

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 71

High Performance Computing (Hpc) in the Cloud: A Proactive Fault

Tolerance (Pft) Strategy

1Sunil Sharma, 2Garima Jain, 3Preethi D, 4Shambhu Bhardwaj

Submitted:20/04/2023 Revised:12/06/2023 Accepted:23/06/2023

Abstract: The High Performance Computing (HPC) applications benefit from the new paradigms for computers, capacity, and adaptable

responses provided by cloud computing. For instance, the Hardware as a Service (HaaS) paradigm enables individuals to provide several

Virtual Machines (VMs) for applications that need a lot of computing. Any execution error would require re-running applications, which

would waste time, money, and energy since the HPC system on the cloud uses a lot of VMs and electrical components. In this research,

the execution time on the clock and the cost when mistakes occur, we provided a Proactive Fault Tolerance (PFT) strategy to High

Performance Computing systems in the cloud. Additionally, we created an enhanced PFT technique for cloud-based HPC systems.

Before predicting a failure, our approach does not depend on a spare node. Also, we created a model cost for running computing-heavy

apps on cloud HPC servers. To evaluate the effectiveness of our strategy, we looked at the monetary costs associated with supplying

spare nodes and checkpointing PFT. Our experimental findings from a genuine cloud execution environment demonstrate that executing

computation-intensive apps in the cloud may lower costs and execution times by up to 30%. Our PFT technique for HPC in the cloud

may minimize the occurrence of checkpointing of computation-exhaustive applications by up to fifty percent when compared to existing

PFT approaches.

Keywords: High Performance computing, Cloud computing, computation-intensive, Proactive Fault Tolerance.

1. Introduction

Computing resources are made available as services by

cloud service providers like Amazon and bare-metal cloud.

Software as a Service (SaaS), Platform as a Service (PaaS),

Infrastructure as a Service (IaaS), and Hardware as a

Service (HaaS) are different categories that apply to these

services [1]. The full computational capacity of the device

is accessible to consumers thanks to HaaS. Some of the

VMs running on the hardware and the operating system

(OS) are both controlled by the users. For applications

requiring a lot of processing and data, research groups may

simply lease HaaS and customize HPC servers to meet

their specific requirements [2]. As a result, programs that

need a lot of processing and were previously only

performed on specialized supercomputers may now be

operated in shared cloud settings. When not in use, these

resources may be given up. But one of the biggest

problems that cloud services now confront is Proactive

Fault Tolerance (PFT) [3]. A failure happens when a piece

of hardware breaks and has to be replaced, when a node

must be stopped or restarted, or when a piece of software

cannot finish running [4]. This will fail any applications

using the failed component.

However, differential counting of blood cells requires a lot

of time and effort if it is exclusively done by humans [6].

Additionally, the outcomes may vary based on each

expert's own subjective viewpoint. Although the automated

cell counters that are now on the market are based on the

concepts of flow cytochemistry and laser light scattering,

of all analyzed blood samples, 23% need expert

microscopic analysis [7]. Consequently, several attempts to

create automated cell analysis systems employing image

processing have already been established. Hence In this

paper we introduce Enhanced Naive Bayes-Ant Colony

Optimization (ENBACO) for classified Blood cells.

Additionally, VMs which are used to run HPC applications

in cloud settings, have a higher failure rate owing to

resource sharing and competition. Because PFT technology

can prevent restarting, it is crucial for HPC systems

operating in cloud settings because doing so lowers

operational expenses and energy use [5]. To offer PFT in

the event of hardware failures, hardware redundancy is

employed. Another element that is in excellent working

condition continues to function in the case of a hardware

fault of one component up until the defective part is

replaced. To enable the HPC systems to withstand failures,

1Assistant Professor, Department of Computer Science & Engineering,

Vivekananda Global University, Jaipur, India, Email Id:

sunil.sharma@vgu.ac.in

2Assistant Professor, Department of Computer Science and Business

Systems (CSBS), Noida Institute of Engineering and Technology,

Greater Noida, Uttar Pradesh, India, Email id: garimajain@niet.co.in

3Assistant Professor, Department of Computer Science and IT, Jain

(Deemed-to-be University), Bangalore-27, India, Email Id:

preethi.D@jainuniversity.ac.in

4Associate Professor, College of Computing Science and Information

Technology, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India, Email id: shambhu.bharadwaj@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 72

