

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 145–156 | 150

Nature-Inspired Optimization Based Multithread Scheduling For

Program Segments

1Yogesh Sharma 2Ajeet Kumar Vishwakarma, 3Suneetha K, 4Ashendra Kumar Saxena

Submitted:18/04/2023 Revised:11/06/2023 Accepted:22/06/2023

Abstract: The utilization of the processors, responsiveness, resource sharing, and efficient thread usage are the only benefits of

multicore processors that allow multithreading techniques. Consequently, programming languages must allow multithreading

programming to have these benefits. Since most ancient program codes were created sequentially, older software cannot work with this

method. This was a difficult anytime multithreading code was being converted from old sequential procedures. There is a need for

further optimization despite the availability of multiple multithreading algorithms due to discrepancies in their overhead, efficiency, and

speedup. This demonstrates the efficacy of the optimization performed by a lightning search optimization over a wide range of problems.

To develop multithreaded code while keeping a sequential one in mind, this research presents a linear simplex-elite integrated lightning

search optimization (LS-EILSO) for multithreading scheduling. The number of stages of speedup execution time, efficiency, and cost of

the LS-EILSO approach have all been evaluated. The most significant speed achieved by LS-EILSO with 32 threads is 11.98, while the

average error rate between experimental and analytical cost numbers is 14.56 percent, as shown by experimental data. Additionally, it

has been demonstrated that LS-EILSO can support more threads and achieve higher speedup when compared to intermediate

representation based on LSO. As an illustration, the results reveal that when employing 32 threads both ways, LS-EILSO achieves a

speedup of 11.71, about three times faster than the 3.77 speedups obtained by the current and planned.

Keywords: Multithread scheduling, program segments, speedup multicore processors, linear simplex-elite integrated lightning search

optimization (LS-EILSO)

1. Introduction

In current society, Multithreaded programs are a

significant focus of automated verification and bug

detection techniques due to the prevalence of concurrency

errors like deadlocks and data races (atomicity violations

in general) that can arise from subtle interactions between

threads not anticipated by the developers. Methods that

exhaustively explore the space of all possible thread

interleaving at runtime are best suited for accurately

detecting potential concurrency issues. The state space

explosion prevents detailed systematic verification from

applying to large real-world multithreaded software

systems, even though numerous approaches and tools in

this area currently exist. The large number of thread

interleaving that must be examined, even for relatively

modest multithreaded programs, is the primary cause of

poor scalability. Modern approaches and tools partially

tackle this problem by employing various algorithmic

enhancements, optimizations, and heuristics, such as

partial order reduction variants, modular thread

verification, iterative context-bounded verification, and

symbolic predictive analysis based on dynamic event

recording. However, validating large and complex

software systems is still challenging [1]. Predictability is a

crucial feature of modern real-time embedded systems.

The complexity of today's electronics continues to rise.

Due to intense rivalry, most suppliers now provide

hardware capable of supporting cutting-edge features.

However, the complexity of electronic embedded systems'

architectures can undermine their predictability, and

engineers must invest countless hours into the design

process to ensure that the final product is reliable.

Researchers worldwide have put in a lot of time and

energy over the past decade trying to design architectures

that guarantee timed repeatability. Real-time systems have

various uses, all requiring complete predictability [2]. Due

to the exponential number of thread interleaving,

multithreaded program analysis is infamously tricky.

Multithreaded programming may be flawed owing to

memory mistakes and assertion violations not caused by

race circumstances, even though race detectors can help

developers uncover and repair such flaws before the code

1Professor, School of Engineering & Technology, Jaipur National

University, Jaipur, india, Email Id-

yogeshchandra.sharma@jnujaipur.ac.in

2Assistant Professor, School of Engineering and Computer, Dev Bhoomi

Uttarakhand University, Uttarakhand, India, Email Id:

socse.ajeet@dbuu.ac.in

3Professor, Department of Computer Science and IT, Jain(Deemed-to-

be University), Bangalore-27, India, Email Id:

k.suneetha@jainuniversity.ac.in

4Professor, College of Computing Science and Information Technology,

Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India,

Email id: ashendrasaxena@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 151

is deployed.

Moreover, programmers may need more evidence before

being convinced of the dangers of race condition warnings.

