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Abstract: Deep packet inspection (DPI) has drawn a lot of interest in software-defined networking (SDN) because sophisticated assaults 

might smuggle harmful payloads into packets. Third-party proprietary pattern-based or port-based DPI solutions may struggle to handle a 

large amount of data flow effectively. In order to provide adaptive and effective packet assessment, a unique stacked autoencoder based 

Convolutional Neural Network (SA-CNN) approach is described in this research. The first step in SA-CNN's early detection prescription 

is to scan each new flow's IP address through SA-CNN. Following that, SA-CNN enables profound packet assessment at the packet-level 

granularity: (i) for unencrypted packets, stacked autoencoder extract the features of reachable payloads, together with tri-gram incidence 

based on Term Frequency and Inverted Document Frequency (TF-IDF) and linguistic properties. These qualities are combined into a 

sparse matrix representation rather than matching with particular pattern combinations in order to train a CNN classifier. The SA-CNN 

presents an adaptive packet sampling window that utilizes linear prediction to balance the degree of detection precision as well as the 

bottleneck of the SDN controller; and (ii) for encrypted packets, the SA-CNN extracts salient features from packets and then trains a 

CNN classified with a another methods, slightly than decrypting the encrypted traffic to compromise user solitude. On the Mininet 

platform and Ryu SDN controller, an SA-CNN prototype is put into operation. Through experiments, the presentation and overhead of 

the suggested explanation are evaluated with datasets from the actual world. The arithmetical outcomes show that SA-CNN can 

significantly increase detection accuracy while maintaining reasonable overheads. 

Keywords: software-defined networking (SDN), stacked autoencoder based Convolutional Neural Network (SA-CNN), malicious, Term 

Frequency and Inverted Document Frequency (TF-IDF), deep packet inspection (DPI) 

1. Introduction 

In software-defined networking architecture, the network is 

separated into a separate data plane and control plane. The 

SDN controller is an independent component that 

consolidates management of the network. A centralized 

view and level of control over the whole network are 

provided by the SDN controller. SDN enables network 

operators and managers to design and automate network 

behavior. The network can adapt and react quickly to 

changing needs and circumstances because to its 

programmability. By allowing dynamic traffic engineering 

and effective network resource usage, SDN improves 

network dependability. Based on network circumstances, 

the centralized control plane may divert traffic in real-time 

to prevent congestion or failures [1]. It is possible to apply 

the supervised learning algorithm SDM for both 

classification and regression problems. Finding the best 

hyper plane in feature space to optimally separate data 

points from various classes is the goal of SDM. SDM has a 

solid theoretical base and has shown outstanding 

performance in a number of fields. Coordinated 

Management Network administration is more consolidated 

and easier when the control plane is housed in the SDN 

controller. From a single point of management, 

administrators may design network rules, set up network 

components, and keep an eye on the network [2]. Network 

administrators may develop and implement network rules 

and settings using software thanks to SDN's 

programmability. Due to its programmability, network 

administration chores may be automated, which minimizes 

human labor and risk of mistake. Contrarily, conventional 

networks sometimes need for manual setup of individual 

devices, which, in large-scale deployments, may be time-

consuming and error-prone. Through a different SDN 

controller, SDN makes it possible for centralized 

administration. It is simpler to install, administer, and 

monitor network devices and services because to this 

centralization, which offers a uniform view and 

management over the whole network infrastructure. 

Traditional networks often spread administration chores 

among various devices, which increases complexity and 
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raises the possibility of discrepancies [3]. Effective 

network segmentation, which is essential for boosting 

security, is made possible by SDN. SDN may stop lateral 

migration of threats and limit possible security breaches by 

logically isolating distinct areas of the network and 

managing access between them. Sensitive data may be 

isolated through network segmentation, which also helps to 

limit unwanted access and shrink the attack surface. 

Security regulations may be implemented and enforced 

from a single location thanks to SDN's centralized control 

plane. Administrators may design and administer security 

rules at the SDN controller, ensuring uniform policy 

enforcement across the network. This unified method 

streamlines security administration and lowers the 

possibility of incorrect setups or inconsistent rules [4]. 

SDN enables dynamic modifications and adjustments to 

network configurations and behavior. Network managers 

may programmatically define and change network 

behavior. Due to its dynamic nature, network resources 

may be quickly provisioned, reconfigured, and optimized 

in response to shifting circumstances or demands. SDN 

provides better management than conventional networking 

strategies. A single view and centralized administration of 

the network infrastructure are made possible by the 

centralized control plane offered by SDN. Network 

administration activities may be made simpler and less 

difficult by network managers being able to set and enforce 

rules, configure network devices, and monitor network 

performance from a single location [5]. The SDN 

controller is a distinct entity that unifies and decouples the 

control plane services. The whole network infrastructure is 

under the administration and control of the SDN controller. 

