

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 700

A Fast and Enhanced Approach for High Average Utility Itemset

Mining with Lossy Items

J. Wisely Joe1, S. P. Syed Ibrahim2
*

Submitted: 21/03/2023 Revised: 26/05/2023 Accepted: 10/06/2023

Abstract: Existing utility mining algorithms consider only frequency, productivity and quantity of every item purchased

for utility calculation. No attention has been given to the length of transactions. Uncovering high average utility itemsets

from the transaction dataset solves the above issue. In some circumstances, things may appear in reality with a negative

unit value. For example, a retail store may trade items at a loss to energize the trade of similar products. To resolve the

issue, we propose an effective mechanism named appropriate average high utility itemset mining with negative utilities

(AAHUIM-NU) which creates high quality decision makers. To solve the issue of data set repository and numerous sweeps

of the data set, proposed algorithm involves number of lists for caching the relevant data which possesses only less storage.

It utilizes a minimized transaction utility, decreased maximal utility, and generalized tight upper bounds to find out the

pruning threshold and to minimize the running time and memory. Exploratory outcomes on datasets demonstrate that

AAHUIM-NU is productive in terms of processing time, memory usage, and versatility. It performs well on thick datasets

which has an excessive number of long transactions. The experimental results are recorded in tables and given in this paper.

Keywords: High average-utility itemsets Negative utility, Premature pruning strategies, Tighter upper bound, Appropriate

maximal utility

1. Introduction

The intention of data mining is to list the promising

information from databases that satisfy the requirements

of different applications of data owners. Very popular

frequent itemset mining (FIM) [1] [2] [3] algorithms for

extracting association rules and recurrent itemsets in

databases are apriori and frequent pattern-growth(FP-

growth). These algorithms are very convenient

association mining algorithms but they only analyse

patterns based on the frequency of entries in a database.

The components like weight and cost of item,

importance or profitability of mined patterns can also be

considered for prime decision making. To achieve this,

high utility itemset mining (HUIM) was introduced to

choose only the itemsets having calculated utility more

than the threshold. The fundamental objective of the

HUIM algorithm [4] is to track down high utility

itemsets(HUI) by taking into account of the above said

client inclinations. There were numerous algorithms

proposed to extricate HUI by utilizing the above model.

Specialists proposed incremental high utility pattern

mining(IHUP) [5], transaction weighted utility mining

(TWU-Mining) [6], isolated items discarding

strategy(IIDS)[7], utility pattern growth(UP-Growth) [8],

UP-Growth+ [9] algorithms. They create countless

candidate sets which prompts performance degradation.

Liu et al. proposed a one-stage HUI-Miner [10]

algorithm, which focusses on the generation of a list

structure named utility list to represent the database

without any loss and can productively prune the majority

of the search space. Though HUIM can disclose

productive and more meaningful facts than the result of

FIM, it has a key block. HUIM algorithms ignore the

number of entries present in the transactions. The

average utility measure in HUIM algorithms increase the

utility measure by a factor proportional to the length of

an itemset, has been introduced by Hong et al. to fairly

compute the utility of itemsets. With the utilities and

item count added together, the average utility of an

itemset is determined. TPAU algorithm [11] first

introduced the average utility upper bound(auub) concept

and it is based on level-wise threshold increasing

methodology in two phases. From that point forward, a

few strategies like PBAU [12], PAI [13], HAUPGrowth

[14], HAU Itemset-Tree [15], HAU Itemset-Miner [16],

EHAUPM [17], MHAI [18], FHAUIM [19], TUB-

HAUPM [20], and dHAUIM [21], have been emerged

with effective factors to improve the results. The high

average utility itemset mining(HAUIM) approaches

suggested in the aforementioned publications, however,

anticipate that the products have exclusively beneficial

wiselybritto@gmail.com1, syedibrahim.sp@vit.ac.in2

1 Research Scholar, SCOPE, VIT Chennai Campus Tamil Nadu,

India.
2 Professor. SCOPE.VIT Chennai Campus, Tamil Nadu, India

*Corresponding Author Email: syedibrahim.sp@vit.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 701