The stability and security of multithreaded software have

been the subject of recent attempts to close this gap. By

studying dependencies in the code's state space, these

methods infer schedules that identify bugs in multithreaded

programs. It believes a generic property-directed technique

is required for the analysis of multithreaded programs.

Memory safety and other custom-defined guarantees are

among the qualities of interest. Analysis should correctly

identify property-relevant data-flow dependencies so that

the vast state space of scheduling scenarios may be

searched efficiently [3]. We consequently presented the

LS-EILSO-based multithread scheduling for program

segments.

2. Related Work

The research [4] presented PyOMP, a solution that makes

Python compatible with OpenMP. Python code written

using OpenMP by programmers is generated by Numba,

compiles to LLVM, and runs with performance

comparable to C code written with OpenMP. The research

[5] offered an original pairwise-based algorithm for

incremental verification of multithreaded programs, whose

central notion is a systematic investigation of all potential

thread interleavings only for specific relevant pairs of

threads. An architecture template for autonomous

accelerator development for graph analytics and irregular

applications is presented in this study [6]. The research [7]

provided deals with the issue of synchronizing internal

program threads with processes that are operating on

remote machines. Using a queue-based method for thread

synchronization with weaker operation semantics is

suggested. Study [8] proposed a plan for accelerating the

discovery of variables shared by several threads and,

consequently, the detection of concurrency issues. This

method makes use of a static scheduling scheme. The

research [9] presented an effective event-based problem-

scheduling plan and a new multithreading in-order pipeline

microarchitecture design for RISC-V. A study [10]

demonstrated that the latter technique needs deterministic

scheduler configurations dynamically adjusted to the

current application load during runtime to achieve

meaningful performance benefits. According to the

research [11] is a straightforward technique for quickly

implementing simultaneous multithreading (SMT) in

complex, prioritized real-time systems. An earliest-

deadline-first (EDF) scheduler that uses SMT is created by

combining integer linear programming and heuristic bin-

packing. Developers worry about multithreaded apps'

inconsistent latency.

Code errors, poor database architecture, thread imbalances,

resource congestion, and system saturation can create

performance issues. The initial problem in complicated

systems like the Chromium browser, our focus in this

study [12], is collecting precise unified information from

multiple layers. The research [13] discussed planning a

multi-skilled workforce to build a robust maintenance

service network for high-value assets. By maximizing the

capacity of the repair shop staff and achieving workforce

heterogeneity through cross-training, they increase the

effectiveness of the maintenance network. Study [14]

presented an integrated thread- and data-mapping

framework for NoC-based Scratchpad Memories (SPMs)

many-cores when running multithreaded multi-phase

applications. The research [15] offered a unique

multithreaded implementation of the D-bar approach that

interfaces C code that uses the threads package with a

front-end MATLAB/Octave program. A study [16] offered

a cybernetic control technology that may be used for

sophisticated software systems. According to this method,

cybernetic control objects control the software systems,

and specialized meta-programming platforms create the

class libraries specifying the many sorts of these cybernetic

control objects.

The remaining sections of this research are as follows: Part

2 contains the related works; the proposed methodology is

introduced in Part 3; the result and discussion of the study

are in Part 4; the conclusion is in Part 5.

3. Methodology

Even though standard LSA converges quickly, it has

limitations in other areas, including solution accuracy, the

ability to address multimodal optimization issues, and

avoiding premature convergence. To compensate for LS

drawbacks, we augment it with two additional optimization

strategies: the EILSO.

The LSO takes its name and inspiration from the

illuminating natural occurrence of lightning, whose

discharges have both probabilistic and sinuous qualities

during a rainstorm. This optimization approach builds on

the concept of step leader propagation, which is itself a

generalization of the idea of projectiles. The optimization

particle stands in for the current population and is like the

projectile in a war game. The energy at the current step's

leading edge is the LSO solution. Lead shot, space shot,

and transition shot are the three types of projectiles used in

LSO. The projectiles in transition generate a population of

potential solution leaders in the first stage, the projectiles

in space undertake exploratory missions to unseat the

current leader, and the projectiles in the lead search for and

exploit the best solution.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 152

A. Transition Projectile

The transition projectile 𝑂𝑇 = 𝑂1
𝑇 , 𝑂2

𝑇 … . , 𝑂𝑚
𝑇 is launched

in a direction chosen at random from the thunder cell

during the initial stages of the creation of a stepped leader.