It interfaces with switches and other network hardware. 

Network managers may programmatically create and 

change network behavior using the SDN controller. 

Administrators may operate and configure network devices 

dynamically using APIs or programming interfaces, 

offering automation and flexibility. The SDN controller 

has a comprehensive understanding of the whole network. 

It gathers real-time data on device statuses, traffic patterns, 

and network architecture. This comprehensive perspective 

makes network administration, optimization, and 

troubleshooting effective [6]. The administration of 

policies is simplified by SDN. Administrators may design 

and maintain rules centrally using a centralized control 

plane, usually at the SDN controller. Because rules are 

configured centrally rather than on individual network 

devices, there is less complexity and the chance of 

mistakes. Network policies may be dynamically updated 

thanks to SDN. By changing the configuration at the SDN 

controller, policy changes may be put into effect 

immediately. The network devices are then updated with 

these changes, guaranteeing uniform policy enforcement 

throughout the whole network. Rapid adaptability to 

shifting requirements or security demands is made possible 

by this flexibility.  This adaptability allows prompt 

responses to new security risks or evolving business 

requirements [7]. Social networks often include privacy 

options that let users choose who may see their material 

and interact with them. To restrict access to their sensitive 

information, users should be aware of these settings and 

modify them as desired. Social networks have a duty to 

safeguard the information that its users share with them. 

To protect sensitive information, they should put in place 

the proper security measures, including encryption, secure 

authentication methods, and frequent security audits. Many 

social networks enable access to user data by other 

programs. To prevent their sensitive information from 

being used improperly, users should carefully check the 

permissions provided to these programs and understand 

how their data will be used [8]. SDN is architecture that 

enabling network programming and central management. 

In SDN, the control plane, which deals with how network 

devices make decisions, is separated from the data plane, 

which controls how network traffic is sent. SDN does not 

necessarily entail a physical link between all network 

devices, despite the fact that it has several advantages, 

including enhanced flexibility, scalability, and automation. 

Whether a network uses SDN or conventional networking 

techniques, the physical connectivity is still accomplished 

via physical links like Ethernet cables or wireless 

connections [9]. The network flow data, such as packet 

headers or flow statistics, would be the input to the 

autoencoder, and the reconstructed flow data would be the 

output. The autoencoder may learn to encode and 

reconstruct the typical patterns of network traffic by being 

trained on a dataset of typical network flows. The 

autoencoder may be used to encode fresh network flow 

data into the learnt representation after being trained as a 

data representation model. For purposes of further analysis 

or categorization, such as the detection of abnormalities or 

malicious network traffic, this representation may be 

passed into another model or algorithm [10]. The 

characteristics of the malicious traffic are trying to 

identify. To adapt to new assault patterns and maintain the 

model's efficacy over time, regular updates and retraining 

are also necessary. 

2. Related Works 

There are several notable ways in which SDN differs from 

the conventional network, and these differences are what 

have piqued the interest of many. To alter the switch's 

regulations, SDN allows for its programmability. CNN and 

RNN are used to offer a technique for classifying harmful 

network traffic. Tensor Flow, a framework that supports 

graphics processing units (GPUs), is used to construct our 

suggested technique. We tested our methodology with 

three different data sets. The findings show that our 

concept has significant user potential in SDN security and 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 206–214  |  208 

outperforms current methods in terms of detection 

accuracy and stability [11]. SDN is a solution that is 

gaining popularity. To detect unknown network assaults, 

NIDS utilizes anomalous traffic detection. Griffin, a per-

packet anomaly detection system with dynamic neural 

network-based training model updates, is suggested in this 

study. In order to effectively separate aberrant traffic from 

regular traffic, The Griffins is implemented in an SDN 

setting. To modify the training model, the autoencoder are 

efficient depending on the origin indicate square error. 