external utility. On the other hand, as stated in

HUINIVMine[22], GHUM[23], FHN[24], EHIN[25],

MHAUIPNU [26] , TS-HOUN[27], EHNL [28], EFIM

[29], HUPNU[30], and CHN[31], databases may also

include negative external utilities in many application

scenarios. A chain of supermarkets might sell items with

less profit or even no profit or at a loss to encourage the

sale of other related items or simply to tempt customers

to their retail location [22-25]. When the data sets

additionally contain negative utilities, existing high

average utility itemset mining HAUIM calculations

might deal with the issue of fragmented detection of high

average utility itemsets(HAUIs) because the

upper‐bound underrates the candidate itemsets. The

significant difficulties we face while planning for an

algorithm to deal with negative items are developing an

algorithm for discovering HAUIs with negative utility

items, setting a tighter average bound for pruning

unpromising items and design a state-of-the art

algorithm.

Appropriate Average High Utility Itemset Mining with

Negative Utilities is the proposed approach in this article

for efficiently discovering HAUIs with both positive

and negative utility items. A novel tight bound model

called appropriate average utility upper bound(aauub) is

proposed to reduce the dimensions for extracting

appropriate average high utility itemsets(AAHUIs) with

beneficial and undesirable items. To lessen the amount

of database and memory consumption, a list data

structure was created with two early pruning strategies to

contain only the necessary information. Two early

pruning strategies are provided to enhance the proposed

algorithm's performance by reducing candidate set

formation. The first trimming approach is based on the

user given minimum threshold. The utility of the items in

the transaction and the frequency of entries in the

transaction are used to prune transactions. Experiments

on various datasets are carried out to demonstrate the

efficacy of the proposed AAHUIM-NU algorithm. The

rest of this article is structured out as follows. The

following section covers over the associated work. The

next part explains the fundamental concepts of the

HAUIM problem. In the following section, we'll go over

the proposed algorithm. Experimental analysis is

presented before the closing part. Conclusions and future

work are presented in the concluding section.

2. Preliminaries And Problem Definition

All of the necessary definitions are spelled out in great

detail. Let I be a fixed collection of n unique things. D is

a database with a collection of transactions in it. T is a

transaction which contains purchased items and their

quantity from a vender. Every transaction has a distinct

identifier (TID) and is present in Table 1. All of the

items in list (I) have the same or different integer profit

as shown in Table 2. There are 6 transactions with

transaction ids T1, T2…. T6. The items present in

transaction T1 is {A, B, C, F} and their utilities are

(1,1,1,4). The interestingness of those items may be plus

or minus. The items C and F are lossy items while others

have positive profit. Utility of transaction T6 is not

included in any calculation as it has only negative items.

All the above definitions are utilized in our AAHUIM-

NU algorithm. An itemset X is supposed to be an HAUI

iff its support count (SC) is greater than support

threshold (ST) and its aauub is higher than the utility

threshold (UT). HAUI ← {x | aauub(x) ≥ UT Ս SC(x) ≥

ST}. Number of times the item is present in the database

is stored in S-Count List and it is shown Table 3. We

introduce the concept of a Present List (P-List) as

follows: p(X) = {Set of transactions chosen from

database | ∀i ∈ X, T}, where D is database, T is

transaction, X is an itemset and i is an item. We can see

that a support set is a subset of all the transactions in

which X appears. A sample P-List is given in Table 4.

Maximal utility (mu)of transaction Td ∈ D is mu (Td) =

max {u (i j) | i, j in Td}. Itemset’s average utility upper

bound is defined as auub(X) = Sum (mu (Td)) | X⊆Td.

 X is considered a high average utility upper bound

itemset (HAUUBI) if it's auub is greater than user

given UT [auub(X) ≥ UT]. The k-HAUUBI is a

HAUUBI with k components.

The transaction utility list (TU-L) of T is then made up

of m sorted elements, each of which represents the utility

value of each item in T. The following is how the TU-L

is defined and displayed in Table 5. TU-L (T) = {ui | for

any 1 ≤ i ≤ j ≤ m, ui ≥ uj}, where ui denotes the utility of

a unique item in T. We take T2 as an example from Table

1. Here, the items B, D and E have corresponding

utilities 1,2 and 6 [u(B) = 1, u(D) = 2, u(E) = 6]. Thus,

TU-L(T2) = {6,2,1}. TU-List after first level pruning is

given in Table 6.

A percentage of the total transaction utility(TTU) is used

to represent the user-specified minimum utility limit,

whereas the utility threshold is defined as UT = δ ×TTU.