As a result, we can treat it as if it were a number picked at

random from a uniform distribution:

𝑒(𝑤𝑆) = {
1

𝑎−𝑏
𝑓𝑜𝑟 𝑎 ≤ 𝑤𝑆 ≤ 𝑎

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,
 (1)

The solution space is bounded by a minimum of a

maximum, where 𝑤𝑆 is a random value that may produce a

solution. It can be shown that 𝐿𝑆 = 𝑙𝑠1, 𝑙𝑠2, … . . , 𝑙𝑠𝑚 for a

population with 𝑚 stepped leaders; the solution dimension

necessitates 𝑚 random projectiles.

B. Space missile

It is possible to describe the step + 1 location of the space

projectile 𝑂𝑇 = 𝑂1
𝑇 , 𝑂2

𝑇 … . , 𝑂𝑚
𝑇 based on a random draw

from a parametric proportional distribution.

 𝑒(𝑤𝑡) = {

1

𝜇
𝑒−𝑤𝑡/𝜇 𝑓𝑜𝑟 𝑤𝑡 > 0

0𝑓𝑜𝑟 𝑤𝑡 > 0
 (2)

The resulting expression for 𝑂𝑗
𝑇 position and angle at step

+ 1 is the distance between the lead projectile 𝑂𝑇 can be

calculated using the formula.

𝑂𝑗_𝑛𝑒𝑤
𝑇 = 𝑂𝑗

𝑇 ± exp 𝑟𝑎𝑛𝑑(𝜇𝑗) (3)

At step + 1, 𝜇𝑗 , the projectile's kinetic energy will be

adjusted to become the new step leader's kinetic energy if

the projectile's 𝑂𝑗_𝑛𝑒𝑤
𝑇 is greater than 𝑂𝑗

𝑇. Until the next

stage, 𝑒𝑥𝑝ansion, the modifications will not take effect.

C. Leading Missile

The descent of the lead projectile, PL, can be represented

by a normal distribution random number with the

following form:

𝑒(𝑤𝐾) =
1

𝜎√2𝜋
𝑓

−
(𝑤𝐾−𝜇)

2

2𝜎2 (4)

The shape parameter (𝜇𝐾) determines how far the

randomly generated lead missile can travel before it returns

to its original place. The scale parameter (𝜎𝐾) gives this

missile a degree of exploitability. The value of the scale

parameter 𝐾 decreases exponentially with increasing

distance from Earth or approaching the best solution. So,

we can write down the expression for 𝑤𝐾 in step +1 stage

as:

𝑂𝑛𝑒𝑤
𝐾 = 𝑂𝐾 + 𝑛𝑜𝑟𝑚𝑟𝑎𝑛𝑑(𝜇𝐾 , 𝜎𝐾) (5)

𝑁𝑜𝑟𝑚𝑎𝑛𝑑 is a random number with the same chance of

occurrence as any other number selected from the normal

distribution. In cases where 𝜇𝐾 is greater than 𝜎𝐾 is

likewise changed at step + 1 to 𝑂𝐾 new. Any changes

won't take effect until the subsequent phase.

D. Creating a technique

Forking, or the appearance of two parallel and symmetrical

branches, is a crucial feature of a stepped leader. The

proposed method incorporates two different forms of

creation. Initially, as shown in the following diagram,

symmetrical channels are created when the projectile's

nuclei hit with an inverse number.

 𝑂𝑗̅ = 𝑏 + 𝑎 − 𝑂𝑗 (6)

Here 𝑏 and 𝑎 are the limits of the system 𝑂𝑗̅and 𝑂𝑗the

projectiles in issue and their opposites, respectively. The

forking leader chooses 𝑂𝑗̅or 𝑂𝑗 with a higher fitness value

to ensure the population's continued existence. In the

second form of forking, the most failed leader's energy is

redistributed among many propagation attempts, creating a

channel at the leader's successful step tip. The burden of

leading the unsuccessful pack can be distributed by

establishing a maximum allowed number of attempts as

channel time.

E. Linear Simplex

When speed and accuracy matter most in local search, a

straightforward approach has several advantages. To find

the local minimum of a function, Nelder and Mead suggest

a simple line search strategy that doesn't use derivatives.