Unsupervised adjustment means there is no requirement 

for a specialist to categorize complex traffic or regularly 

inform the reproduction [12]. The SDN paradigm is a 

developing design that may be used to create future 

networks and satisfy changing application requirements. A 

finding and protection scheme based on adversaral 

preparation in SDN has been suggested; it utilizes the 

Generative Adversarial Network (GAN) architecture to 

identify DDoS assaults and use adversarial training to 

reduce the system's sensitivity to adversarial attacks. With 

the help of clearly defined modules, the suggested system 

enables permanent traffic monitoring utilizing IP pour 

analysis, allowing the difference finding system to respond 

almost instantly [13]. A SDN in that they keep tabs on all 

network activity. To improve NIDS's resilience against 

adversarial example assaults, we propose using denoising 

autoencoders and a novel approach called reconstruction 

from partial observation (RePO) to identify many forms of 

complex attacks with a low false alarm rate. Their testing 

on a collection of real-world network assaults demonstrates 

that denoising autoencoders may enhance detection of 

malicious traffic [14]. A solution called SDN has emerged 

and been future as a way to improve the internet's 

underlying architecture. Shows how NIDS in an SDN 

controller may utilize machine learning methods to analyze 

network traffic for signs of malicious activity. In this 

example of attack detection, we use three distinct tree-

based machine learning algorithms to show how effective 

each can be: Random Forest, XGBoost and Decision Tree 

is used [15]. 

3.Methodology 

3.1. Early detection 

SA-CNN has a basic early detection system in place before 

starting a thorough payload research, keeping in mind that 

IP tackle filter is still required, particularly for which 

partial payload assessment is worthless. F is the 

bidirectional connection between the nodes that the cars 

use to get from one place to another. Packets are the 

building blocks of a flow. Every packet has a five-tuple 

associated with it, which includes the protocol type, source 

IP address, purpose IP address, source port, and these four 

additional information. 

The procedure of processing packets in SDN is shown in 

fig 1. 

 

 

Fig.1. SDN packet workflow 

The datapath module in the kernel space of the examines 

all external network packets and extracts key variables to 

validate against flow tables. If the datapath module is 

unable to find a matching entry, it will attach the packet to 

trigger upcall, which notifies the OvS user space that a 

message has arrived. If a packet arrives without a matching 

flow entry in user space, it will always trigger a Packet in 

message to be forwarded to the organizer. Packet-in 

messages are unnecessary if and only if subsequent packets 

match beside flow tables maintained in the kernel. In this 

article, the SDN controller has a blacklist of IP address 

accessible for monitoring the packet's source IP address for 

early detection. In either case, the SDN controller will 

implement the OvS's corresponding flow entries. Deep 

packet inspection is only necessary after a successful 

search of the flow table using the prior packet. 

3.2. Unencrypted packets inspection 

Deep packet inspection is able to access the payloads of 

the packets in unencrypted transmission. However, the 

system incurs significant costs in order to analyze all of the 

payloads. At order to solve the problem of resources and 

performance at packet-level granularity, this work 

develops linear prediction-based adaptive packet-driven 

sampling technique. 

3.2.1 A packet sampling method based on LP 

In order to do deep packet inspection, a packet sample 

window collects a series of packets in a row. The amount 

of packets that were sampled determines the packet 

window size. The fundamental idea behind LP-based 

adaptive packet sampling is to try to predict the packet 

window range of the subsequent example in order to 

collect successive 𝑢𝑗packets commencing each m packets 

in a flow, wherever 𝑚 ≫ 𝑤, i R. even that is resolute 

empirically. A linear mixture of the prior n sample is used 

to represent the expected sampled packets 𝛿̂𝑚+1 in the (m 

+ 1)th model: 

𝛿̂𝑚+1 = 𝛿𝑚 +
∆𝑢

𝑚−1
∑ (

𝛿𝑗+1−𝛿𝑗

𝑢𝑗+1−𝑢𝑗
) , 𝑛 ≥ 2𝑚−1

𝑗−1   (1) 
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Where δj is the true numeral of malicious packets in the jth 

sample, and u is the existing fluctuation of the packet 

window dimension among um+1 along with um, δm+1 and  

∂m, computed as Equation (2-4): 

∆𝑢 = 𝑢𝑚+1 − 𝑢𝑚     (2) 

𝛿̂𝑚+1−𝛿𝑚

∆𝑢′ =
𝛿𝑚+1−𝜕𝑚

∆𝑢
    

 (3) 

𝑄(𝛿̂𝑚+1) =
𝛿̂𝑚+1−𝛿𝑚

𝛿𝑚+1−𝛿𝑚
    (4) 

In the following example, Eq. (5 and 6) depicts packet 

window size variation. 

