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Abstract: Existing utility mining algorithms consider only frequency, productivity and quantity of every item purchased 

for utility calculation. No attention has been given to the length of transactions. Uncovering high average utility itemsets 

from the transaction dataset solves the above issue. In some circumstances, things may appear in reality with a negative 

unit value. For example, a retail store may trade items at a loss to energize the trade of similar products. To resolve the 

issue, we propose an effective mechanism named appropriate average high utility itemset mining with negative utilities 

(AAHUIM-NU) which creates high quality decision makers. To solve the issue of data set repository and numerous sweeps 

of the data set, proposed algorithm involves number of lists for caching the relevant data which possesses only less storage. 

It utilizes a minimized transaction utility, decreased maximal utility, and generalized tight upper bounds to find out the 

pruning threshold and to minimize the running time and memory. Exploratory outcomes on datasets demonstrate that 

AAHUIM-NU is productive in terms of processing time, memory usage, and versatility. It performs well on thick datasets 

which has an excessive number of long transactions. The experimental results are recorded in tables and given in this paper. 

Keywords: High average-utility itemsets Negative utility, Premature pruning strategies, Tighter upper bound, Appropriate 

maximal utility 

1. Introduction  

The intention of data mining is to list the promising 

information from databases that satisfy the requirements 

of different applications of data owners. Very popular 

frequent itemset mining (FIM) [1] [2] [3] algorithms for 

extracting association rules and recurrent itemsets in 

databases are apriori and frequent pattern-growth(FP-

growth). These algorithms are very convenient 

association mining algorithms but they only analyse 

patterns based on the frequency of entries in a database. 

The components like weight and cost of item, 

importance or profitability of mined patterns can also be 

considered for prime decision making. To achieve this, 

high utility itemset mining (HUIM) was introduced to 

choose only the itemsets having calculated utility more 

than the threshold. The fundamental objective of the 

HUIM algorithm [4] is to track down high utility 

itemsets(HUI) by taking into account of the above said 

client inclinations. There were numerous algorithms  

proposed to extricate HUI by utilizing the above model. 

Specialists proposed incremental high utility pattern 

mining(IHUP) [5], transaction weighted utility mining 

(TWU-Mining) [6], isolated items discarding 

strategy(IIDS)[7], utility pattern growth(UP-Growth) [8], 

UP-Growth+ [9] algorithms. They create countless 

candidate sets which prompts performance degradation. 

Liu et al. proposed a one-stage HUI-Miner [10] 

algorithm, which focusses on the generation of a list 

structure named utility list to represent the database 

without any loss and can productively prune the majority 

of the search space. Though HUIM can disclose 

productive and more meaningful facts than the result of 

FIM, it has a key block. HUIM algorithms ignore the 

number of entries present in the transactions. The 

average utility measure in HUIM algorithms increase the 

utility measure by a factor proportional to the length of 

an itemset, has been introduced by Hong et al. to fairly 

compute the utility of itemsets. With the utilities and 

item count added together, the average utility of an 

itemset is determined. TPAU algorithm [11] first 

introduced the average utility upper bound(auub) concept 

and it is based on level-wise threshold increasing 

methodology in two phases. From that point forward, a 

few strategies like PBAU [12], PAI [13], HAUPGrowth 

[14], HAU Itemset-Tree [15], HAU Itemset-Miner [16], 

EHAUPM [17], MHAI [18], FHAUIM [19], TUB-

HAUPM [20], and dHAUIM [21], have been emerged 

with effective factors to improve the results. The high 

average utility itemset mining(HAUIM) approaches 

suggested in the aforementioned publications, however, 

anticipate that the products have exclusively beneficial 
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external utility. On the other hand, as stated in 

HUINIVMine[22], GHUM[23], FHN[24], EHIN[25], 

MHAUIPNU [26] , TS-HOUN[27], EHNL [28], EFIM 

[29], HUPNU[30], and CHN[31],  databases may also 

include negative external utilities in many application 

scenarios. A chain of supermarkets might sell items with 

less profit or even no profit or at a loss to encourage the 

sale of other related items or simply to tempt customers 

to their retail location [22-25]. When the data sets 

additionally contain negative utilities, existing high 

average utility itemset mining HAUIM calculations 

might deal with the issue of fragmented detection of high 

average utility itemsets(HAUIs) because the 

upper‐bound underrates the candidate itemsets. The 

significant difficulties we face while planning for an 

algorithm to deal with negative items are developing an 

algorithm for discovering HAUIs with negative utility 

items, setting a tighter average bound for pruning 

unpromising items and design a state-of-the art 

algorithm.  

