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Abstract: The High Performance Computing (HPC) applications benefit from the new paradigms for computers, capacity, and adaptable 

responses provided by cloud computing. For instance, the Hardware as a Service (HaaS) paradigm enables individuals to provide several 

Virtual Machines (VMs) for applications that need a lot of computing. Any execution error would require re-running applications, which 

would waste time, money, and energy since the HPC system on the cloud uses a lot of VMs and electrical components. In this research, 

the execution time on the clock and the cost when mistakes occur, we provided a Proactive Fault Tolerance (PFT) strategy to High 

Performance Computing systems in the cloud. Additionally, we created an enhanced PFT technique for cloud-based HPC systems. 

Before predicting a failure, our approach does not depend on a spare node. Also, we created a model cost for running computing-heavy 

apps on cloud HPC servers. To evaluate the effectiveness of our strategy, we looked at the monetary costs associated with supplying 

spare nodes and checkpointing PFT. Our experimental findings from a genuine cloud execution environment demonstrate that executing 

computation-intensive apps in the cloud may lower costs and execution times by up to 30%. Our PFT technique for HPC in the cloud 

may minimize the occurrence of checkpointing of computation-exhaustive applications by up to fifty percent when compared to existing 

PFT approaches.  

Keywords: High Performance computing, Cloud computing, computation-intensive, Proactive Fault Tolerance. 

1. Introduction 

Computing resources are made available as services by 

cloud service providers like Amazon and bare-metal cloud. 

Software as a Service (SaaS), Platform as a Service (PaaS), 

Infrastructure as a Service (IaaS), and Hardware as a 

Service (HaaS) are different categories that apply to these 

services [1]. The full computational capacity of the device 

is accessible to consumers thanks to HaaS. Some of the 

VMs running on the hardware and the operating system 

(OS) are both controlled by the users. For applications 

requiring a lot of processing and data, research groups may 

simply lease HaaS and customize HPC servers to meet 

their specific requirements [2]. As a result, programs that 

need a lot of processing and were previously only 

performed on specialized supercomputers may now be 

operated in shared cloud settings. When not in use, these 

resources may be given up. But one of the biggest 

problems that cloud services now confront is Proactive 

Fault Tolerance (PFT) [3]. A failure happens when a piece 

of hardware breaks and has to be replaced, when a node 

must be stopped or restarted, or when a piece of software 

cannot finish running [4]. This will fail any applications 

using the failed component.  

However, differential counting of blood cells requires a lot 

of time and effort if it is exclusively done by humans [6]. 

Additionally, the outcomes may vary based on each 

expert's own subjective viewpoint. Although the automated 

cell counters that are now on the market are based on the 

concepts of flow cytochemistry and laser light scattering, 

of all analyzed blood samples, 23% need expert 

microscopic analysis [7]. Consequently, several attempts to 

create automated cell analysis systems employing image 

processing have already been established. Hence In this 

paper we introduce Enhanced Naive Bayes-Ant Colony 

Optimization (ENBACO) for classified Blood cells. 

Additionally, VMs which are used to run HPC applications 

in cloud settings, have a higher failure rate owing to 

resource sharing and competition. Because PFT technology 

can prevent restarting, it is crucial for HPC systems 

operating in cloud settings because doing so lowers 

operational expenses and energy use [5]. To offer PFT in 

the event of hardware failures, hardware redundancy is 

employed. Another element that is in excellent working 

condition continues to function in the case of a hardware 

fault of one component up until the defective part is 

replaced. To enable the HPC systems to withstand failures, 
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redundant computing nodes are added using hardware 

redundancy PFT methods [6]. A redundant computing idea 

for HPC systems. All of the compute nodes are duplicated 

in redundant computing. The application of the message-

passing interface (MPI) is the main topic of this study. A 

parallel programming standard called MPI enables 

messages between jobs running concurrently on several 

processors or virtual machines [7]. It has two operating 

modes: running and failing. Because scalable and widely 

accessible HPC systems may be created on the cloud, MPI 

applications like the Groningen Molecular Simulation and 

Modeling Machine apps can substantially advantage from 

them. The findings of a thorough dollar cost study of 

several PFT approaches are presented in this research. 