We introduce the concept of a critical support count (csc)

which is used for first level pruning of unpromising

items. Critical support count is an integer value

calculated from mu and database maximal utility list(D-

MUL), given in equation (1):

 (1)

Consider a transaction of length m, T ∈. Then, for a k-

itemset X such that X ⊆ T, the appropriate maximal

utility (AMU) is stated as in equation (2):

 (2)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 702

where 1 ≤ k ≤ m, and uj is the jth entry in TU-L (T). The

aauub of k-itemset X is written as in equation (3):

 (3)

Table 1. A transactional database

Table 4. P-List after pruning

Item

A B C D E F TU MU RTU RMU

Itemset Present in

Tid

p(a)
{T1, T3,

T5}

T1 1 1 1 2 -3 7 8 7

p(b) {T1,

T2.T3}

T2 1 1 1 9 6 9 6

p(d) {T2, T4}

T3 1 1 1 1 1 7 8 7

T4 3 2 1 -9 4 0 4 Table 5. Initial TU- List

T5 1 2 1 7 7 7 Tid TU-List
T6 2 -14 -6 - -

T1 {7,1}

T2 {6.2.1}

Table 2. A profit table PT

T3 {7,1}

Item A B C D E F

T4 {4}

Profit 7 1 -3 2 6 -4

T5 {7}

Table 3. S-Count List

Table 6. TU-List after pruning

Item A B D E

Tid TU- List

SC 3 3 2 1

T1 {7,1}

T2 {2,1}

T3 {7,1}

Set of aauub of productive 1-itemsets are

{(A,21),(B,20),(D,10)}. The upper bound generated by

this aauub is tight when compared with previous

algorithms. Let us take 1-appropriate average high utility

upper bound itemset(1-aahuubi) = {A, B, D}. Extensions

of element A are, {AB, AD, BD}. aauub(AB) = ((7+1)

+(7+1))/2 = 8. If existing algorithms are used for

calculation, auub (AB) = (7+7)/2 = 7. The following is

the definition of X's itemset maximal utility list (I-

MUL): I-MUL(X) = {mui | for any i ≤ j, mui ≥ muj},

where mu is the maximal utility of transaction T, and T ∈

p(X). Let D be a transactional database with n rows.

Then the database maximal utility list is stated as: D-

MUL(D) = {mui | for any 1 ≤ i ≤ j ≤ n, mui ≥ muj},

where mui is transaction’s maximal utility T, and T ∈ D.

The list of maximal utilities of transactions in which

itemset X occurs as a subset, resulting from I-MUL and

D-MUL, is called the maximal utility list of itemset X.

All members are arranged in descending order of

maximal utility. The empty set can be viewed as the

maximal utility list D-MUL () of the database , that is, D-

MUL (∅). For example, for the database in Table 1,

p(AB) = {T1, T3}, support (AB) = 2, I-MUL(AB) = {7,

7} and D-MUL(D) = {7,7,7,6,4}.

The search space tree is the main strategy to represent

the combinations of items to be processed further. The

items are arranged by ≻ order of sorted items.

Rearranging of itemsets is accomplished by growing

aauub as this minimizes the quantity of candidate sets to

be managed. The pruning procedure is a significant part

for mining HAUIs productively. The principal pruning

system depends on the utility given in the data set. The

other pruning methodologies are based on the

determined utility threshold (UT), counted support count

(SC) which is an integer value holds number of

transactions where X happens as a subset and appropriate

average high utility upper bound.

Strategy 1- Pruning the negative itemsets

Strategy 2 -Pruning the search space by using Support

Count

Strategy 3 -Pruning the search space by deleting

transactions

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 703

Strategy 4 -Pruning an itemset's negative

extensions

Strategy 5 -Pruning the search space by aauub

3. METHOD

Steps 1-3 scan the transaction database once. Then, as

needed, the pruning procedures described in the previous

article are employed. Items are filtered by deleting

negative utility items from database and also the entire

transaction if it has only negative items (steps 5-6).

Construct the present list(P-List) of all distinct items and

their presence in various transactions. This list is further

used in all stages of algorithms to avoid unnecessary

scanning of database (step 7). Then calculate the

transaction utility TU of all items (step 8).

