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Abstract: There is a rising need for adequate cybersecurity safeguards to protect patient data, medical equipment, and crucial 

infrastructure as healthcare systems become more digitized. Effective security solutions are required for these intricate settings because 

of the range of medical equipment used within this system, i.e., Mobile Devices (MD) and Body Sensor Nodes (BSN). Healthcare 

facilities may utilize artificial intelligence (AI) techniques and cyber-physical systems (CPS) to identify and thwart cyberattacks. A novel 

machine learning threat detection framework for safe healthcare data transfer has been suggested in this research. Smart Healthcare 

Cyber-Physical Systems (SHCPS) can distribute the gathered data to cloud storage. Cyberattack patterns may be predicted using AI 

models, and this information is processed to aid healthcare professionals in making decisions. The proposed system begins with a 

medical record and preprocesses it using a normalization method. The novel jellyfish-optimized weighted dropped binary long short-term 

memory (JFO-WDB-LSTM) technique ultimately distinguishes between valid and erroneous healthcare data. Compared to other models, 

our suggested model achieves attack prediction ratios of  98%, detection accuracy ratios of 88%, delay ratios of 50%, and communication 

costs of 67%, according to experimental results. 

Keywords: Cyber-physical system (CPS), artificial intelligence (AI), healthcare, data normalization, jellyfish optimized weighted 

dropped binary long short-term memory (JFO-WDBLSTM) approach 

1. Introduction 

The SHCPS, a system for the future, would help the 

medical industry effectively handle a pandemic disaster. 

These systems include the patient's actual environment, 

medical tools and equipment, externally controlled and 

monitored medical care, and connected techniques that use 

communication networks to transfer and exchange 

physiological data with the internet to analyze it for 

feedback and control signals [1]. CPS allows for the 

seamless integration of the physical and digital worlds 

using computer-based algorithms. A process is managed 

and controlled by a CPS [2]. The CPS can withstand data 

assaults like Man in the Middle attacks, tampering with 

medical data, ransomware attacks like Wannacry, etc. By 

storing medical data on the blockchain and analyzing it 

using cutting-edge techniques like convolution neural 

networks, this system may enhance the privacy and 

preservation of such data [3]. CPS seeks to combine data 

processing, networking, and physical techniques. A CPS 

comprises linked computational things collaborating with 

the cosmos and its processes [4]. The fourth industrial 

revolution (4IR), too identified as Industry 4.0 or CPS, has 

changed business and technology and is now an essential 

component of daily life. They are currently employed in 

various application fields, including smart environments 

and buildings, autonomous vehicles, industrial control 

systems, medical monitoring, military defense 

technologies, and physical security systems [5]. Industry 

4.0 advanced internet technologies like Internet Of Things 

(IoT), Service Delivery Networks (SDN), and cloud 

computing have made it possible to implement smart 

security (SS), smart homes (SH), smart healthcare systems 

(SHS), and cloud computing (CC), to name a few [6]. 

Smart city design and implementation have been greatly 

facilitated by the rapid growth of IoT, cloud computing, 

communication technologies, CPS, and other software 

technologies [7]. CPS are cutting-edge technologies that 

link computation and network infrastructure with activities 

in physical reality. CPS focuses on connecting many 

devices with integrated components, often designed to 

perform as standalone devices [8]. 

2. Related Works 

The research [9] covered several helpful, logical operators 

for network connections, increasing performance, 

decreasing latency, disclosing the optimal pathways, high-

speed and secure processor communication, and many 
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heterogeneous sensing devices. The research [10] decided 

to put forward the Self-tuned Fuzzy Logic-based Hidden 

Markov Model (SFL-HMM) with Heuristic Multi-Swarm 

Optimization (HMS-ACO) method to identify 

cyberattacks. The article [11] suggested Supervised 

Machine Learning (SML) along with a Cryptographic 

Parameter-Based Encryption and Decryption (CPBE&D) 

scheme as a hybrid lightweight authentication solution to 

meet the verification as well as data privacy problems 

(DPP) in Smart Healthcare (SH). This program guarantees 

that only authorized patient wearables are sent securely 

across wireless communication channels. The effects of the 

most recent cyberattacks on CPS are surveyed in [12]. The 

research [13] discusses recent research using CPS and 

Artificial Intelligence (AI) in several fields. The author 

[14] explored the intricacies of Cyber-Physical Systems, 

one of the most significant technological revolutions, and 

the growing importance of artificial intelligence 

approaches in these systems. The research [15] suggested a 

federated learning (FL) architecture for healthcare-based 

CPSs that is blockchain-enabled. The article [16] offered 

several insightful observations on the security examination 

of CPS using machine learning. The author [17] 