2. Related Works 

The research [8] employed an approach to High 

Performance computing known as evolutionary multi-

objective optimization (EMO) methods to address these 

MOPs. To show that our method may be used in the real 

world, we give a case study including floor layout. The 

study [9] proposed a preliminary task-focused taxonomy 

for High Performance computing (HPC) technologies, 

including a classification of programming interfaces and 

runtime mechanisms. By characterizing advanced task-

based contexts, we show how our taxonomy might be 

beneficial. The article [10] presented the Mochi technique 

and framework. The fundamental building blocks and 

microservices of Mochi are outlined. It describes four case 

studies in which the Mochi approach was used to provide 

highly specialized services.  

The research [11] introduced the theories of Diffusion of 

Innovation (DOI) and Human-Organization-Technology fit 

(HOT-fit) to investigate the influence of 10 variables on 

cloud computing adoption choices in the High 

Performance Computing (HPC) setting. The paper [12] 

analyzed the efficacy and efficiency of novel audio-video 

early fusion, slicing, and sampling techniques, and presents 

a side-by-side comparison of multiple 2-Dimensional 

Convolutional Neural Network (2D-CNN) video action 

detection algorithms. The study [13] offered a new method 

that makes use of the ACS algorithm developed for use in 

cloud computing. By using Map Reduce, classical ACS 

may be made parallel, the solution issue can be processed 

in a distributed parallel manner, and ACS's flaws can be 

addressed. The research [14] explored how a 

supercomputing or cluster-based computing environment 

may be used to create a DNA cryptography-based secured 

weather prediction model. The work [15] discussed the use 

of High Performance computing on the Google Cloud 

Platform to quickly and effectively analyze massive 

volumes of traffic data on demand during a crisis. 

 

3. Materials and Methods 

The application layer, platform layer, infrastructure layer, 

and hardware layer are the four levels that make up the 

architecture of cloud computing, as shown in Figure 1. 

Through the Internet, each of these levels offers users of 

the cloud a variety of services. 

Users may access SaaS via the application layer. Most 

cloud users use this tier, which is why. User-owned 

devices like laptops and iPads may access applications 

over the Internet. 

Platform layer implementation of PaaS. Platforms like 

Visual Studio are made available to Azure developers by a 

PaaS cloud provider. PaaS enables developers to create, 

distribute, and test cloud-based software. IaaS is utilized as 

a virtualization tool on top of the hardware layer. To 

supply computer resources like VM and storage, it takes 

advantage of virtualization technologies like the Xen 

hypervisor. 

 

Fig.1. Architecture of cloud computing 

The physical hardware that contains the operating system 

and other components makes up the hardware layer. The 

virtualization features are component of HaaS. Users may 

sign up for HaaS since it allows them complete control 

over the server and the number of VMs to run on it to 

optimize performance. 

The architectures of cloud computing enable cloud 

providers to provide consumers with specific services. 

Utilizing the aforementioned cloud services might result in 

considerable savings for certain consumers. Particularly, 

HPC systems in the cloud may be used to run computation-

intensive applications, with advantages including 

scalability, a pay-as-you-go pricing mechanism, and 

accessibility. Additionally, these services may be 

accessible via the Internet in a variety of ways and at any 

time. 

3.1. Image PFT for cloud-based HPC systems 

The cloud reduces initial expensive capital expenditures in 

hardware and infrastructure purchases by offering pools of 

computer services through networking utilizing a pay-as-

you-go service pricing model. Up until recently, most 

research communities lacked access to HPC systems. For 

their computationally demanding programs that formerly 
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ran in specialized HPC settings, research, and academic 

groups may now make use of the cloud pricing model. 

Cloud customers are in charge of setting and maintaining 

the services, whereas HaaS suppliers rent out the 'bare 

bones' gear, like data servers, computers, and storage. 

When users desire complete control of the OS, over the 

server, the software stack, and the several VMs, they may 

use HaaS. When there is additional comprehensive control 

over the programs that run in the HPC management, 

performance and other sorts of trade-offs may be made 

more readily. At this level, PFT methods are not often 

provided by cloud service providers. 

PFT employs an avoidance strategy to put up with flaws. 