Simultaneously identify maximum utility and store in mu

list. Step 10 deals with the construction of TU-List for

each transaction in database. This list avoids repeated

scanning of database for utility calculations or further

processing. In step 11, the algorithm stores the support of

each item in a list called S-Count List. Sort the maximal

utilities of 1-items in descending order and store it in D-

MUL. Calculate aauub of X where X is an item in

database with the help of calculated AMU(step 13).

Steps 14-16 deal with the calculation of total transaction

utility, UT and csc values. Now execute AAHUUBI

function for finding promising appropriate average high

utility itemsets by other pruning methods. The function

initially creates extension of all possible candidate sets

by exploring the candidates in a depth-first manner that

includes x where k>1. For every item present in the

extension, apply pruning strategy 2 and 5 by comparing

the support count of item and csc values. For the

qualified itemsets aahuub and UT are compared. If the

itemset clears both the tests, it will be added to the

consolidated list of promising AAHUIs. For itemsets

prefixed by other AAHUUBIs, the same traversal

method will be applied.

4. Results And Discussion

4.1. Experiments and Evaluation

We conducted numerous tests to evaluate the

performance of the AAHUIM-NU algorithm. This

experiment utilises seven genuine datasets from an open-

source software and data mining library called

SPMF[32]. The dataset's basic properties are shown in

Table 7. Our proposed AAHUIM-NU algorithm is a

novel approach for mining appropriate average high

utility itemsets with negative utility. We considered FHN

algorithm [24] and EHIN algorithm [25] for comparison

studies. We examined the working efficiency of the

above algorithms in terms of space and runtime for

different minimal utility thresholds. For pruning

unpromising elements and selecting potential HAUIs

these algorithms use auub(average utility upper bound),

gauub(generalised average utility upper bound), and

aauub(appropriate average utility upper bound). We set a

minimum utility threshold before evaluating the

algorithm's performance. Required changes are

implemented to all datasets in order to make them

suitable as inputs to our proposed algorithm.

Table 7. Characteristics of the datasets

DATA SETS #TRAN #ITEMS ATS #PIs #NIs Density TYPE

T251200D10K 10000 200 25 134 66 12.5 DENSE

CHESS 3196 76 37 51 25 48.68421 DENSE

CONNECT 67557 130 43 87 43 33.07692 DENSE

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 704

RETAIL 88162 16,470 10.3 11035 5435 0.062538 SPARSE

MUSHROOM 8124 119 23 80 39 19.32773 DENSE

ACCIDENT 340183 468 33.8 280 188 7.222222 DENSE

KOSARAK 990002 41270 8.1 27651 13619 0.019627 SPARSE

4.2. Runtime analysis on datasets

This section assesses the AAHUIM-NU and comparison

algorithm’s runtime performance across all datasets. In

dense datasets the AAHUIM-NU method's runtime is

much shorter than those of the FHN and EHIN

algorithms, as demonstrated in Figure 1. The algorithm

AAHUIM-NU is superior to FHN and EHIN, as shown

and it can attain a level of about 20 times greater on

dense datasets and about 2 times greater on sparse

datasets. Because dense datasets have well-defined

scanning methods and trimming procedures that are fully

utilised. Analysis shows that AAHUIM-NU not only

surpasses in terms of time efficiency, but also evolves

more smoothly when the threshold decreases. The FHN

algorithm overlooks the itemsets that do not appear in

the dataset because it searches the search space of

itemsets by merging smaller itemsets rather than

scanning the entire dataset. The suggested AAHUIM-NU

algorithm performs better since it contains strong

pruning techniques.

4.3. Memory usage on datasets

The AAHUIM-NU technique utilises substantially less

memory than the FHN and EHIN algorithms, as shown

in the Figure 2. The memory usage of the FHN algorithm

increases swiftly as the threshold value decreases, but the

memory usage of the EHIN method increases gradually

like the proposed method. Among these, the FHN

method uses more memory since FHN saves all utility

lists in memory. The suggested approach is ineffective

for highly sparse datasets like kosarak and retail because

they are extremely sparse and create unnecessary

intermediate sets. The AAHUIM-NU algorithm

outperforms FHN and EHIN as demonstrated in Figure

2. by storing only the necessary data in simple structures

and never stores the complete dataset in memory after

scan 1.