∆𝑢′ = {
5                

−
1

2
× ∆𝑢       

𝑖𝑓 𝑢𝑚+1 = 𝑢𝑚

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 (5) 

∆𝑢′ = −
𝛿̂𝑚|+1−𝛿𝑚+1

|𝛿̂𝑚+1−𝛿𝑚+1|
|𝑄 (𝛿̂𝑚+1). ∆𝑢|  

 (6) 

A requirement is met by the range of values of the packet 

window that is not permitted to be exceeded. The 

difference among the expected value and the actual value 

enables the complex proprietor to pro-actively provide 

adaptive packet sampling by flexibly and promptly 

adjusting the packet window size. 

3.2.2. Extracting features 

The payloads are the parts of a packet that don't include 

packet headers and contain the data itself. Sometimes the 

payloads of the packets are character-based text strings. A 

payload is a string of letters made up of both alphabets and 

numerals. The machine learning method, however, is 

unable to interpret the payloads in the thread format 

directly. In order to gather data characteristics for further 

modeling, word embedding which converts an expression 

to a vector using a dictionary is used to overcome this 

problem.  

In order to represent how crucial a given word is to a 

payload, the TF-IDF, which may be stated as follows, 

attempts to assign such frequent terms with lesser weights 

while increasing the relevance of individuals words 

important to a certain payload, which may be represented 

as: 

𝑇𝐹 − −𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹     (7) 

Where T F is a payload's word frequency in terms of how 

often it appears. Larger IDF is often the outcome of a term 

that occurs seldom in a text, proving that this word is 

considerably better for payload categorization. Instead than 

handling encoded payload data directly, TF-IDF tries to 

extract numerical characteristics from payload strings, 

particularly feature vectors. Trigram is used to segment 

payloads and determine the TF-IDF value. A collection of 

all quality sequence having a distance end to end of three 

constitutes a trigram of the payload. 

a. Linguistic Features 

Using the digit count, harmful payloads may be identified 

and avoided. The quantity of digits is definite by the 

number of digit in the payload. The lengths of the recurring 

digit sequences are calculated by adding the intervals 

between each pair of consecutive digits. 

Table 1. Linguistic traits as examples 

Characteristics A B 

consecutive digits 0 8 

Consonant count 16 18 

Vowel count 7 13 

Digit count 0 8 

Repeated letters 5 13 

 

Five of our expanded linguistic traits are shown in Table 1. 

Taking two examples, A=''/starnet/addons/slideshow_full.- 

php? album_name=289050446'' and 

B=''/tests/numbertotexttest.php,'' somewhere A has 9 

successive digits and B has 0, the malicious payload is 

more likely to cause harm. Similar to counting the number 

of consecutive numbers, we may count the number of 

consecutive consonants. The amount of duplicate letters in 

a payload is equivalent to the entire amount of era the same 

letter appears in the data. This property is calculated to be 

12 in case A and 4 in case B, with h, u, d, o, l, p, m, s, t, a, 

n, e, and s, p, t, e, respectively, serving as the repeating 

letters. Additionally, in cases A and B, the number of 

vowels in a payload is determined to be 12 and 6, 

respectively. 

4. Evaluation 

This paper describes a novel technique known as stacked 

autoencoder based Convolutional Neural Network (SA-

CNN), which aims to offer adaptive and well-organized 

pack inspection. The first step in the untimely discovery 

prescription that SA-CNN provides is to scan the IP 

address of each new flow via SA-CNN.  

4.1. Dataset 

Table 2 lists the three datasets that were used in this study, 

two of which were unencrypted and one of which was. 

During the offline training phase, we selected labeled 

datasets from Github that included over forty thousand 

benevolent payloads and over five thousand malicious 

payloads in arrange to produce a trustworthy machine 

learning model. 
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Table 2. Data description 

Dataset Samples  Class Total 

HTTP 

CSTC 

2010 

Normal 4600 Uncrypted 70000 

 Anomalous 25000   

Github 

paylods 

Normal 4000 Uncrypted 45000 

 Anomalous 6000   

CTU-

BOTNET 

Normal 

10000 

Encrypted 30000 

 Anomalous 2000   

 

This was done to generate a reliable machine learning 

model without overfitting the dataset. The HTTP Common 

Security Information Collection (CSIC) 2010 is a 

collection of synthetic online requests and the associated 

web risks including SQL buffer overflow, injection, cross-

site scripting, and so on. After the data is cleaned up, we 

choose a sample size for testing consisting of 36,000 

typically delivered parcels and 24,000 outliers. This 

encrypted dataset includes both regular network traffic and 

botnet activity on a college campus's computer system. 