We select the 𝑂 worst-performing step leaders and apply

LS to optimize their locations. This enhances the

algorithm's proximity to optimality, exploitability, and

speed at reaching optimality. The LS methods used in this

analysis are outlined below.

Step 1: Assuming that all of the step leaders have been

explored, determine the best (𝑤ℎ) point, the worst (𝑤𝑎)

point, and the K-worst 𝑤𝑥 point using the values of the

objective function.

Step 2: Find the midpoint between the ideal solution (𝑤ℎ)

and the worst-case scenario (𝑤).

𝑤̅ =
𝑤ℎ+𝑤𝑎

2
 (7)

Step 3: The point 𝑤𝑞 is reached by reflecting 𝑤𝑥 via the

center 𝑤̅. Now would be an excellent time to compute the

value of the objective function.

𝑤𝑞 = 𝑤̅ + 𝛼(𝑤̅ − 𝑤𝑥) (8)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 153

The coefficient of reflection is 1, thus.

Step 4: Perform expansion to produce a new point 𝑤𝑥 and

if 𝑒(𝑤𝑞) > 𝑒(𝑤ℎ); otherwise, proceed to Step 5. Replace

𝑤𝑥 with 𝑤𝑥 if 𝑒(𝑤𝑥) < 𝑒(𝑤ℎ); otherwise, replace 𝑤𝑞 with

𝑤ℎ.

 𝑤𝑥 = 𝑤̅ + 𝛾(𝑤𝑞 − 𝑤̅) (9)

The expansion coefficient is defined as 1.5.

Step 5: if reflection fails (𝑒(𝑤𝑞) > 𝑒(𝑤𝑥)), if point xw can

be shrunk to form point xc, we do so; otherwise, we

proceed to step 6. If and only if 𝑒(𝑤𝑑) = 𝑒(𝑤𝑥), replace.

𝑤𝑑 = 𝑤̅ + 𝛽(𝑤𝑥 − 𝑤̅) (10)

 The contracting ratio is = 0.5.

Step 6: The point 𝑤𝑥 is reduced in size to produce a new

point 𝑤𝑡 if 𝑒(𝑤𝑞) < 𝑒(𝑤ℎ)< 𝑒(𝑤𝑥). The contraction

coefficient is the same as the shrinkage coefficient.

𝑤𝑡 = 𝑤̅ + 𝛽(𝑤̅ − 𝑤𝑥) (11)

At each iteration, the LS helps the current worst-step

leaders improve their position to a better state than the

ideal one. This improves the algorithm's convergence

accuracy and rate by preventing the population from

exploring suboptimal solutions instead directing it toward

the global optimum.

F. EILSO

While LS enhances the EILSA convergence accuracy,

getting stuck in a local optimum is still relatively simple.

Thus, the EILSO approach was developed to combat this

problem. Tizhoosh publicly set a novel model of machine

intelligence called opposition-based learning (OBL), which

considers both the current and its opposite estimates

simultaneously to arrive at a superior solution. It has been

demonstrated that, compared to a randomly chosen

candidate solution, an inverse candidate solution is more

likely to be closer to the global optimal solution. EILSO

employs the opposition-based population generation found

in OBL to create elite step leaders to increase the genetic

variation among LSA populations. 𝑊𝑖, 𝑊𝑗,2,..., 𝑊𝑗,𝑖 = (𝑊𝑗,1,

𝑊𝑗,2,..., 𝑊𝑗,𝑖) is the fitness value for the top-tier tempo

setter/step leader. 𝑊𝑗 = (𝑊𝑗,1, 𝑊𝑗,2,..., 𝑊𝑗, i, C) is an

alternate step-leader solution. The same answer is obtained

by writing 𝑤𝑗,𝑖
′ = (𝑊𝑓,1, 𝑊𝑓,2,..., 𝑊𝑓, 𝑖, 𝐶) as 𝑤𝑗,𝑖

′ =

𝑤𝑗,1
′ ,..., 𝑤𝑗,2

′ = (𝑤𝑗,1
′ , 𝑤𝑗,2

′ ,..., 𝑊𝑗, 𝐶).