4.4. Comparison of Candidates generated

 The candidates generated by three alternative upper

bounds auub, gauub, and aauub on our AAHUIM-NU

method are assessed below to determine efficiency and

the findings are shown in Figure 3. for various parameter

settings. The AAHUIM-NU algorithm incorporates

effective pruning algorithms for trimming negative

itemsets and negative transactions as an upgraded

variation. A unique pruning method that eliminates all

single item transactions with positive items since they

are ineffective in generating viable candidates through

the join operation. As a result, the pruning procedures

used in our algorithm help to prune the search area and

lower the number of unpromising patterns.

Fig 1. Runtime Analysis for different minimum

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 705

Fig 2. Memory usage of different datasets for thresholds different minimum utility thresholds

4.5. Effect of the number of negative items

The impact of the number of negative items in records on

algorithm performance is investigated in this experiment.

To verify our algorithm performance, the running times

and candidate sets generated for every dataset are

compared by increasing the set of non-profitable things

from 25% to 50% of all unique items. The minimum

utility criterion for each trial is set to 10%. Studies

displayed in Figure 4. showed that when the exposure to

negative items in a dataset grows, the mining algorithms

take shorter time to complete, generate fewer candidate

sets, and visit fewer nodes.

 Fig 3. The number of candidate sets Fig 4. The impact of the quantity of negative

under changing minimum utility thresholds elements on algorithm performance

Furthermore, when the number of negative items in the

given records rises, the performance of the proposed

AAHUIM-NU algorithm improves, including both terms

of throughput and total variety of elements. The auub

bound performs better and the search space size is

significantly reduced. When compared to the other two

constraints, the auub bound produces a significant

number of candidate-sets in dense datasets with a large

number of transactions. The pruning algorithms

described in this work are quite effective at reducing

running time and lowering memory use.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 706

5. Conclusion

This paper proposes a novel methodology for handling

both positively and negatively valued items when mining

the productive high average utility itemsets. The

AAHUIM-NU algorithm is a depth-first HAUIM

approach with a single phase. The technique employs

several lists to maintain only the data needed for future

use thus reducing the number of scans. All of the

proposed five early pruning approaches have an impact

on running time and candidate generation either directly

or indirectly. The dataset size will be lowered when the

unpromising elements are trimmed and processing time

and memory usage are reduced. The performance of the

AAHUIM-NU algorithm is much superior than that of

the comparative algorithms, and the algorithm performs

particularly well in dense datasets, according to

experimental results. Due to the algorithm's deprived

performance on sparse datasets, future research could

focus on ways to improve the algorithm's runtime on

sparse datasets. In incremental datasets and huge data,

we can also use the mining of AAHUIs with negative

elements.

Acknowledgements

Authors are declaring thanks to School of Computer

Science and Engineering (SCOPE), VIT Chennai

Campus, Tamil Nadu, India for their support in

completion of this research work.

Conflicts of interest

The authors declare no conflicts of interest

References

[1] R. Agrawal and R. S&ant, “Fast Algorithms for

Mining Association Rules .,” In Proc. Int’l

Conf.Very Large Data Bases, pp. 487–499, 1994.

[2] P. Naresh and R. Suguna, “IPOC: An efficient

approach for dynamic association rule generation

using incremental data with updating supports,”

Indonesian Journal of Electrical Engineering and

Computer Science, vol. 24, no. 2, pp. 1084–1090,

Nov. 2021, doi: 10.11591/ijeecs.v24.i2.pp1084-

1090.

[3] A. G. Shaaban, M. H. Khafagy, M. A. Elmasry, H.

El-Beih, and M. H. Ibrahim, “Knowledge discovery

in manufacturing datasets using data mining

techniques to improve business performance,”

Indonesian Journal of Electrical Engineering and

Computer Science, vol. 26, no. 3, pp. 1736–1746,

Jun. 2022, doi: 10.11591/ijeecs.v26.i3.pp1736-

1746.

[4] T. B. Ho, D. Cheung, H. Liu, Y. Liu, W.-K. Liao,

and A. Choudhary, “A Two-Phase Algorithm for

Fast Discovery of High Utility Itemsets,” 2005.

[5] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K.

Lee, “Efficient tree structures for high utility

pattern mining in incremental databases,” IEEE

Trans Knowl Data Eng, vol. 21, no. 12, pp. 1708–

1721, Dec. 2009, doi: 10.1109/TKDE.2009.46.