This is accomplished by using health monitoring and 

system log tools. Data on the status of the software and 

hardware is available through the system log and health 

monitoring. PFT communities have lately been interested 

in hardware health monitoring since sensors are now put 

on current gear to track things like CPU temperature and 

fan speeds. Future failures are predicted using this data. 

Four different kinds of modules are needed for our 

proactive PFT for cloud-based HPC systems: a controller 

module, a PFT policy module, a failure predictor, and a 

node monitoring module with an lm-sensor. The sections 

that follow provide explanations of these. 

3.2. Monitoring nodes with lm-sensors 

Modern CPUs include sensors built in that may be used to 

keep track of many characteristics, including CPU 

temperature, memory use, fan speeds, and another 

hardware issues. The performance and dependability of 

systems might suffer from variations in the monitored 

parameters. The lm-sensors package provides tracking 

tools, libraries, and drivers these metrics, are what we 

utilize. The monitored parameters' values are accessed 

using the lib sensors library. It offers user-space support 

for the console tools that provide sensor readings as well as 

the hardware monitoring drivers. Sensor limitations may 

be easily established using Lm-sensors. We chose lm 

sensors because they employ Linux OS kernel drivers, 

which are present in the majority of HPC systems. We 

created an FTDaemon with lm-sensors that is simple to 

install on a cloud-based HPC server. However, our 

techniques are readily transferable to different OS systems. 

Centralized node health monitoring adds substantial 

network overhead to an HPC system with more than 

100,000 cores. Our approach was designed to lessen the 

need for constant monitoring by requiring just periodic 

readings of hardware characteristics from each node. In our 

prototype, the FTDaemon on every compute node polls lm-

sensors every 600 ms. Every time the observed parameters 

go beyond the most defined values, an alert is sounded off. 

The alert triggers the calculation to ascertain if a failure is 

likely to occur and the reading of the sensor readings. 

Algorithm 1: The rule-based prediction method 

Step 1: start timing True 

Step 2: every computing node's FTDaemon while timer 

=== True #Step 3: do 

Step 4: parameters read 𝐷𝑗𝑈 

Step 5: computing for 𝐷𝑗𝑈𝑥 

Step 6: if 𝐷𝑗𝑈𝑥 = 1then; 

Step 7: Break 

3.3. Fault predictor 

Each node's user space hosts the FTDaemon process. It 

employs strategies for rule-based prediction. Reading the 

sensor data regularly allows for the prediction of potential 

failure scenarios. The values at this moment are contrasted 

with the predetermined maximum operating conditions. 

For instance, we gave the weights of the normal, 

maximum, and critical values of 21, 0, and 1, respectively. 

To evaluate if a failure is likely to happen soon, current 

sensor readings are compared to maximum predefined 

criteria. In Algorithm 1, the rule-based prediction method 

is shown.  

Let's pretend we've bored a hole in every surface minimum 

and are going to use that hole to fill several catch basins. 

Dams are constructed when additional immersion would 

cause water from separate catchment basins to mix. The 

water level will rise to a point when just the dam's peak is 

visible. To solve the problem of overlapping cells, the 

space transform of the binary mask of the cells with the 

largest area is applied to the watershed transform. The 

outcome of the watershed segmentation of the blood cell 

picture is shown in Figure 5. 

3.4. PFT Proactive Fault Tolerance (PFT) policy 

The PFT policy seeks to minimize how a failure may affect 

the running of a computationally demanding application. 

We created and put into effect three policies:  

(1)  the service provider for a further node to rent 

(2) Get rid of the bad node  

(3) Send a request for action to the administration.  

When failure is anticipated, the FTDaemon may either go 

through with renting a new node or notify the 

administrator. The standard procedure is to lease a second 

node and notify the head host of the new node's specifics. 

All nodes are listed in a database kept by the head host. In 

the case that the head host fails as expected, the 

functionality is moved to a freshly leased node. After 
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moving the unhealthful VMs to the recently leased node, 

the second policy, "relinquish the unhealthy node," is put 

into action. 

3.5. Controller module 

A controller module carries out the aforementioned 

regulations. On every node, a controller module is inserted. 