𝑤𝑗,𝑖
′ = 𝑙 ∙ (𝐾𝑎𝑖 + 𝑉𝑎𝑖) − 𝑊𝑓,𝑖 , 𝑗 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝐶

(12)

 The search bound is (𝐾𝑎𝑖 , 𝑉𝑎𝑖) if the population size is n,

𝑤 has 𝐶 dimensions, and 𝑙 is between 0 and 1. The

following formula is applied to the data to determine if the

elite, based on resistance step leader 𝑤𝑗,𝑖
′ is beyond the

search region:

𝑤𝑗,𝑖
′ = 𝑟𝑎𝑛𝑑(𝐾𝑎𝑖 , 𝑉𝑎𝑖), 𝑖𝑓 𝑤𝑗,𝑖

′ < 𝐾𝑎𝑖 𝑜𝑟 𝑤𝑗,𝑖
′ > 𝑉𝑎𝑖

(13)

 Following these guidelines, the following actions

constitute EILSO-OBL.

Step 1: First, we use (12) to generate the most suited step

leader Xe possible. This will be the foundation for our n-

person elite solid opposition.

Step 2: When the leading resistance organization's step

leader vanishes outside the search radius, we apply (13) as

the heuristic.

Step 3: 2n step leaders compete for entry into the next

generation, and only those with the highest fitness scores

will survive.

Fig.1.Flowchart of the LS-EILSO

The algorithm's exploitation and exploration are optimized

by including the LS and EILSO techniques, as

demonstrated in Fig.1 flowchart of the EILSO-LS

flowchart. Taking into account the maximum number of

iterations, population size (m), problem dimension (C), and

objective function cost (Cof), the findings above indicate

that LSA-ELSO has a space complexity of O(2m C) and a

time complexity of O.

4. Result and Discussion

In this section, the proposed method is efficacy to

compared that of previously used approaches such as

reinforced manta rayforaging (RMRFO), extreme gradient

boost (XG-boost), and grey-box fuzzing teqchniques (G-

BFT). Speed-up, efficiency, cost and execution time were

important metrics studied using proposed and current

approaches.

We detail the experimental setup, discussing the hardware,

software, and tools utilized to perform LS-EILSO

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 154

approaches and the benchmark datasets employed

throughout the study [17]. The following infrastructure is

used in this work as an experimental platform a multicore

system consisting of "Intel(R) Core(TM) i7-8550U 1.80

GHz CPU processors, 8 CPUs of cache memory per

processor, and 16 GB RAM". The OS that was used was

“Ubuntu 17.10 64-bit”. The C# programming language

used in Microsoft's Visual Studio 2017 IDE was also used

to implement the LS-EILSO approaches. We also applied

our findings to the “dense matrix-vector product

DenseAMUX” benchmark. To show the speedup made

feasible by the LS-EILSO approach, we also used the code

from Fig. 2.

Fig.2. Modula-like programming flow-graph

This vector is valuable in many applications. A sequential

program can take a long time to solve a problem with a

large input size. Matrix-vector products take time to

execute sequentially. Since the execution time must be

smaller than O, a multithreading approach is needed to

solve the problem, mainly if Q is a significant number. The

following studies account for the known influences on

speedup and efficiencies, such as matrix size, thread size,

and thread count. Matrix sizes are employed, with

5000*5000 being used and labeled M5000; these datasets

originated from the “DenseAMUX” benchmark.

Fig.3.Comparison of the speed

up and the relative rates of speedup is shown in Fig. 3.

However, it is well-known that the number of concurrent

threads and their performance are affected by the thread

size. The data shows speedup values are low when using

smaller sizes and high when using larger ones. The

experiments are run with 1, 2, 4, 8, 16, and 32 threads,

with each thread having a size of L, equal to 80,000, as

defined in three existing methods (RMRFO, XG Boost, G-

BFT) and suggested (LS-ELSO). Each thread will receive

a maximum of 80,000 unscheduled nodes from SM on

each cycle.

Fig.4. Comparison of execution time

A process's execution time is the amount of time it actively

makes use of computer resources. It's conceivable that

varying amounts of time will be needed to finish different

tasks from the same assignment. The time it takes for a

program or a piece of code to execute from when it is

started until it is finished is known as its execution time,

runtime, or elapsed time. It is an important parameter to

measure the efficacy and effectiveness of multithreaded

programming methods. Fig.4 shows the comparison of

execution time. As a result, the proposed work LS-EILSO

has the lowest execution time than the existing works

RMRFO, XG Boost, and G-BFT.