After the data was cleaned and prepared, we settled on a 

training set size of 20,000 regular flows and 20,000 botnet 

flows. A total of 1,000 "real world" flows and 1,000 

"botnet-generated" flows were employed for testing. This 

was done to ensure there is no overlap between the two 

datasets used for training and testing. This encrypted 

dataset was collected from a university network and 

includes both typical network traffic and traffic from a 

botnet. After the data was cleaned and prepared, we settled 

on a training set size of 20,000 regular flows and 20,000 

botnet flows. We selected 1,000 natural flows and 

thousand botnet flows as our test sets.  This was done to 

ensure there is no overlap between the two datasets used 

for training and testing. 

4.2 Feature extraction using Autoencoder stacking 

The contribution layer, concealed layer, and production 

layer of an autoencoder, a kind of unsupervised learning 

structure, are all represented in Fig 2. Both an encoder and 

a decoder are required for the training of an autoencoder. 

The term "decoder" is used to describe the process of 

recovering the original data from the encoded form. 

Considering the unlabeled input dataset {𝑥𝑛}𝑁𝑛=1, 

where𝑥𝑛  ∈ 𝑅𝑚×1,  ℎ𝑛  stands for the concealed encoder 

vector derived from 𝑋𝑛 , while 𝑋̂𝑛 is the decoder vector of 

the production layer. Consequently, the encoding 

procedure is as follow: 

𝑔𝑚 = 𝑒(𝑢1𝑣𝑚
+ 𝑎1)    (8) 

When the encoder's weight matrix 𝑢1𝑣𝑚
, the bias vector 𝑎1, 

and the encoding function 𝑒 are all present. Decoder 

process: 

𝑦̂𝑚 = ℎ(𝑢2𝑔𝑚 + 𝑎2)    (9) 

Whereℎ, 𝑢2, and 𝑎2are the decoding function, weight 

matrix, and bias vector, respectively. 

Reconstruction error is minimized by optimizing 

autoencoder parameter sets: 

∅(Θ) = 𝑎𝑟𝑔 min
𝜃,𝜃′

1

𝑚
∑ 𝑘(𝑣𝑗𝑣̂𝑗)𝑚

𝑗=1    (10) 

Where 𝑘 represents a loss function. 

 

Fig.2. Structure of autoencoder 

 

 

 

Fig.3. Structure of stacked autoencoders 

Fig 3 depicts the architecture of SAEs, which entails layer-

by-layer learning (unsupervised) to stack n autoencoders 

into n hidden layers, followed by supervised fine-tuning. 

Therefore, there are three stages to the SAEs-based 

approach: 

• Train the first autoencoder and get the feature 

vector. 

• The previous layer's feature vector is utilized as 

participation for the following deposit until 

training is complete. 
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• Back propagation algorithm (BP) minimizes the 

cost function and updates the weights with label 

guidance set to accomplish fine alteration once all 

concealed layers are learned. 

 

4.3 Offline training test 

The SA-CNN trains two binary classifiers, one for 

detecting unencrypted packets and the other for identifying 

encrypted packets. 

4.3.1 Performance metrics 

While assessing binary classification methods, 

performance metrics. Given a series of testing packets, the 

negative class designates the benign, while the positive 

class signifies malicious packets. Choose a few common 

categorization metrics to assess the effectiveness given a 

typical confusion matrix. 

a. Calculate these evaluation metrics:  

It's crucial to evaluate a model's performance on both 

training and testing data. The model's better accuracy in 

detecting on testing data suggests that it has learnt to 

generalize and identify malicious traffic in new 

circumstances. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (11) 

The True Positive Rate (TPR), also known as Recall, 

describes the proportion of malicious packets along with 

all harmful packets that have been recovered. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (12) 

The False Positive Rate (FPR) displays the proportion of 

benevolent packets that were mistakenly identified as 

malicious packets out of all the benevolent packets that 

were recovered. 

Precision refers to the percentage of authentically 

malicious packets between all the harmful packets 

provided by the classified, and it indicates the numeral of 

authentically malicious packets included in the classed 

positive consequences. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (13) 

An ideal binary classifier is expected to have high 

Precision and Recall values, but in practice, they might be 

incongruent. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃+𝑅
    

 (14) 

Adopt the harmonic average of the two numbers to be the 

F1 score. F1 -score is a good way to show how well our 

classifier performs while taking into accounts both 

Precision and Recall. 