The node that is going to fail may now take prompt action 

thanks to this. When a failure is expected, the FTDaemon 

activates this regulating module. The supplier of services is 

contacted by the controller module and given the necessary 

credentials (such as a username and password) for the 

leasing procedure. After leasing the extra node, it performs 

a live transfer of the virtual machines from the 

malfunctioning node to the just rented node. Additionally, 

it records information about the extra node on the head 

host. A controller module additionally installs the newly 

leased node's FTDaemon when the VMs have been 

successfully migrated. Each node has the virtualization 

program Xen hypervisor loaded. This enables the 

installation of numerous par-virtualized OSs on every 

node. The host OSs is Dom00... Dom0n and domain zero. 

They control the administration interface and have unique 

access rights to the hardware. The host OSs is where 

FTDaemon runs. Through the drivers, FTDaemon and the 

backend talk to the hardware. The guest VMs are located 

in the unprivileged domains DomU0 and DomUn. The 

guest virtual machines are set up to create a cluster. 

Applications that need a lot of computing are run by guest 

VMs. 

4.  Result and Discussion 

In cloud computing, the cost-oriented PFT in the cloud is 

crucial. Users may choose an appropriate PFT strategy for 

operating the apps in cloud management at the lowest 

possible cost by having a solid grasp of the cost 

implications and dependability of HPC systems in cloud 

computing. From the perspective of cost management, it is 

a technique utilized to reduce expenses and choose PFT by 

a Project cost. It is also beneficial to evaluate various PFT 

solutions and cloud computing resources to reach a certain 

dependability level. To run computationally demanding 

apps on cloud HPC servers, we construct the 𝐷𝑑𝑏  cost 

model. With the help of the following cloud computing 

characteristics, the price may be calculated. We examine 

the aforementioned parameters and demonstrate that we 

derived the model cost in the Configuration Cost and 

Execution Cost sections below. 

4.1. Configuration cost 

The term "configuration cost" usually refers to the costs of 

setting up and maintaining the hardware and software 

infrastructure necessary for HPC operations. This cost may 

vary greatly based on a variety of variables, including the 

size of the HPC system, the complexity of the design, and 

the unique needs of the HPC applications. The installation 

and setup costs are modeled as 

𝐷𝑗𝑚 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑗𝑔,

𝑚
𝑔=1    (1) 

The initial cost for setting up a typical High Performance 

computing system environment in the cloud is D_0.where 

D_jg (h = 1,2,3,...,n)  when they surpass the requirement, 

the unit costs to install and configure each computational 

node, and D_jg  (g = 1,2,3,...m)  are the unit costs to set up 

and deploy the storage resources. High Performance 

computing tests are often carried out on systems with 4 to 

32 compute nodes. In this instance, the "standard" included 

Linux OS, 32 computing nodes, and MPI management. To 

properly investigate scalability, we may need a system 

with thousands of nodes. Figure 2 and Table 1 show that 

our proposed method PFT is lower when compared to 

some of the current approaches, including CNN, SVM, and 

LSTM. 

 

Fig.2. Comparison of configuration cost with our proposed 

and existing methods. 

Table 1. Comparison of configuration cost 

Methods Execution cost (%) 

SVM [16] 85.76 

CNN [17] 82.72 

LSTM [18] 60.78 

PFT [Proposed] 52.75 

 

4.2. Execution cost 

The Execution cost is the expense spent when running a 

computationally expensive program on cloud computing 

resources. Typically, the cost of execution is calculated by 

the hour or the month. This may be expressed as the 

product of the price of a compute node that is leased and 

the length of time it takes for a computation-intensive 

application to execute in a cloud-based HPC system. The 

execution cost is represented by: 
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𝐷𝑓 = ∑ 𝐷𝑓𝑗
𝑜
𝑗=1 . 𝐹𝑠𝑗    (2) 

Where 𝑗 =  1, 2, 3, . . . 𝑎𝑛𝑑 𝑜 is the total quantity of 

compute nodes utilized to run the computation-intensive 

apps 𝐷𝑓  stands for the dollar rate per computing node. The 

execution time of the computationally demanding 

application on the HPC system 𝐷𝑓𝑖  is denoted by the 

notation𝐹𝑠𝑗.  