[6] B. Vo, H. Nguyen, T. B. Ho, and B. Le, “Parallel

method for mining high utility itemsets from

vertically partitioned distributed databases,” in

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2009, pp.

251–260. doi: 10.1007/978-3-642-04595-0_31.

[7] Y. C. Li, J. S. Yeh, and C. C. Chang, “Isolated

items discarding strategy for discovering high

utility itemsets,” Data Knowl Eng, vol. 64, no. 1,

pp. 198–217, Jan. 2008, doi:

10.1016/j.datak.2007.06.009.

[8] V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu,

“UP-Growth: An efficient algorithm for high utility

itemset mining,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2010, pp. 253–262.

doi: 10.1145/1835804.1835839.

[9] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu,

“Efficient algorithms for mining high utility

itemsets from transactional databases,” IEEE Trans

Knowl Data Eng, vol. 25, no. 8, pp. 1772–1786,

Aug. 2013, doi: 10.1109/TKDE.2012.59.

[10] Mengchi Liu and Junfeng Qu, “Mining High Utility

Itemsets without Candidate Generation,” CIKM’12,

ACM, pp. 55–64, 2012.

[11] T. P. Hong, C. H. Lee, and S. L. Wang, “Effective

utility mining with the measure of average utility,”

Expert Syst Appl, vol. 38, no. 7, pp. 8259–8265,

Jul. 2011, doi: 10.1016/j.eswa.2011.01.006.

[12] G. C. Lan, T. P. Hong, and V. S. Tseng, “An

efficient projection-based indexing approach for

mining high utility itemsets,” Knowl Inf Syst, vol.

38, no. 1, pp. 85–107, 2014, doi: 10.1007/s10115-

012-0492-y.

[13] Rajendra, K. ., Subramanian, S. ., Karthik, N. .,

Naveenkumar, K. ., & Ganesan, S. . (2023). Grey

Wolf Optimizer and Cuckoo Search Algorithm for

Electric Power System State Estimation with Load

Uncertainty and False Data. International Journal

on Recent and Innovation Trends in Computing and

Communication, 11(2s), 59–67.

https://doi.org/10.17762/ijritcc.v11i2s.6029

[14] G. C. Lan, T. P. Hong, and V. S. Tseng,

“Efficiently mining high average-utility itemsets

with an improved upper-bound strategy,” Int J Inf

Technol Decis Mak, vol. 11, no. 5, pp. 1009–1030,

Sep. 2012, doi: 10.1142/S0219622012500307.

[15] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “Efficiently

Mining High Average Utility Itemsets with a Tree

Structure,” Proc. IIDS, Springer, pp. 131–139,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 700–707 | 707

2010.

[16] T. Lu, B. Vo, H. T. Nguyen, and T.-P. Hong, “A

New Method for Mining High Average Utility

Itemsets,” in LNCS, 2014, pp. 33–42.

[17] J. C. W. Lin, T. Li, P. Fournier-Viger, T. P. Hong,

J. Zhan, and M. Voznak, “An efficient algorithm to

mine high average-utility itemsets,” Advanced

Engineering Informatics, vol. 30, no. 2, pp. 233–

243, Apr. 2016, doi: 10.1016/j.aei.2016.04.002.

[18] J. C. W. Lin, S. Ren, P. Fournier-Viger, and T. P.

Hong, “EHAUPM: Efficient High Average-Utility

Pattern Mining with Tighter Upper Bounds,” IEEE

Access, vol. 5, pp. 12927–12940, Jun. 2017, doi:

10.1109/ACCESS.2017.2717438.

[19] U. Yun and D. Kim, “Mining of high average-

utility itemsets using novel list structure and

pruning strategy,” Future Generation Computer

Systems, vol. 68, pp. 346–360, Mar. 2017, doi:

10.1016/j.future.2016.10.027.

[20] J. C. W. Lin, S. Ren, P. Fournier-Viger, T. P. Hong,

J. H. Su, and B. Vo, “A fast algorithm for mining

high average-utility itemsets,” Applied Intelligence,

vol. 47, no. 2, pp. 331–346, Sep. 2017, doi:

10.1007/s10489-017-0896-1.