redundant computing nodes are added using hardware

redundancy PFT methods [6]. A redundant computing idea

for HPC systems. All of the compute nodes are duplicated

in redundant computing. The application of the message-

passing interface (MPI) is the main topic of this study. A

parallel programming standard called MPI enables

messages between jobs running concurrently on several

processors or virtual machines [7]. It has two operating

modes: running and failing. Because scalable and widely

accessible HPC systems may be created on the cloud, MPI

applications like the Groningen Molecular Simulation and

Modeling Machine apps can substantially advantage from

them. The findings of a thorough dollar cost study of

several PFT approaches are presented in this research.

2. Related Works

The research [8] employed an approach to High

Performance computing known as evolutionary multi-

objective optimization (EMO) methods to address these

MOPs. To show that our method may be used in the real

world, we give a case study including floor layout. The

study [9] proposed a preliminary task-focused taxonomy

for High Performance computing (HPC) technologies,

including a classification of programming interfaces and

runtime mechanisms. By characterizing advanced task-

based contexts, we show how our taxonomy might be

beneficial. The article [10] presented the Mochi technique

and framework. The fundamental building blocks and

microservices of Mochi are outlined. It describes four case

studies in which the Mochi approach was used to provide

highly specialized services.

The research [11] introduced the theories of Diffusion of

Innovation (DOI) and Human-Organization-Technology fit

(HOT-fit) to investigate the influence of 10 variables on

cloud computing adoption choices in the High

Performance Computing (HPC) setting. The paper [12]

analyzed the efficacy and efficiency of novel audio-video

early fusion, slicing, and sampling techniques, and presents

a side-by-side comparison of multiple 2-Dimensional

Convolutional Neural Network (2D-CNN) video action

detection algorithms. The study [13] offered a new method

that makes use of the ACS algorithm developed for use in

cloud computing. By using Map Reduce, classical ACS

may be made parallel, the solution issue can be processed

in a distributed parallel manner, and ACS's flaws can be

addressed. The research [14] explored how a

supercomputing or cluster-based computing environment

may be used to create a DNA cryptography-based secured

weather prediction model. The work [15] discussed the use

of High Performance computing on the Google Cloud

Platform to quickly and effectively analyze massive

volumes of traffic data on demand during a crisis.

3. Materials and Methods

The application layer, platform layer, infrastructure layer,

and hardware layer are the four levels that make up the

architecture of cloud computing, as shown in Figure 1.

Through the Internet, each of these levels offers users of

the cloud a variety of services.

Users may access SaaS via the application layer. Most

cloud users use this tier, which is why. User-owned

devices like laptops and iPads may access applications

over the Internet.

Platform layer implementation of PaaS. Platforms like

Visual Studio are made available to Azure developers by a

PaaS cloud provider. PaaS enables developers to create,

distribute, and test cloud-based software. IaaS is utilized as

a virtualization tool on top of the hardware layer. To

supply computer resources like VM and storage, it takes

advantage of virtualization technologies like the Xen

hypervisor.

Fig.1. Architecture of cloud computing

The physical hardware that contains the operating system

and other components makes up the hardware layer. The

virtualization features are component of HaaS. Users may

sign up for HaaS since it allows them complete control

over the server and the number of VMs to run on it to

optimize performance.

The architectures of cloud computing enable cloud

providers to provide consumers with specific services.

Utilizing the aforementioned cloud services might result in

considerable savings for certain consumers. Particularly,

HPC systems in the cloud may be used to run computation-

intensive applications, with advantages including

scalability, a pay-as-you-go pricing mechanism, and

accessibility. Additionally, these services may be

accessible via the Internet in a variety of ways and at any

time.

3.1. Image PFT for cloud-based HPC systems

The cloud reduces initial expensive capital expenditures in

hardware and infrastructure purchases by offering pools of

computer services through networking utilizing a pay-as-

you-go service pricing model. Up until recently, most

research communities lacked access to HPC systems. For

their computationally demanding programs that formerly

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 73

ran in specialized HPC settings, research, and academic

groups may now make use of the cloud pricing model.

Cloud customers are in charge of setting and maintaining

the services, whereas HaaS suppliers rent out the 'bare

bones' gear, like data servers, computers, and storage.

