way that is efficient and effective. 

Development of methods to 

incorporate patient preferences 

and values into text data 

embeddings 

While text data embeddings can provide valuable insights into patient health, they do 

not capture patient preferences and values. Future work could focus on developing 

methods to incorporate this information into text data embeddings, in order to develop 

more patient-centered healthcare. 

 

6. Conclusion 

In conclusion, data embeddings have emerged as a 

powerful tool for healthcare applications in recent years, 

with a wide range of potential use cases, including 

clinical decision-making, drug discovery, medical 

imaging, and electronic health records. Several different 

architectures, such as word2vec, GloVe, and transformer-

based models, have been explored for data embeddings 

in healthcare, with promising results. However, there are 

still several research gaps and future works that need to 

be addressed, such as the development of more accurate 

and interpretable embeddings, more robust and reliable 

embeddings, and guidelines for the ethical use of data 

embeddings in healthcare. Despite these research gaps, 

significant progress has been made in the application of  

data embeddings in healthcare, with the potential to 

improve patient outcomes and advance the field of 

healthcare. As the field continues to evolve, we can 

expect to see even more applications of data embeddings 

in the future, as well as continued research on improving 

the accuracy, reliability, and ethical use of these tools.  
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