Appropriate  Average High Utility Itemset Mining with 

Negative Utilities is the proposed approach in this article 

for efficiently discovering HAUIs with both positive 

and negative utility items. A novel tight bound model 

called appropriate average utility upper bound(aauub) is 

proposed to reduce the dimensions for extracting 

appropriate average high utility itemsets(AAHUIs) with 

beneficial and undesirable items. To lessen the amount 

of database and memory consumption, a list data 

structure was created with two early pruning strategies to 

contain only the necessary information. Two early 

pruning strategies are provided to enhance the proposed 

algorithm's performance by reducing candidate set 

formation. The first trimming approach is based on the 

user given minimum threshold. The utility of the items in 

the transaction and the frequency of entries in the 

transaction are used to prune transactions. Experiments 

on various datasets are carried out to demonstrate the 

efficacy of the proposed AAHUIM-NU algorithm. The 

rest of this article is structured out as follows. The 

following section covers over the associated work. The 

next part explains the fundamental concepts of the 

HAUIM problem. In the following section, we'll go over 

the proposed algorithm. Experimental analysis is 

presented before the closing part. Conclusions and future 

work are presented in the concluding section.  

2. Preliminaries And Problem Definition 

All of the necessary definitions are spelled out in great 

detail. Let I be a fixed collection of n unique things. D is 

a database with a collection of transactions in it. T is a 

transaction which contains purchased items and their 

quantity from a vender. Every transaction has a distinct 

identifier (TID) and is present in Table 1. All of the 

items in list (I) have the same or different integer profit 

as shown in Table 2. There are 6 transactions with 

transaction ids T1, T2…. T6. The items present in 

transaction T1 is {A, B, C, F} and their utilities are 

(1,1,1,4). The interestingness of those items may be plus 

or minus. The items C and F are lossy items while others 

have positive profit. Utility of transaction T6 is not 

included in any calculation as it has only negative items. 

All the above definitions are utilized in our AAHUIM-

NU algorithm. An itemset X is supposed to be an HAUI 

iff its support count (SC) is greater than support 

threshold (ST) and its aauub is higher than the utility 

threshold (UT). HAUI ← {x | aauub(x) ≥ UT Ս SC(x) ≥ 

ST}. Number of times the item is present in the database 

is stored in S-Count List and it is shown Table 3. We 

introduce the concept of a Present List (P-List) as 

follows: p(X) = {Set of transactions chosen from 

database | ∀i ∈ X, T}, where D is database, T is 

transaction, X is an itemset and i is an item. We can see 

that a support set is a subset of all the transactions in 

which X appears. A sample P-List is given in Table 4. 

Maximal utility (mu)of transaction Td ∈ D is mu (Td) = 

max {u (i j) | i, j in Td}. Itemset’s average utility upper 

bound is defined as auub(X) = Sum (mu (Td)) | X⊆Td. 

 X is considered a high average utility upper bound 

itemset (HAUUBI) if it's auub is greater than user 

given UT [auub(X) ≥ UT]. The k-HAUUBI is a 

HAUUBI with k components.  

The transaction utility list (TU-L) of T is then made up 

of m sorted elements, each of which represents the utility 

value of each item in T. The following is how the TU-L 

is defined and displayed in Table 5. TU-L (T) = {ui | for 

any 1 ≤ i ≤ j ≤ m, ui ≥ uj}, where ui denotes the utility of 

a unique item in T. We take T2 as an example from Table 

1. Here, the items B, D and E have corresponding 

utilities 1,2 and 6 [u(B) = 1, u(D) = 2, u(E) = 6]. Thus, 

TU-L(T2) = {6,2,1}. TU-List after first level pruning is 

given in Table 6. 