When users desire complete control of the OS, over the

server, the software stack, and the several VMs, they may

use HaaS. When there is additional comprehensive control

over the programs that run in the HPC management,

performance and other sorts of trade-offs may be made

more readily. At this level, PFT methods are not often

provided by cloud service providers.

PFT employs an avoidance strategy to put up with flaws.

This is accomplished by using health monitoring and

system log tools. Data on the status of the software and

hardware is available through the system log and health

monitoring. PFT communities have lately been interested

in hardware health monitoring since sensors are now put

on current gear to track things like CPU temperature and

fan speeds. Future failures are predicted using this data.

Four different kinds of modules are needed for our

proactive PFT for cloud-based HPC systems: a controller

module, a PFT policy module, a failure predictor, and a

node monitoring module with an lm-sensor. The sections

that follow provide explanations of these.

3.2. Monitoring nodes with lm-sensors

Modern CPUs include sensors built in that may be used to

keep track of many characteristics, including CPU

temperature, memory use, fan speeds, and another

hardware issues. The performance and dependability of

systems might suffer from variations in the monitored

parameters. The lm-sensors package provides tracking

tools, libraries, and drivers these metrics, are what we

utilize. The monitored parameters' values are accessed

using the lib sensors library. It offers user-space support

for the console tools that provide sensor readings as well as

the hardware monitoring drivers. Sensor limitations may

be easily established using Lm-sensors. We chose lm

sensors because they employ Linux OS kernel drivers,

which are present in the majority of HPC systems. We

created an FTDaemon with lm-sensors that is simple to

install on a cloud-based HPC server. However, our

techniques are readily transferable to different OS systems.

Centralized node health monitoring adds substantial

network overhead to an HPC system with more than

100,000 cores. Our approach was designed to lessen the

need for constant monitoring by requiring just periodic

readings of hardware characteristics from each node. In our

prototype, the FTDaemon on every compute node polls lm-

sensors every 600 ms. Every time the observed parameters

go beyond the most defined values, an alert is sounded off.

The alert triggers the calculation to ascertain if a failure is

likely to occur and the reading of the sensor readings.

Algorithm 1: The rule-based prediction method

Step 1: start timing True

Step 2: every computing node's FTDaemon while timer

=== True #Step 3: do

Step 4: parameters read 𝐷𝑗𝑈

Step 5: computing for 𝐷𝑗𝑈𝑥

Step 6: if 𝐷𝑗𝑈𝑥 = 1then;

Step 7: Break

3.3. Fault predictor

Each node's user space hosts the FTDaemon process. It

employs strategies for rule-based prediction. Reading the

sensor data regularly allows for the prediction of potential

failure scenarios. The values at this moment are contrasted

with the predetermined maximum operating conditions.

For instance, we gave the weights of the normal,

maximum, and critical values of 21, 0, and 1, respectively.

To evaluate if a failure is likely to happen soon, current

sensor readings are compared to maximum predefined

criteria. In Algorithm 1, the rule-based prediction method

is shown.

Let's pretend we've bored a hole in every surface minimum

and are going to use that hole to fill several catch basins.

Dams are constructed when additional immersion would

cause water from separate catchment basins to mix. The

water level will rise to a point when just the dam's peak is

visible. To solve the problem of overlapping cells, the

space transform of the binary mask of the cells with the

largest area is applied to the watershed transform. The

outcome of the watershed segmentation of the blood cell

picture is shown in Figure 5.

3.4. PFT Proactive Fault Tolerance (PFT) policy

The PFT policy seeks to minimize how a failure may affect

the running of a computationally demanding application.

We created and put into effect three policies:

(1) the service provider for a further node to rent

(2) Get rid of the bad node

(3) Send a request for action to the administration.

When failure is anticipated, the FTDaemon may either go

through with renting a new node or notify the

administrator. The standard procedure is to lease a second

node and notify the head host of the new node's specifics.

All nodes are listed in a database kept by the head host. In

the case that the head host fails as expected, the

functionality is moved to a freshly leased node. After

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 74

moving the unhealthful VMs to the recently leased node,

the second policy, "relinquish the unhealthy node," is put

into action.

3.5. Controller module

A controller module carries out the aforementioned

regulations. On every node, a controller module is inserted.