thoroughly analyzed the many CPS security circumstances, 

assaults, distinct modeling approaches for assaults, and the 

need for CPS testbeds. The IoT Device Network System in 

terms of CPS was motivated by the necessity for in-depth 

acquaintance with IoT Device Applications to be explored 

from a parameters point of view [18]. The article [19] 

proposed that detecting Distributed Denial of Service 

(DDoS) assaults should be the Medical Cyber-Physical 

System's (MCPS) primary objective. The author [20] 

studied the Attack Isolation (AI) and Attack Location (AL) 

issues for a CPS, where the actual control system at the 

physical layer is a nonlinear complex network system, 

using the H-infinity observer and the zonotope theory. 

3. Proposed Method 

Cyber-Physical Systems (CPS) methodology designates a 

systematic approach or framework for creating, advancing, 

and deploying intricately linked systems that include both 

computational and physical aspects. The CPS technique 

aims to ensure the effective and efficient integration of 

biological processes, computer systems, and networking 

infrastructure to provide dependable, secure, and high-

performance cyber-physical systems.  

3.1. Data accumulation using NSL-KDD 

The Network Security Laboratory - Knowledge Discovery 

in Databases (NSL-KDD) dataset will be used instead of 

the KDD Cup 99 dataset for this study's evaluation of 

network intrusion detection system performance. Since 

1999, Knowledge Discovery and Data Mining (KDD'99) 

has been the most widely used data set for assessing 

anomaly detection methods. This data collection was 

created using information from the DARPA IDS 

assessment program in 1998. More than 5 million 

connection records with an average size of around 100 

bytes each may be found in the more than 4 gigabytes of 

raw (binary) compressed TCP dump data from 7 weeks of 

network activity that make up DARPA'98. The test data 

covers a two-week period and includes more than 2 million 

connection records. About 4,900,000 single connection 

vectors are in the KDD training dataset, each classified as 

either standard or an attack with a specified attack type and 

includes 41 characteristics. The mock attacks have been 

divided into four categories: 

• Denial of Service attack (DoS):  Only authorized users 

are permitted access to a system during a DOS attack, and 

computational or memory resources are overloaded or 

rendered too busy to process legitimate requests. 

• User to Root attack (U2R): A specific kind of 

vulnerability known as U2R allows an attacker to first 

access a user account on the system (perhaps by password 

sniffing, a dictionary attack, or social engineering), then 

use that access to exploit a hole and get root access to the 

system. 

• Remote to Local attack (R2L): When a hacker who is 

not permitted to use a system but who can transmit 

network packets to it takes advantage of a flaw to get user-

level local access to the device, this is known as remote-

access-by-loan (R2L). 

• Probing attack: Getting past a computer network's 

security protections is the aim of this effort to understand it 

better. 

The work is more realistic since the test data includes 

several assault kinds that weren't included in the training 

data. Understanding that the training and test data originate 

from separate probability distributions is crucial. There are 

38 attacks in the training datasets, with 16 attack types for 

testing and 22 for training. The idea behind these 14 new 

assaults is to see how well IDS can adapt to new threats. 

According to KDD 99 study, the duplicate data in the train 

and test sets is around 78% and 75%, respectively. This 

substantially impacts the tested systems' efficacy and leads 

to a very subpar assessment of anomaly detection methods. 

These problems were solved by creating the superior 

dataset known as NSL-KDD by reducing the dataset's size 

and eliminating all redundant and duplicate occurrences. 

But there is still a significant imbalance in the NSL-KDD 

dataset. 

3.2. Preprocessing 

Preprocessing describes the procedures or methods 

performed on unprocessed data before it is utilized for 

further analysis or modeling.The NSLKDD dataset's 
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records are each characterized by a vector of 41 

characteristics. These attributes comprise thirty-eight 

continuous or discrete numerical features and three 

category categories. Since neural networks only need 

numerical values, we preprocess our data in two stages as 

follows:. 

a. Numbering of symbolic elements 

A dataset's suggestive features are first translated into 

numerical values. The service type, protocol type, and TCP 

status flag are examples of these extended properties. 

b. Data Normalization 

Normalization is a crucial step in data preparation after 

converting all symbolic qualities into numerical values. 