4.3.2 Traffic training without encryption 

The classifier for logistic deterioration is trained using 5-

fold cross support. The dataset has an unbalanced 

distribution of data; this study uses the stratify approach 

throughout the validation phase. Additionally, logistic 

regression is contrasted with other widely used classifiers 

use a Receiver Operating Characteristic (ROC) curve, with 

false positive rate (FPR) on the horizontal axis and true 

positive rate (TPR) on the vertical axis, to evaluate the 

efficacy of binary classifiers. The ROC curve for six 

classifiers is shown in Fig 4.  

 

Fig.4. Classifier receiver operating characteristic curves 

‘The likelihood that a randomly picked compassionate 

payload is rated higher than an accidentally selected 

malicious payload is represented by the area under the 

ROC curve, also known as AUC (Area Under Curve). The 

precision-recall curve of various classifiers, which is a 

graph with recall on the x-axis and precision on the y-axis, 

may reveal a higher degree of efficiency’. When compared 

to other classifiers, SA-CNN and logistic regression have a 

more favorable precision-recall curve. Fig 5 & 6 and Table 

3 displays the outcomes of training for several 

performance measures. High accuracy in recognizing 

malicious payloads is achieved by the SA-CNN and 

decision tree, although their training time is much higher 

than that of logistic regression.  

Table 3. Classifier comparisons 

Different 

classified 

Matrix 

 Accuracy precision recall F1-

score 

KNN 96 93 86 89 

SVM 97 921 89 83 

Random 

forest 

94 94 93 94 

SA-CNN 98 96 97 96 
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Fig.5. Accuracy and precision are contrasted 

 

Fig.6. Comparing Recall and F1-score 

The training time of SA-CNN surpasses 30 seconds, as 

shown in Fig 7, which is not ideal for models that are 

updated routinely. Logistic regression, on the other hand, 

has an average training time of 2.93 seconds and a 98.96% 

accuracy rate.  

 

Fig.7. The training time of different classifiers 

In conclusion, logistic regression outperforms other 

classifiers in identifying out-of-the-ordinary payloads. 

Using fivefold cross validation and fifty iterations, we get 

the learning curves for the logistic regression classifier by 

randomly picking 20% of the validation set. In fig. 8, 

which is below. It is clear that the training score starts out 

higher than 0.98 and increases consistently during the 

training time. 

 

Fig.8. The logistic regression classifier 

The validation score improves when more training 

instances are used, and the average score is higher than 

0.925; nevertheless, it places a significant amount of 

emphasis on the use of conventional feature engineering. 

Uses deep learning models to give an end-to-end payload 

categorization lacking feature extraction. To encrypt 

unprocessed payloads, they use a word embedding 

technique. Next, they use a classification method based on 

Random Forest and RNN to extract characteristics from 

the unprocessed payloads. Although there is currently 

insufficient data to accurately assess SA-CNN controller 

performance, semi-supervised learning offers hope for 

improving deep packet inspection in SA-CNN. 

4.3.3 Detection with new dataset 

To provide preliminary IP address filtering, the SA-CNN 

controller makes use of a well-known IP blacklist from 

Cisco. The consequences of the linear prediction model 

detection are shown in Fig 9. Given that the present traffic 

pattern has minimal correlation with a large number of 

prior samples, each packet window is adaptively chosen 

based on the past ten samples (i.e., let N = 10). 

 

 

Fig .9. Adaptive packet sampling results based LP 

The green one controls the packet window size, while the 

blue one handles any harmful packets that are uncovered. 

Packet window size is shown to have a linear connection 

with the number of malicious packets. When the packet 
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window size varies towards its maximum value, the 

greatest detection results are frequently achieved with a 

larger number of malicious packets; however, this comes at 

the expense of greater resource consumption.  

5. Conclusion 

In the existence of a huge amount of data, DPI in SDN is 

still limited. Although there are third-party DPI solutions, 

this study suggests a revolutionary stacked autoencoder 

based Convolutional Neural Network (SA-CNN) technique 

in SDN utilizing machine learning algorithms. Accuracy, 

precision, recall, and F1-score of the proposed SA-CNN 

are all very high at 98%, 96%, and 97% respectively. By 

separately training two binary classifiers, SA-CNN allows 

deep packet inspection of both clear text and encrypted 

data. Additionally, SA-CNN may sample potentially 

malicious packets using a linear prediction-based packet 

window. On the Ryu SDN controller and the Mininet 

platform, To evaluate SA-CNN using real-world datasets. 

With just modest overhead, SA-CNN can distinguish 

between encrypted and unencrypted transmission with a 

high degree of accuracy. 
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