The node that is going to fail may now take prompt action

thanks to this. When a failure is expected, the FTDaemon

activates this regulating module. The supplier of services is

contacted by the controller module and given the necessary

credentials (such as a username and password) for the

leasing procedure. After leasing the extra node, it performs

a live transfer of the virtual machines from the

malfunctioning node to the just rented node. Additionally,

it records information about the extra node on the head

host. A controller module additionally installs the newly

leased node's FTDaemon when the VMs have been

successfully migrated. Each node has the virtualization

program Xen hypervisor loaded. This enables the

installation of numerous par-virtualized OSs on every

node. The host OSs is Dom00... Dom0n and domain zero.

They control the administration interface and have unique

access rights to the hardware. The host OSs is where

FTDaemon runs. Through the drivers, FTDaemon and the

backend talk to the hardware. The guest VMs are located

in the unprivileged domains DomU0 and DomUn. The

guest virtual machines are set up to create a cluster.

Applications that need a lot of computing are run by guest

VMs.

4. Result and Discussion

In cloud computing, the cost-oriented PFT in the cloud is

crucial. Users may choose an appropriate PFT strategy for

operating the apps in cloud management at the lowest

possible cost by having a solid grasp of the cost

implications and dependability of HPC systems in cloud

computing. From the perspective of cost management, it is

a technique utilized to reduce expenses and choose PFT by

a Project cost. It is also beneficial to evaluate various PFT

solutions and cloud computing resources to reach a certain

dependability level. To run computationally demanding

apps on cloud HPC servers, we construct the 𝐷𝑑𝑏 cost

model. With the help of the following cloud computing

characteristics, the price may be calculated. We examine

the aforementioned parameters and demonstrate that we

derived the model cost in the Configuration Cost and

Execution Cost sections below.

4.1. Configuration cost

The term "configuration cost" usually refers to the costs of

setting up and maintaining the hardware and software

infrastructure necessary for HPC operations. This cost may

vary greatly based on a variety of variables, including the

size of the HPC system, the complexity of the design, and

the unique needs of the HPC applications. The installation

and setup costs are modeled as

𝐷𝑗𝑚 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑗𝑔,

𝑚
𝑔=1 (1)

The initial cost for setting up a typical High Performance

computing system environment in the cloud is D_0.where

D_jg (h = 1,2,3,...,n) when they surpass the requirement,

the unit costs to install and configure each computational

node, and D_jg (g = 1,2,3,...m) are the unit costs to set up

and deploy the storage resources. High Performance

computing tests are often carried out on systems with 4 to

32 compute nodes. In this instance, the "standard" included

Linux OS, 32 computing nodes, and MPI management. To

properly investigate scalability, we may need a system

with thousands of nodes. Figure 2 and Table 1 show that

our proposed method PFT is lower when compared to

some of the current approaches, including CNN, SVM, and

LSTM.

Fig.2. Comparison of configuration cost with our proposed

and existing methods.

Table 1. Comparison of configuration cost

Methods Execution cost (%)

SVM [16] 85.76

CNN [17] 82.72

LSTM [18] 60.78

PFT [Proposed] 52.75

4.2. Execution cost

The Execution cost is the expense spent when running a

computationally expensive program on cloud computing

resources. Typically, the cost of execution is calculated by

the hour or the month. This may be expressed as the

product of the price of a compute node that is leased and

the length of time it takes for a computation-intensive

application to execute in a cloud-based HPC system. The

execution cost is represented by:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 75

𝐷𝑓 = ∑ 𝐷𝑓𝑗
𝑜
𝑗=1 . 𝐹𝑠𝑗 (2)

Where 𝑗 = 1, 2, 3, . . . 𝑎𝑛𝑑 𝑜 is the total quantity of

compute nodes utilized to run the computation-intensive

apps 𝐷𝑓 stands for the dollar rate per computing node. The

execution time of the computationally demanding

application on the HPC system 𝐷𝑓𝑖 is denoted by the

notation𝐹𝑠𝑗.

Fig.3. Comparison of Execution cost with our proposed

and existing methods.

Table 2. Comparison of Execution cost

Execution cost (%)

SVM [16] 85.76

CNN [17] 82.72

LSTM [18] 60.78

PFT [Proposed] 52.75

Figure 3 and Table 2 show that our proposed method PFT

is lower when compared to some of the existing methods

such as CNN, SVM, and LSTM.