 

Fig.3. Comparison of Execution cost with our proposed 

and existing methods. 

Table 2. Comparison of Execution cost 
 

Execution cost (%) 

SVM [16] 85.76 

CNN [17] 82.72 

LSTM [18] 60.78 

PFT [Proposed] 52.75 

 

Figure 3 and Table 2 show that our proposed method PFT 

is lower when compared to some of the existing methods 

such as CNN, SVM, and LSTM. 

4.3. Failure cost 

Failure costs in High Performance computing (HPC) refers 

to the expenditures spent when unanticipated faults or 

mistakes occur in the HPC system or during the execution 

of computational operations. These expenditures might 

come from a variety of sources and have both direct and 

indirect effects on HPC operations. Here are some 

elements that contribute to HPC failure costs: 

𝐷𝑒 =  𝐷𝑙𝑜𝑠𝑠[1 − 𝑄𝑦]         (3) 

𝐷𝑑𝑏 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑗𝑔

𝑚
𝑔=1 + ∑ 𝐷𝑓𝑗 . 𝐹𝑠𝑗 +𝑂

𝑗=1

∑ 𝐷𝑑𝑖
𝑗𝑚

+ ∑ 𝐷𝑑𝑙
𝑜𝑢𝑡𝑞

𝑙=1
𝑜
𝑖=1 + ∑ 𝐷𝑡𝑘 . 𝐷𝑠𝑘 + ∑ 𝐷𝑞𝑣

𝑤
𝑣=1 . 𝐷𝑠𝑣 +𝑡

𝑘=1

𝐷𝑙𝑜𝑠𝑠 [1 − 𝑄𝑦]      (4) 

  

The following may be inferred from Equation (4): 

▪ The cost of operating computation intensive apps in 

HPC systems in the cloud computing is increased by 

the use of compute node redundancy FT methods, 

which are ubiquitous in conventional HPC systems. 

▪ The cost of operating the computation-intensive apps 

rises when checkpoint and restart FT methods are 

used in cloud-based high-performance computing 

(HPC) systems, yet this enhances system 

dependability. This is because using checkpoints and 

restarts in FT causes the application's wall-clock 

execution time to grow. These accords with previous 

findings about the impact of checkpoint and restart 

FT methods. 

▪ It is possible to increase the availability of HPC 

systems and lower the cost of running 

computationally demanding applications by 

performing a live migration of Virtual Machines 

(VMs) from sick nodes to unneeded nodes before a 

failure prediction is generated. 

4.4. The Algorithm and Economic Impact of Proactive 

Fault Tolerance 

We present our method and offer a numerical 

mathematical analysis of its characteristics in this part. The 

condition of the monitored parameters is ascertained using 

the most recent data available from the sensors. The 

algorithm anticipates failure in the future and takes 

measures to lessen its effects on the application. It then 

installs an FTDaemon on the newly leased node and 

releases the unhealthy node as well. Here is the description 

of Algorithm 2. 

Algorithm 2 

# Every computer node is running FTDaemon. 𝐷𝑗(𝑗 =

0, 1, . . . , 𝑚); 

# Observable parameters: 𝑈 =fan speed, temperature 

voltages; 

# Factors ¼ functions 𝑈𝑋: weight (– 1, 0, 1), 

# Where 

#–1 = functions with all parameters set to their default 

settings. U; 

# 0 = functions at the maximum levels of one or more 

values; 

# 1 ¼ functions at the difficult cost; 𝐷𝑗𝑈 = 1 

# For compute node𝐷𝑗𝑈; 

Step 1: FTDaemon: 

Step 2: Start 

Step 3: note the hostnames of all active guest VMs on the 

node. 𝐷𝑗  
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Step 4: set difficult values of𝐷𝑗𝑈; 

Step 5: set timer True; 

Step 6: while True do; 

Step 7: Factors  read𝐷𝑗𝑈; 

Step 8: computing for 𝐷𝑗𝑈𝑥; 

Step 9: if 𝐷𝑗𝑈𝑥 = 1then; 

Step 10: break; # exit loop 

Step 11: else if 𝐷𝑗𝑈𝑥 = 0 then; 