[21] Prof. Amruta Bijwar. (2016). Design and Analysis

of High Speed Low Power Hybrid Adder Using

Transmission Gates. International Journal of New

Practices in Management and Engineering, 5(03),

07 - 12. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/4

6

[22] J. M. T. Wu, J. C. W. Lin, M. Pirouz, and P.

Fournier-Viger, “TUB-HAUPM: Tighter Upper

Bound for Mining High Average-Utility Patterns,”

IEEE Access, vol. 6, pp. 18655–18669, 2018, doi:

10.1109/ACCESS.2018.2820740.

[23] T. Truong, H. Duong, B. Le, and P. Fournier-Viger,

“Efficient Vertical Mining of High Average-Utility

Itemsets Based on Novel Upper-Bounds,” IEEE

Trans Knowl Data Eng, vol. 31, no. 2, pp. 301–314,

Feb. 2019, doi: 10.1109/TKDE.2018.2833478.

[24] C. J. Chu, V. S. Tseng, and T. Liang, “An efficient

algorithm for mining high utility itemsets with

negative item values in large databases,” Appl Math

Comput, vol. 215, no. 2, pp. 767–778, Sep. 2009,

doi: 10.1016/j.amc.2009.05.066.

[25] S. Krishnamoorthy, “Efficiently mining high utility

itemsets with negative unit profits,” Knowl Based

Syst, vol. 145, pp. 1–14, Apr. 2018, doi:

10.1016/j.knosys.2017.12.035.

[26] J. C. W. Lin, P. Fournier-Viger, and W. Gan,

“FHN: An efficient algorithm for mining high-

utility itemsets with negative unit profits,” Knowl

Based Syst, vol. 111, pp. 283–298, Nov. 2016, doi:

10.1016/j.knosys.2016.08.022.

[27] K. Singh, H. K. Shakya, A. Singh, and B. Biswas,

“Mining of high-utility itemsets with negative

utility,” Expert Syst, vol. 35, no. 6, Dec. 2018, doi:

10.1111/exsy.12296.

[28] I. Yildirim and M. Celik, “Mining High-Average

Utility Itemsets with Positive and Negative External

Utilities,” New Gener Comput, vol. 38, no. 1, pp.

153–186, Mar. 2020, doi: 10.1007/s00354-019-

00078-8.

[29] G. C. Lan, T. P. Hong, J. P. Huang, and V. S.

Tseng, “On-shelf utility mining with negative item

values,” Expert Syst Appl, vol. 41, no. 7, pp. 3450–

3459, Jun. 2014, doi: 10.1016/j.eswa.2013.10.049.

[30] K. Singh, A. Kumar, S. S. Singh, H. K. Shakya, and

B. Biswas, “EHNL: An efficient algorithm for

mining high utility itemsets with negative utility

value and length constraints,” Inf Sci (N Y), vol.

484, pp. 44–70, May 2019, doi:

10.1016/j.ins.2019.01.056.

[31] Prof. Madhuri Zambre. (2016). Automatic Vehicle

Over speed Controlling System using

Microcontroller Unit and ARCAD. International

Journal of New Practices in Management and

Engineering, 5(04), 01 - 05. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/4

7

[32] Souleymane Zida, Philippe Fournier-Viger, Jerry

Chun-Wei Lin, Cheng-Wei Wu, and Vincent S.

Tseng, “EFIM: A Highly Efficient Algorithm for

High-Utility Itemset Mining,” LNAI, vol. 9413, pp.

530–546, 2015, doi: 10.1007/978-3-319-27060-9.

[33] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C.

Chao, and V. S. Tseng, “Mining high-utility

itemsets with both positive and negative unit profits

from uncertain databases,” in Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Springer Verlag, 2017, pp. 434–

446. doi: 10.1007/978-3-319-57454-7_34.

[34] K. Singh, S. S. Singh, A. Kumar, H. K. Shakya, and

B. Biswas, “CHN: an efficient algorithm for mining

closed high utility itemsets with negative utility,”

IEEE Trans Knowl Data Eng, 2018, doi:

10.1109/TKDE.2018.2882421.

[35] P. Fournier-Viger, A. Gomariz, A. Soltani, C.-W.

Wu, and V. S. Tseng, “SPMF: A Java Open-Source

Pattern Mining Library,” 2014.

.