Data normalization is scaling each attribute's value into a 

proportionate range, removing the bias in the dataset 

toward features with higher values. Like equation 1, we 

first normalized the dataset by subtracting the mean from 

each part, truncating it to +/-3 standard deviation (S.D. ), 

and scaling it from 0 to 9. This preserved the dataset's 

sparseness structure. Then, using max-min normalization 

(equation 2), we climbed these characteristics to have a 

range of 0 to 1. This method will also be used to transmit 

and normalize test data. 

Vj
′ =

Vj−μ

σ
                                                     (1) 

Vnorm,j =
Vj

′−Vmin

Vmax−Vmin
                                                 (2) 

vmax is the feature's maximum value, vmin is its lowest 

value, vnorm, j is the last step toward normalization, and vj 

is the feature that still needs to be normalized. The mean 

and standard deviation are provided in (3) and (4). 

𝜇 =
1

𝑀
∑ 𝑉𝑗

𝑀
1                                                                  (3) 

 

𝜎2 =
1

𝑀−1
∑ (𝜇 − 𝑉𝑗)

2𝑀
𝑗=1                                              (4) 

 

The letter M indicates the dataset's sample count. 

3.3 Classification using Jelly Fish Optimized Weighted 

Dropped Binary LSTM (JFO-WDBILSTM) 

The phrase JFO-WDBILSTM combines several ideas 

about neural networks and optimization methods. It 

combines regularization and optimization methods with 

LSTM-based binary classification. 

3.3.1 Weighted Dropped Binary Long Short-Term 

Memory (WDBILSTM) 

According to WDBILSTM, a binary classification LSTM 

model would be combined with class weights and dropout 

regularization. The term WDBILSTM, refers to a Long 

Short-Term Memory (LSTM) network that has been 

specifically trained for binary classification tasks. This 

WDBILSTM,  architecture application, designed to gather 

and interpret sequential input, involves making binary 

predictions or judgments. U is the fully-connected layer 

weights, b is a nonlinear activation function, N is a binary 

weight mask, and U is each cell input. The procedure 

modestly influences training speed since it is only carried 

once during forward and backward propagation. 

q = b((N ∗ U)x)          (5) 

Consequently, Smaller weights are encouraged, 

simplifying the model and lowering overfitting. Fig. 1 

illustrates the use of DropConnect in an LSTM network. 

Each input feature is analyzed using an LSTM network, 

then a DropConnect layer is applied. While the outcome 

moves to the next set of layers, some information is 

transmitted for the subsequent recurrent LSTM network. A 

thick layer towards the end of the layers combines the 

nodes to create a single output. 

 

Fig. 1. Weight-Dropped LSTM Network 

3.3.2 Jellyfish optimization 

The metaheuristic algorithm known as the jellyfish 

optimization (JFO) technique was partly developed due to 

jellyfish activity. Chou and Troung suggested the JFO in 

2021. 

The following actions are included in the jellyfish's food-

finding process: 
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•Within the swarm, the jellyfish's movement. 

•Developing a jellyfish bloom by following the water 

circulation. 

•The time control mechanism alternates between the 

jellyfish's two progressive motions. 

•Where there is greater food availability, jellyfish are more 

attracted to that location. 

•The amount of food present depends on the place and its 

target function. 

 

 

Figure. 2. Behavior of jellyfish in the ocean 

Implementing the JFO approach first entails random 

initialization to disperse the solutions over the issue's 

search span. After carefully examining each response, the 

area with the highest fitness value is chosen to serve as a 

plentiful food supply (fig. 2). The movement of each 

jellyfish is then updated, depending on the time control 

factor, either toward the ocean flow or toward progress 

within the swarm. 

a. Ocean current 

Ocean currents that carry a lot of nutrients attract jellyfish 

to them. By averaging the vectors of each jellyfish in the 

ocean to the jellyfish that now occupies the optimal spot, 

the ocean current's (i.e., drift's) path is managed. Drift may 

be calculated mathematically as follows: 

drift⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  
1

M
∑driftl⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

=
1

M
∑(v∗ − bdvl) 

= v∗ − bd

∑vl

M
 

= v∗ − bdμ
′        (8)                                                                                                                                                                                                                                                          

Where 𝑉∗ is the jellyfish in the population currently in the 

best, M  position represents the overall number of jellyfish, 

bd represents the strength of the attraction, and 𝜇′ 

represents the area where the swarm often congregates. 