Fig.5.Comparison of the efficiency

Fig.5 depicts the comparison of the efficiency. The

efficiency of a multithread scheduling method is measured

by how well it makes use of available system resources

and how well it meets performance goals. The needs and

features of the application should inform the decision of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 155

the scheduling algorithm to use. A scheduling strategy's

effectiveness is measured by how well it enhances the

running application in terms of resource consumption,

responsiveness, and overall system performance. Thus, LS-

EILSO has the fastest decryption time of RMRFO, XG-

Boost, and G-BFT.

Fig.6.Comparison of the experimental and analytic cost

Fig. 6 depicts the comparison of the experimental and

analytic costs. It is usual to use both practical and

analytical methods to determine how much a specific

multithread scheduling algorithm costs and how well it

performs. The cost of multithread scheduling algorithms

can be better understood by academics and developers

when experimental and analytic studies are combined.

Validation in the actual world is provided via exploratory

analysis, while insights and predictions can be made by

analytical research in a laboratory setting. Both approaches

have advantages and disadvantages, and they can work

together to provide a more thorough analysis of

multithread planning techniques. The suggested

experimental work has the highest cost of analytics.

5. Conclusion

In This research introduced the LS-EILSO technique, a

novel multithreaded scheduling approach for software

components. The lightning search optimization known as

LS-EILSO distributes the parallel versions of sequential

programs over several threads. The LS-EILSO approach

consists of two steps. To classify the nodes and identify

their counterparts, the suggested method is initially used by

LS-EILSO to analyze the sequential program's flowchart.

The second phase uses the execution paths created by LS-

EILSO. Second, a chemical reaction optimizer is used to

assign threads to their execution routes progressively. As a

final deliverable, LS-EILSO generates an incremental

thread schedule that has been optimized. The outcomes

were evaluated based on their performance against industry

norms and guidelines. Many different criteria, both

experimental and analytical, were used to assess the

efficacy of the LS-EILSO method, and these evaluations

were carried out on many different data sets. LS-EILSO

was found to be successful 98.5% of the time and to be

carried out in about 15 seconds. The testing results reveal

that the best speedup occurs when LS-EILSO uses 32

threads on matrix M5000. Additionally, the LS-EILSO

approach's experimental cost increases by a factor of fE

where 1.43 B fEB 3.53. A growing analytical cost of fA

where 1.45 B fAB 3.47 has also been seen for the LS-

EILSO method. When all the numbers were added up, the

results showed that the experimental costs were, on

average, 14.56% higher than the analytical costs.

References

[1] Parízek P, Kliber F. Incremental Verification of

Multithreaded Programs by Checking Interleavings

for Pairs of Threads. Technical report; 2022 Jul 25.

[2] Antolak E, Pułka A. Energy-efficient task scheduling

in design of multithread time predictable real-time

systems. IEEE Access. 2021 Aug 30;9:121111-27.

[3] Yavuz T. SIFT: A Tool for Property Directed

Symbolic Execution of Multithreaded Software.

In2022 IEEE Conference on Software Testing,

Verification and Validation (ICST) 2022 Apr 4 (pp.

433-443). IEEE.

[4] Soueidi C, El-Hokayem A, Falcone Y. Opportunistic

monitoring of multithreaded programs. InFASE 2023

Apr 20 (pp. 173-194).

[5] Parízek P, Kliber F. Checking Just Pairs of Threads

for Efficient and Scalable Incremental Verification of

Multithreaded Programs. ACM SIGSOFT Software

Engineering Notes. 2023 Jan 17;48(1):27-31.

[6] Minutoli M, Castellana VG, Saporetti N, Devecchi S,

Lattuada M, Fezzardi P, Tumeo A, Ferrandi F.

Svelto: High-level synthesis of multi-threaded

accelerators for graph analytics. IEEE Transactions

on Computers. 2021 Feb 8;71(3):520-33.