4.3. Failure cost

Failure costs in High Performance computing (HPC) refers

to the expenditures spent when unanticipated faults or

mistakes occur in the HPC system or during the execution

of computational operations. These expenditures might

come from a variety of sources and have both direct and

indirect effects on HPC operations. Here are some

elements that contribute to HPC failure costs:

𝐷𝑒 = 𝐷𝑙𝑜𝑠𝑠[1 − 𝑄𝑦] (3)

𝐷𝑑𝑏 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑗𝑔

𝑚
𝑔=1 + ∑ 𝐷𝑓𝑗 . 𝐹𝑠𝑗 +𝑂

𝑗=1

∑ 𝐷𝑑𝑖
𝑗𝑚

+ ∑ 𝐷𝑑𝑙
𝑜𝑢𝑡𝑞

𝑙=1
𝑜
𝑖=1 + ∑ 𝐷𝑡𝑘 . 𝐷𝑠𝑘 + ∑ 𝐷𝑞𝑣

𝑤
𝑣=1 . 𝐷𝑠𝑣 +𝑡

𝑘=1

𝐷𝑙𝑜𝑠𝑠 [1 − 𝑄𝑦] (4)

The following may be inferred from Equation (4):

▪ The cost of operating computation intensive apps in

HPC systems in the cloud computing is increased by

the use of compute node redundancy FT methods,

which are ubiquitous in conventional HPC systems.

▪ The cost of operating the computation-intensive apps

rises when checkpoint and restart FT methods are

used in cloud-based high-performance computing

(HPC) systems, yet this enhances system

dependability. This is because using checkpoints and

restarts in FT causes the application's wall-clock

execution time to grow. These accords with previous

findings about the impact of checkpoint and restart

FT methods.

▪ It is possible to increase the availability of HPC

systems and lower the cost of running

computationally demanding applications by

performing a live migration of Virtual Machines

(VMs) from sick nodes to unneeded nodes before a

failure prediction is generated.

4.4. The Algorithm and Economic Impact of Proactive

Fault Tolerance

We present our method and offer a numerical

mathematical analysis of its characteristics in this part. The

condition of the monitored parameters is ascertained using

the most recent data available from the sensors. The

algorithm anticipates failure in the future and takes

measures to lessen its effects on the application. It then

installs an FTDaemon on the newly leased node and

releases the unhealthy node as well. Here is the description

of Algorithm 2.

Algorithm 2

Every computer node is running FTDaemon. 𝐷𝑗(𝑗 =

0, 1, . . . , 𝑚);

Observable parameters: 𝑈 =fan speed, temperature

voltages;

Factors ¼ functions 𝑈𝑋: weight (– 1, 0, 1),

Where

#–1 = functions with all parameters set to their default

settings. U;

0 = functions at the maximum levels of one or more

values;

1 ¼ functions at the difficult cost; 𝐷𝑗𝑈 = 1

For compute node𝐷𝑗𝑈;

Step 1: FTDaemon:

Step 2: Start

Step 3: note the hostnames of all active guest VMs on the

node. 𝐷𝑗

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 76

Step 4: set difficult values of𝐷𝑗𝑈;

Step 5: set timer True;

Step 6: while True do;

Step 7: Factors read𝐷𝑗𝑈;

Step 8: computing for 𝐷𝑗𝑈𝑥;

Step 9: if 𝐷𝑗𝑈𝑥 = 1then;

Step 10: break; # exit loop

Step 11: else if 𝐷𝑗𝑈𝑥 = 0 then;

Step 12: Record the max U;

Step 13: Get delayed;

Step 14: else

Step 15: see whether an alarm trigger has been received;

Step 16: end while;

Step 17: controller module:

Step 18: lease another node;

Step 19: actual migration of, 𝑈𝑁1, … , 𝑈𝑁𝑚

Step 20: FTDaemon installation on a freshly leased node;

Step 21: provide the head host information about a freshly

leased node.;

Step 22: Get rid of the unhealthy node;

Step 23: End

Case 1

First, we utilize Equation (4) to determine the overall cost

of the proactive PFT technique employed when a spare

node is supplied before failure prediction. Due to the price

of the spare nodes, using this architecture will result in a

somewhat high cost for operating computation-intensive

apps in computing.

Fig.4. Performance of HPL benchmarks with and without

check pointing and with FTDaemon.

Figure 4 and Table 3 display the cost, which has been

calculated.