A percentage of the total transaction utility(TTU) is used 

to represent the user-specified minimum utility limit, 

whereas the utility threshold is defined as UT = δ ×TTU. 

We introduce the concept of a critical support count (csc) 

which is used for first level pruning of unpromising 

items. Critical support count is an integer value 

calculated from mu  and database maximal utility list(D-

MUL), given in equation (1): 

   

    (1) 

Consider a transaction of length m, T ∈. Then, for a k-

itemset X such that X ⊆ T, the appropriate maximal 

utility (AMU) is stated as in equation (2): 

     

    (2) 
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where 1 ≤ k ≤ m, and uj is the jth entry in TU-L (T). The 

aauub of k-itemset X is written as in equation (3):  

     (3) 

 
Table 1. A transactional database 

   
Table 4. P-List after pruning 

Item 

A B C D E F TU MU RTU RMU 
 

Itemset Present in 
  

Tid 

 

p(a) 
{T1, T3, 

T5} 
  

T1 1 1 1     2 -3 7 8 7 
 

p(b) {T1, 

T2.T3} 
  

T2   1   1 1   9 6 9 6 
 

p(d) {T2, T4} 
  

T3 1 1 1     1 1 7 8 7  
  

  
T4     3 2   1 -9 4 0 4  Table 5. Initial TU- List 

T5 1   2       1 7 7 7  Tid TU-List   
T6     2       -14 -6 - - 

 
T1 {7,1} 

  
           

 
T2 {6.2.1} 

  

  
Table 2. A profit table PT 

   
T3 {7,1} 

  

  
Item A B C D E F 

   
T4 {4} 

  

  
Profit 7 1 -3 2 6 -4 

   
T5 {7} 

  

  
       

        

  
Table 3. S-Count List 

   
Table 6. TU-List after pruning 

   
Item A B D E 

    
Tid TU- List 

  

   
SC 3 3 2 1 

    
T1 {7,1} 

  

            
T2 {2,1} 

 
 

            
T3 {7,1} 

 
 

 

Set of aauub of productive 1-itemsets are 

{(A,21),(B,20),(D,10)}. The upper bound generated by 

this aauub is tight when compared with previous 

algorithms. Let us take 1-appropriate average high utility 

upper bound itemset(1-aahuubi) = {A, B, D}. Extensions 

of element A are, {AB, AD, BD}. aauub(AB) = ((7+1) 

+(7+1))/2 = 8. If existing algorithms are used for 

calculation, auub (AB) = (7+7)/2 = 7. The following is 

the definition of X's itemset maximal utility list (I-

MUL): I-MUL(X) = {mui  | for any i ≤ j, mui ≥ muj}, 

where mu is the maximal utility of transaction T, and T ∈ 

p(X). Let D be a transactional database with n rows. 

Then the database maximal utility list is stated as: D-

MUL(D) = {mui | for any 1 ≤ i ≤ j ≤ n, mui ≥ muj}, 

where mui is transaction’s maximal utility T, and T ∈ D. 

The list of maximal utilities of transactions in which 

itemset X occurs as a subset, resulting from I-MUL and 

D-MUL, is called the maximal utility list of itemset X. 

All members are arranged in descending order of 

maximal utility. The empty set can be viewed as the 

maximal utility list D-MUL () of the database , that is, D-

MUL (∅). For example, for the database in Table 1, 

p(AB) = {T1, T3}, support (AB) = 2, I-MUL(AB) = {7, 

7} and D-MUL(D) = {7,7,7,6,4}. 

The search space tree is the main strategy to represent 

the combinations of items to be processed further. The 

items are arranged by ≻ order of sorted items. 

Rearranging of itemsets is accomplished by growing 

aauub as this minimizes the quantity of candidate sets to 

be managed. The pruning procedure is a significant part 

for mining HAUIs productively. The principal pruning 

system depends on the utility given in the data set. The 

other pruning methodologies are based on the 

determined utility threshold (UT), counted support count 

(SC) which is an integer value holds number of 

transactions where X happens as a subset and appropriate 

average high utility upper bound.  