[7] Thanagaraju, V. ., & Nagarajan, K. K. . (2023). A

Detailed Analysis of Air Pollution Monitoring

System and Prediction Using Machine Learning

Methods. International Journal on Recent and

Innovation Trends in Computing and

Communication, 11(2s), 51–58.

https://doi.org/10.17762/ijritcc.v11i2s.6028

[8] Tabakov AV, Paznikov AA. Using relaxed

concurrent data structures for contention

minimization in multithreaded MPI programs.

InJournal of Physics: Conference Series 2019 Dec 1

(Vol. 1399, No. 3, p. 033037). IOP Publishing.

[9] Jahić J, Kumar V, Jung M, Wirrer G, Wehn N, Kuhn

T. Rapid identification of shared memory in

multithreaded embedded systems with static

scheduling. InProceedings of the 48th International

Conference on Parallel Processing: Workshops 2019

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 150–156 | 156

Aug 5 (pp. 1-8).

[10] Eni Y, Greenberg S, Ben-Shimol Y. Efficient Hint-

Based Event (EHE) Issue Scheduling for Hardware

Multithreaded RISC-V Pipeline. IEEE Transactions

on Circuits and Systems I: Regular Papers. 2021 Oct

12;69(2):735-45.

[11] Habiger G, Hauck FJ, Reiser HP, Köstler J. Self-

optimising application-agnostic multithreading for

replicated state machines. In2020 International

Symposium on Reliable Distributed Systems (SRDS)

2020 Sep 21 (pp. 165-174). IEEE.

[12] Osborne SH, Ahmed S, Nandi S, Anderson JH.

Exploiting simultaneous multithreading in priority-

driven hard real-time systems. In2020 IEEE 26th

International Conference on Embedded and Real-

Time Computing Systems and Applications

(RTCSA) 2020 Aug 19 (pp. 1-10). IEEE.

[13] Rezazadeh M, Ezzati-Jivan N, Azhari SV, Dagenais

MR. Performance evaluation of complex multi-thread

applications through execution path analysis.

Performance Evaluation. 2022 Jun 1;155:102289.

[14] Turan HH, Kosanoglu F, Atmis M. A multi-skilled

workforce optimisation in maintenance logistics

networks by multi-thread simulated annealing

algorithms. International Journal of Production

Research. 2021 May 3;59(9):2624-46.

[15] Venkataramani V, Pathania A, Mitra T. Unified

thread-and data-mapping for multi-threaded multi-

phase applications on SPM many-cores. In2020

Design, Automation & Test in Europe Conference &

Exhibition (DATE) 2020 Mar 9 (pp. 1496-1501).

IEEE.

[16] Alsaker M, Mueller JL, Stahel A. A multithreaded

real-time solution for 2D EIT reconstruction with the

D-bar algorithm. Journal of Computational Science.

2023 Mar 1;67:101967.

[17] Dhablia, A. (2021). Integrated Sentimental Analysis

with Machine Learning Model to Evaluate the

Review of Viewers. Machine Learning Applications

in Engineering Education and Management, 1(2), 07–

12. Retrieved from

http://yashikajournals.com/index.php/mlaeem/article/

view/12

[18] Bozkurt EM. The usage of cybernetic in complex

software systems and its application to the

deterministic multithreading. Concurrency and

Computation: Practice and Experience. 2022 Dec

25;34(28):e7375.

[19] Mahafzah BA, Jabri R, Murad O. Multithreaded

scheduling for program segments based on chemical

reaction optimizer. Soft Computing. 2021

Feb;25:2741-66.

[20] Malave SH, Shinde SK. Reinforced Manta Ray

Foraging Optimiser for Determining the Optimal

Number of Threads in Multithreaded Applications.

International Journal of Intelligent Systems and

Applications in Engineering. 2022 Dec 27;10(3s):17-

26.

[21] Chen H, Guo S, Xue Y, Sui Y, Zhang C, Li Y, Wang

H, Liu Y. MUZZ: Thread-aware grey-box fuzzing for

effective bug hunting in multithreaded programs.

arXiv preprint arXiv:2007.15943. 2020 Jul 31.

[22] Sun J, Shan L, Shu X. XGBoost Dynamic Detection

for Data Race in Multithreaded Programs.

InAdvances in Natural Computation, Fuzzy Systems

and Knowledge Discovery: Proceedings of the

ICNC-FSKD 2021 17 2022 (pp. 1251-1258).

Springer International Publishing.