Step 12: Record the max U; 

Step 13: Get delayed; 

Step 14: else 

Step 15: see whether an alarm trigger has been received; 

Step 16: end while; 

Step 17: controller module: 

Step 18: lease another node; 

Step 19: actual migration of, 𝑈𝑁1, … , 𝑈𝑁𝑚 

Step 20: FTDaemon installation on a freshly leased node; 

Step 21: provide the head host information about a freshly 

leased node.; 

Step 22: Get rid of the unhealthy node; 

Step 23: End 

Case 1 

First, we utilize Equation (4) to determine the overall cost 

of the proactive PFT technique employed when a spare 

node is supplied before failure prediction. Due to the price 

of the spare nodes, using this architecture will result in a 

somewhat high cost for operating computation-intensive 

apps in computing.  

 

Fig.4. Performance of HPL benchmarks with and without 

check pointing and with FTDaemon. 

Figure 4 and Table 3 display the cost, which has been 

calculated.  

Table 3. Check pointing, non-check pointing, and 

FTDaemon-enabled HPL benchmark performance. 
 

Dollar (US$) cost of execution of HPC application 
 

Cost of 

execution 

of HPC 

Application 

if 

(reliability=

1) 

Cost of 

using FT 

checkpointi

ng  

Cost of 

classical 

with 

redunda

nt nodes  

Cost of 

approach 

(No 

redundan

t ahead 

of 

predictio

n) 

2000 55 75 95 105 

4000 115 135 155 185 

6000 235 310 355 423 

8000 600 825 936 1032 

1000

0 

2500 4100 3900 3500 

 

Case 2 

A setup is created using the compute node 𝐷𝑗 𝑈𝑥 =1 (as 

previously mentioned). There is no need to have a spare 

node in this condition. The majority of the time, according 

to observances and documentation, HPC systems function 

in this zone, except when the fault is likely to happen 

[when a node approaches its critical state, or CiVw 14 1].  

𝐷𝑞 = ∑ 𝐷𝑤
𝑥
𝑤=1 . 𝑄𝑠𝑥 ≈ 0            (5) 

𝐷𝑑𝑏 = 𝐷0 + ∑ 𝐷𝑗ℎ
𝑛
ℎ=1 + ∑ 𝐷𝑓𝑗

𝑜
𝑔=1 + ∑ 𝐷𝑖𝑔

𝑗𝑚𝑟
𝑖=1 +

∑ 𝐷𝑑𝑙
𝑜𝑢𝑡𝑞

𝑙=1 + ∑ 𝐷𝑡𝑘
𝑡
𝑘=1 . 𝐷𝑠𝑘 + 𝐷𝑙𝑜𝑠𝑠[1 − 𝑄𝑣]   

  (6) 

Only in this stage does the controller model give up the 

sick node and lease a new node from the service provider. 

We assume that there is ample time to move virtual 

machines from the sick node to the recently leased node 

between the forecast of node failure and actual failure. The 

running cost of the backup node is almost nil since the sick 

node is abandoned right away after the VM transfer. Our 

test system's supply of a node and live VM migrations 

within 30 seconds, according to the findings of our 

experiments. 

5. Conclusion 

In this work, we detail the planning and execution of a 

proactive PFT strategy for HPC in the cloud, with a focus 

on minimizing costs. The cost model for executing 

applications requiring extensive computational resources 

on cloud-based High Performance computing systems was 

developed by us. We looked at how much money it would 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 71–78 |  77 

cost to have extra nodes available before failure was 

predicted. We demonstrated that a pre-emptive supply of 

spare nodes is not necessary for our strategy to work. We 

showed the outcomes of our experiments conducted in a 

genuine cloud setting. The experimental findings 

demonstrate that the suggested proactive PFT approach to 

HPC systems in the cloud may dramatically increase the 

execution time of computation-intensive applications, 

resulting in a reduction of the dollar cost for operating 

them by as much as 30%. Our FTDaemon can also cut in 

half the time it takes for computation-intensive programs 

to do checkpointing. In the event of the breakdown of one 

or more computing nodes, our method may assist minimize 

energy usage by decreasing the clock execution time of 

computationally expensive HPC programs. 
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