Strategy 1- Pruning the negative itemsets 

Strategy 2 -Pruning the search space by using Support 

Count 

Strategy 3 -Pruning the search space by deleting 

transactions 
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Strategy 4 -Pruning an itemset's negative 

extensions 

Strategy 5 -Pruning the search space by aauub 

3. METHOD 

Steps 1-3 scan the transaction database once. Then, as 

needed, the pruning procedures described in the previous 

article are employed. Items are filtered by deleting 

negative utility items from database and also the entire 

transaction if it has only negative items (steps 5-6). 

Construct the present list(P-List) of all distinct items and 

their presence in various transactions. This list is further 

used in all stages of algorithms to avoid unnecessary 

scanning of database (step 7). Then calculate the 

transaction utility TU of all items (step 8). 

Simultaneously identify maximum utility and store in mu 

list. Step 10 deals with the construction of TU-List for 

each transaction in database. This list avoids repeated 

scanning of database for utility calculations or further 

processing. In step 11, the algorithm stores the support of 

each item in a list called S-Count List. Sort the maximal 

utilities of 1-items in descending order and store it in D-

MUL. Calculate aauub of X where X is an item in 

database with the help of calculated AMU(step 13). 

 

Steps 14-16 deal with the calculation of total transaction 

utility, UT and csc values. Now execute AAHUUBI 

function for finding promising appropriate average high 

utility itemsets by other pruning methods. The function 

initially creates extension of  all possible candidate sets 

by exploring the candidates in a depth-first manner that 

includes x where k>1. For every item present in the 

extension, apply pruning strategy 2 and 5 by comparing 

the support count of item and csc values. For the 

qualified itemsets aahuub and UT are compared. If the 

itemset clears both the tests, it will be added to the 

consolidated list of promising AAHUIs. For itemsets 

prefixed by other AAHUUBIs, the same traversal 

method will be applied. 

4. Results And Discussion 

4.1. Experiments and Evaluation 

We conducted numerous tests to evaluate the 

performance of the AAHUIM-NU algorithm. This 

experiment utilises seven genuine datasets from an open-

source software and data mining library called 

SPMF[32]. The dataset's basic properties are shown in 

Table 7. Our proposed AAHUIM-NU algorithm is a 

novel approach for mining appropriate average high 

utility itemsets with negative utility. We considered FHN 

algorithm [24] and EHIN algorithm [25] for comparison 

studies. We examined the working efficiency of the 

above algorithms in terms of space and runtime for 

different minimal utility thresholds. For pruning 

unpromising elements and selecting potential HAUIs 

these algorithms use auub(average utility upper bound), 

gauub(generalised average utility upper bound), and 

aauub(appropriate average utility upper bound). We set a 

minimum utility threshold before evaluating the 

algorithm's performance. Required changes are 

implemented to all datasets in order to make them 

suitable as inputs to our proposed algorithm.  

Table 7. Characteristics of the datasets  

DATA SETS #TRAN #ITEMS ATS #PIs #NIs Density TYPE 

T251200D10K 10000 200 25 134 66 12.5 DENSE 

CHESS 3196 76 37 51 25 48.68421 DENSE 

CONNECT 67557 130 43 87 43 33.07692 DENSE 
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RETAIL 88162 16,470 10.3 11035 5435 0.062538 SPARSE 

MUSHROOM 8124 119 23 80 39 19.32773 DENSE 

ACCIDENT 340183 468 33.8 280 188 7.222222 DENSE 

KOSARAK 990002 41270 8.1 27651 13619 0.019627 SPARSE 

 

4.2. Runtime analysis on datasets  

This section assesses the AAHUIM-NU and comparison 

algorithm’s runtime performance across all datasets. In 

dense datasets the AAHUIM-NU method's runtime is 

much shorter than those of the FHN and EHIN 

algorithms, as demonstrated in Figure 1. The algorithm 

AAHUIM-NU is superior to FHN and EHIN, as shown 

and it can attain a level of about 20 times greater on 

dense datasets and about 2 times greater on sparse 

datasets. Because dense datasets have well-defined 

scanning methods and trimming procedures that are fully 

utilised. Analysis shows that AAHUIM-NU not only 

surpasses in terms of time efficiency, but also evolves 

more smoothly when the threshold decreases. The FHN 

algorithm overlooks the itemsets that do not appear in 

the dataset because it searches the search space of 

itemsets by merging smaller itemsets rather than 

scanning the entire dataset. The suggested AAHUIM-NU 

algorithm performs better since it contains strong 

pruning techniques. 