Table 3. Check pointing, non-check pointing, and

FTDaemon-enabled HPL benchmark performance.

Dollar (US$) cost of execution of HPC application

Cost of

execution

of HPC

Application

if

(reliability=

1)

Cost of

using FT

checkpointi

ng

Cost of

classical

with

redunda

nt nodes

Cost of

approach

(No

redundan

t ahead

of

predictio

n)

2000 55 75 95 105

4000 115 135 155 185

6000 235 310 355 423

8000 600 825 936 1032

1000

0

2500 4100 3900 3500

Case 2

A setup is created using the compute node 𝐷𝑗 𝑈𝑥 =1 (as

previously mentioned). There is no need to have a spare

node in this condition. The majority of the time, according

to observances and documentation, HPC systems function

in this zone, except when the fault is likely to happen

[when a node approaches its critical state, or CiVw 14 1].

𝐷𝑞 = ∑ 𝐷𝑤
𝑥
𝑤=1 . 𝑄𝑠𝑥 ≈ 0 (5)

𝐷𝑑𝑏 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑓𝑗

𝑜
𝑔=1 + ∑ 𝐷𝑖𝑔

𝑗𝑚𝑟
𝑖=1 +

∑ 𝐷𝑑𝑙
𝑜𝑢𝑡𝑞

𝑙=1 + ∑ 𝐷𝑡𝑘
𝑡
𝑘=1 . 𝐷𝑠𝑘 + 𝐷𝑙𝑜𝑠𝑠[1 − 𝑄𝑣]

 (6)

Only in this stage does the controller model give up the

sick node and lease a new node from the service provider.

We assume that there is ample time to move virtual

machines from the sick node to the recently leased node

between the forecast of node failure and actual failure. The

running cost of the backup node is almost nil since the sick

node is abandoned right away after the VM transfer. Our

test system's supply of a node and live VM migrations

within 30 seconds, according to the findings of our

experiments.

5. Conclusion

In this work, we detail the planning and execution of a

proactive PFT strategy for HPC in the cloud, with a focus

on minimizing costs. The cost model for executing

applications requiring extensive computational resources

on cloud-based High Performance computing systems was

developed by us. We looked at how much money it would

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 77

cost to have extra nodes available before failure was

predicted. We demonstrated that a pre-emptive supply of

spare nodes is not necessary for our strategy to work. We

showed the outcomes of our experiments conducted in a

genuine cloud setting. The experimental findings

demonstrate that the suggested proactive PFT approach to

HPC systems in the cloud may dramatically increase the

execution time of computation-intensive applications,

resulting in a reduction of the dollar cost for operating

them by as much as 30%. Our FTDaemon can also cut in

half the time it takes for computation-intensive programs

to do checkpointing. In the event of the breakdown of one

or more computing nodes, our method may assist minimize

energy usage by decreasing the clock execution time of

computationally expensive HPC programs.

References

[1] Wada, I., 2018. Cloud computing implementation in

libraries: A synergy for library services

optimization. International Journal of Library and

Information Science, 10(2), pp.17-27.

[2] Negru, C., Mocanu, M., Cristea, V., Sotiriadis, S. and

Bessis, N., 2017. Analysis of power consumption in

heterogeneous virtual machine environments. Soft

Computing, 21, pp.4531-4542.

[3] Kumari, P. and Kaur, P., 2021. A survey of fault

tolerance in cloud computing. Journal of King Saud

University-Computer and Information

Sciences, 33(10), pp.1159-1176.

[4] Jadhav, S. B. ., & Kodavade, D. V. . (2023).

Enhancing Flight Delay Prediction through Feature

Engineering in Machine Learning Classifiers: A Real

Time Data Streams Case Study. International Journal

on Recent and Innovation Trends in Computing and

Communication, 11(2s), 212–218.

https://doi.org/10.17762/ijritcc.v11i2s.6064

[5] Gunawi, H.S., Suminto, R.O., Sears, R., Golliher, C.,

Sundararaman, S., Lin, X., Emami, T., Sheng, W.,

Bidokhti, N., McCaffrey, C. and Srinivasan, D., 2018.

Fail-slow at scale: Evidence of hardware performance

faults in large production systems. ACM Transactions

on Storage (TOS), 14(3), pp.1-26.