Let: 

CE = bd × μ′                                       (9)                                                                                                                             

Here, CE is the distance between the jellyfish of interest's 

optimal position right now and the swarm's median 

location. It was predicated on the jellyfish's typical spatial 

distribution across all dimensions, which gives the 

likelihood of any jellyfish location. Each jellyfish site is 

within this distribution's tolerance of ±𝛽𝜎. Here, 𝛽 stands 

for the distribution coefficient, which is assumed to be "3" 

according to the analysis provided and stands for the 

standard deviation for the distribution under consideration, 

which may be calculated using Equation (11) at the 

swarm's mean position . 

CE = β × randα(0,1) ×  σ      (10) 

σ = randγ(0,1) × μ′     (11) 

  

Drift may thus be described mathematically as:                                                                                                                

drift⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = v∗ − β × rand(0,1) × μ′    (12)                                                                                                       

Drift may thus be formally defined as:  

vl(s + 1) = vl(s) + rand(0,1) × drift⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                          (13) 

The current position of the lth jellyfish is shown by vl(s). 

Iteration in the algorithm is indicated by the notation 

time,s.  

b. Jellyfish swarm 

The word "swarm" refers to a vast group of drifting 

jellyfish. In a swarm, jellyfish move in one of two ways: 

passively (type A) or aggressively (type B). Jellyfish move 

in type A (passive) way as the swarm forms. Equation 

(14), which describes this motion, states that the jellyfish 

circle their location before updating each jellyfish's 

position separately. The jellyfish also mimic type B 

movement. 

vl(s + 1) = vl(s) + γ × rand(0,1) × (WA − KA)     (14)                                                                         

Where 𝛾 is chosen as (0.1) by the results of the 

mathematical analysis, and 𝛾 refers to the movement 

coefficient, which impacts how far a jellyfish moves 

around its location. The letters (WA) and (KA) denote the 

search zone's bottom and top bounds, respectively. 

In type B motion, a jellyfish (n) different from the one now 

being studied is randomly picked. The path the jellyfish 

takes from the one of interest (l) to the jellyfish chosen at 

random (n) is then shown as a vector. The quantity of food 

available where the jellyfish (n) is located dictates the 

movement's direction. In contrast, if there is less food at 

the jellyfish position (nth), the lth jellyfish travels away 

from the first jellyfish. Jellyfish position (l) travels toward 

jellyfish position (n) if there is more food at the latter than 

at the former. Thus, as shown in Figure 10, each jellyfish 

moves this way to find the perfect feeding spot inside the 

swarm. Equations (15) and (18) display a jellyfish's travel 

direction and most recent position, respectively. 
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direction⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
vn(s) − vl(s); ee (vn(s)) ≥ ee(vn(s))

vn(s) − vn(s); ee (vn(s)) ≥ ee(vn(s))
                            

(15) 

Where 'ff' stands for the fitness function. 

step⃗⃗⃗⃗⃗⃗ ⃗⃗  = rand(0,1) × direction⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                        

(16) 

Since, 

step⃗⃗⃗⃗⃗⃗ ⃗⃗  = vl(s + 1 ) − vl(s)                                                                               

(17) 

 

vl(s + 1 ) = step⃗⃗⃗⃗⃗⃗ ⃗⃗ + vl(s)                                                                               

(18) 

c. Time Control Component 

A temporal control system controls the kind of motion that 

jellyfish engage in. Both type A and type B motion, or the 

ability of jellyfish to move away from the flow of the water 

and inside the swarm, are governed by the time 

component. Figure 11 displays a schematic representation 

of the time control system. 

The movement selection is controlled by the time control 

method, which makes use of a threshold constant (lo) and a 

time control function (de (t)) that varies arbitrarily between 

0 and 1. Equation (19) uses arithmetic to describe the time 

control element. 

de(s) = |(1 −
s

jmax
) × ((2 × rand(0,1)) − 1)|        

 (19)                 

Where Jmax is the maximum number of iterations. 

4. Result and Discussion 

Experimental findings for the suggested technique (JFO-

WDBILSTM) were given based on Performance measures, 

including Attack Prediction Ratio (APR), Detection 

Accuracy (DA), Communication Cost (CC), and 

Efficiency Ratio (ER). 