4.3. Memory usage on datasets  

The AAHUIM-NU technique utilises substantially less 

memory than the FHN and EHIN algorithms, as shown 

in the Figure 2. The memory usage of the FHN algorithm 

increases swiftly as the threshold value decreases, but the 

memory usage of the EHIN method increases gradually 

like the proposed method. Among these, the FHN 

method uses more memory since FHN saves all utility 

lists in memory. The suggested approach is ineffective 

for highly sparse datasets like kosarak and retail because 

they are extremely sparse and create unnecessary 

intermediate sets. The AAHUIM-NU algorithm 

outperforms FHN and EHIN as demonstrated in Figure 

2. by storing only the necessary data in simple structures 

and never stores the complete dataset in memory after 

scan 1.  

4.4. Comparison of Candidates generated  

     The candidates generated by three alternative upper 

bounds auub, gauub, and aauub on our AAHUIM-NU 

method are assessed below to determine efficiency and 

the findings are shown in Figure 3. for various parameter 

settings. The AAHUIM-NU algorithm incorporates 

effective pruning algorithms for trimming negative 

itemsets and negative transactions as an upgraded 

variation. A unique pruning method that eliminates all 

single item transactions with positive items since they 

are ineffective in generating viable candidates through 

the join operation. As a result, the pruning procedures 

used in our algorithm help to prune the search area and 

lower the number of unpromising patterns.  

 

 

Fig 1. Runtime Analysis for different minimum 
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Fig 2. Memory usage of different datasets for thresholds different minimum utility thresholds 

4.5. Effect of the number of negative items  

The impact of the number of negative items in records on 

algorithm performance is investigated in this experiment. 

To verify our algorithm performance, the running times 

and candidate sets generated for every dataset are 

compared by increasing the set of non-profitable things 

from 25% to 50% of all unique items.  The minimum 

utility criterion for each trial is set to 10%. Studies 

displayed in Figure 4. showed that when the exposure to 

negative items in a dataset grows, the mining algorithms 

take shorter time to complete, generate fewer candidate 

sets, and visit fewer nodes.  

 

 

 

 

 

 

 

 

 

 

 

 

                Fig 3. The number of candidate sets                                  Fig 4. The impact of the quantity of negative 

under changing minimum utility thresholds  elements on algorithm performance 

Furthermore, when the number of negative items in the 

given records rises, the performance of the proposed 

AAHUIM-NU algorithm improves, including both terms 

of throughput and total variety of elements. The auub 

bound performs better and the search space size is 

significantly reduced. When compared to the other two 

constraints, the auub bound produces a significant 

number of candidate-sets in dense datasets with a large 

number of transactions. The pruning algorithms 

described in this work are quite effective at reducing 

running time and lowering memory use. 
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5. Conclusion 

This paper proposes a novel methodology for handling 

both positively and negatively valued items when mining 

the productive high average utility itemsets. The 

AAHUIM-NU algorithm is a depth-first HAUIM 

approach with a single phase. The technique employs 

several lists to maintain only the data needed for future 

use thus reducing the number of scans. All of the 

proposed five early pruning approaches have an impact 

on running time and candidate generation either directly 

or indirectly. The dataset size will be lowered when the 

unpromising elements are trimmed and processing time 

and memory usage are reduced. The performance of the 

AAHUIM-NU algorithm is much superior than that of 

the comparative algorithms, and the algorithm performs 

particularly well in dense datasets, according to 

experimental results. Due to the algorithm's deprived 

performance on sparse datasets, future research could 

focus on ways to improve the algorithm's runtime on 

sparse datasets. In incremental datasets and huge data, 

we can also use the mining of AAHUIs with negative 

elements.  
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