[6] Bharany, S., Badotra, S., Sharma, S., Rani, S.,

Alazab, M., Jhaveri, R.H. and Gadekallu, T.R., 2022.

Energy efficient fault tolerance techniques in green

cloud computing: A systematic survey and

taxonomy. Sustainable Energy Technologies and

Assessments, 53, p.102613.

[7] Ashraf, R.A., Hukerikar, S. and Engelmann, C., 2018,

March. Shrink or substitute: handling process failures

in HPC systems using in-situ recovery. In 2018 26th

Euromicro International Conference on Parallel,

Distributed and Network-based Processing

(PDP) (pp. 178-185). IEEE.

[8] Ragunthar, T., Ashok, P., Gopinath, N. and

Subashini, M., 2021. A strong reinforcement parallel

implementation of k-means algorithm using message

passing interface. Materials Today: Proceedings, 46,

pp.3799-3802.

[9] Wang, G.G., Cai, X., Cui, Z., Min, G. and Chen, J.,

2017. High Performance computing for cyber-

physical social systems by using an evolutionary

multi-objective optimization algorithm. IEEE

Transactions on Emerging Topics in

Computing, 8(1), pp.20-30.

[10] Thoman, P., Dichev, K., Heller, T., Iakymchuk, R.,

Aguilar, X., Hasanov, K., Gschwandtner, P.,

Lemarinier, P., Markidis, S., Jordan, H. and

Fahringer, T., 2018. A taxonomy of task-based

parallel programming technologies for High

Performance computing. The Journal of

Supercomputing, 74(4), pp.1422-1434.

[11] Ross, R.B., Amvrosiadis, G., Carns, P., Cranor, C.D.,

Dorier, M., Harms, K., Ganger, G., Gibson, G.,

Gutierrez, S.K., Latham, R. and Robey, B., 2020.

Mochi: Composing data services for High

Performance computing environments. Journal of

Computer Science and Technology, 35, pp.121-144.

[12] Hutchinson, M.S., 2020. Applying High Performance

computing to early fusion video action

recognition (Doctoral dissertation, Massachusetts

Institute of Technology).

[13] Goar, D. V. . (2021). Biometric Image Analysis in

Enhancing Security Based on Cloud IOT Module in

Classification Using Deep Learning- Techniques.

Research Journal of Computer Systems and

Engineering, 2(1), 01:05. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journa

l/article/view/9

[14] Tosson, A., 2020. The way to a smarter community:

exploring and exploiting data modeling, big data

analytics, High Performance computing, and artificial

intelligence techniques for applications of 2D energy-

dispersive detectors in the crystallography

community.

[15] Li, C. and Zhao, Y., 2019. Traffic route optimization

based on cloud computing parallel ACS. International

Journal of Information and Communication

Technology, 14(2), pp.204-217.

[16] Kairi, A., Gagan, S., Bera, T. and Chakraborty, M.,

2019. DNA Cryptography-Based Secured Weather

Prediction Model in High Performance Computing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 | 78

In Proceedings of International Ethical Hacking

Conference 2018: eHaCON 2018, Kolkata, India (pp.

103-114). Springer Singapore.

[17] Posey, B., Deer, A., Gorman, W., July, V., Kanhere,

N., Speck, D., Wilson, B. and Apon, A., 2019,

November. On-demand urgent High Performance

computing utilizing the google cloud platform.

In 2019 IEEE/ACM HPC for Urgent Decision

Making (UrgentHPC) (pp. 13-23). IEEE.

[18] Catak, F.O. and Balaban, M.E., 2013. CloudSVM:

training an SVM classifier in cloud computing

systems. In Pervasive Computing and the Networked

World: Joint International Conference, ICPCA/SWS

2012, Istanbul, Turkey, November 28-30, 2012,

Revised Selected Papers (pp. 57-68). Springer Berlin

Heidelberg.

[19] Dogani, J., Khunjush, F., Mahmoudi, M.R. and

Seydali, M., 2023. Multivariate workload and

resource prediction in cloud computing using CNN

and GRU by attention mechanism. The Journal of

Supercomputing, 79(3), pp.3437-3470.

[20] Arif, M., Ajesh, F., Shamsudheen, S. and Shahzad,

M., 2022. Secure and Energy-Efficient

Computational Offloading Using LSTM in Mobile

Edge Computing. Security And Communication

Networks, 2022, pp.1-13.