4.1. Attack Prediction Ratio (APR) 

Attackers try to alter the data distribution of the multi-layer 

machine learning classifier to alter the scenario for 

predictions for ML-based HCS. Attacks against medical 

imagery that would be used to treat fictitious ailments are 

among them. Universal adversarial concerns may be 

successfully used to alter the predicted labels in a medical 

image with high accuracy. The suggested strategy uses 

destructive assaults on deep prediction models to identify 

weak links in a medical time chain. APR uses machine 

learning to detect illnesses and keep track of patients in 

real time. The ratio for forecasting assaults is shown in 

Figure 3. The attack prediction ratio for the JFO-

WDBILSTM is (98%), MF-Adaboost is (88%), CLS is 

(90%), and CML-ADF is (82%). 

 

Fig. 3. Attack prediction ratio 

4.2. Detection Accuracy Ratio (DAR) 

Using a collection of training data that includes recognized 

input-output pairs, the model learns to predict the output 

during the initial training phase, defining the detection 

accuracy ratio. The detection accuracy ratio is shown in 

Figure 4. The detection accuracy for the JFO-WDBILSTM 

is (88%), MF-Adaboost is (72%), CLS is (86%), and 

CML-ADF is (70%). 

 

Fig.4. Detection accuracy ratio 

4.1. 4.3. Delay Ratio 

Medical interventions could be more consistent and timely 

when communication is delayed. Health problems, lengthy 

wait times, postponed discharges, faulty judgment, and 

increased stress might all occur. A robust communication 

infrastructure must be in place to provide high-quality and 

dependable patient care. The delay ratio is shown in Figure 

8. Comparative analysis of delay ratios for JFO-

WDBILSTM  is (50%) and the MF-Adaboost is (68%), 

CLS (72%), and CML-ADF is (80%). 
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Fig. 5. Efficiency ratio 

4.2. 4.4. Communication Cost Ratio 

Medical treatments not often considered part of the health 

data gathering may result in significant cost indicators like 

medical bills and insurance payments. For instance, the 

little encrypted portion of the data might be extracted and 

evaluated, and medical data could be computed on the end-

user computer. We store the remaining datasets on cloud 

servers to save money. The ratio of communication costs is 

shown in Figure 6. Analysis of the JFO-WDBILSTM  is 

(67%), MF-Adaboost  is (57%), CLS is (62%), and CML-

ADF is (50%) communication cost ratios were evaluated. 

 

 

Fig. 6. Communication Cost Ratio 

4.5 Discussion  

Three proposals for cyber detection in healthcare have 

been made. Three modern systems that may be compared 

for performance are the Cognitive Machine Learning 

Assist Attack Detection Framework (CML-ADF), Multiple 

Features of Network Traffic with an updated Adaboost 

(MF-ADABOOST), and Certificateless Signature Scheme 

(CLS). Cognitive machine learning frameworks often use 

complex algorithms that need much processing power. 

When working with many variables or training samples, 

the MF-ADABOOST approach's computing cost may rise. 

The ability to create changeable keys using certificate 

signature systems (CLS) has made several key 

management strategies possible. The test findings showed 

that in terms of high attack predictions, accuracy, efficacy, 

lower latency, and communication, the JFO-WDBILSTM 

beat other existing networks, such as the CML-ADF, MF-

ADABOOST, and CLS algorithms. 

5. Conclusion 

This research presents a paradigm for patient data privacy 

and security in healthcare networks. The security risks at 

different cyber-physical system levels and research 

problems linked to developing safe CPS and their 

respective threat models are briefly analyzed. The JFO-

WDBILSTM technology lowers the local workload 

associated with effectiveness analysis and numerical 

findings while ensuring CPS confidentiality of healthcare 

information. When compared to other current models, the 

suggested model achieves Attack prediction ratios of 

(98%)and detection accuracy ratio(88%), a delay ratio 

(50%) and a communication cost (67%). CPS may benefit 

significantly from AI methods like deep learning and 

machine learning. Future research should focus on creating 

AI algorithms to improve control schemes, learn from 

sensor data, and make wise judgments in real-time. By 

providing autonomous decision-making, adaptive control, 

and predictive maintenance, AI may improve the 

capabilities of CPS. 
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