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Abstract: It's possible that the increased popularity of biomedical engineering is due in part to a number of variables, such as how easy it 

is to gather the data, how little bandwidth it needs for power-efficient telemetry, and how much interest there is currently in the field. 

Because of the potential influence that HRV research could have on the health of the autonomic nervous system, both conventional 

medicine and complementary and alternative medicine have given it a lot of attention (ANS). In order to solve the issue of instability as 

well as a high level of sensitivity to pre-determined parameters and the duration of the data, a one-of-a-kind multiscale enhanced distribution 

entropy (ImDistEn) has been developed. In order to offer a more accurate evaluation of the vectors' distribution in phase space, L1-norm 

distance is employed in conjunction with the ordinal and orientation similarity of embedded vectors. [Case in point:] [Case in point:] [Case 

in point:] [Cas The proposed ImDistEn parameter has the ability to differentiate between a wide range of synthetic signals, including white 

Gaussian noise (WGN), chaotic signals (based on both the Logistic map and the two-dimensional Henon map), MIX processes, fractal time 

series (with varying Hurst exponents), and pink noise at a number of different scales. After being tested on three different HRV datasets, 

it was discovered that the performance of the algorithm on real-world signals was consistent. 

Keywords: WGN; ANS; HRV; ImDistEn. 

1. Introduction: 

Both yoga and meditation have risen to prominence in 

recent years as people have discovered its beneficial 

effects on stress levels and mental health. Throughout the 

past two decades, researchers have investigated HRV 

signals extensively in an effort to better understand the 

effects they have on human physiology. In order to better 

understand ANS activity, the HRV signal may be 

favoured over other physiological signals because it is 

simpler to acquire. The significance of ANS in 

determining the HR supports its use as a marker of ANS. 

In addition, the acquisition of an HRV signal is 

significantly simpler and less expensive than the 

acquisition of other biological signals like an EEG signal 

or a hormonal analysis based on a blood sample. In 1996, 

the Task Force on HRV analysis issued recommendations 

that helped spread the word that analysing HRV signals in 

the temporal and frequency domains can provide details 

about the sympathetic nervous system's homeostasis. On 

the other hand, it is not as simple as it may seem to derive 

consistent conclusions on the effect of meditation utilising 

HRV signal. This is due to the fact that meditating may 

have varied effects on different people, based on factors 

such as their prior experience with the practise, their level 

of proficiency, how well they execute, and the differences 

between their internal and external dynamic interactions 

When this occurs, it is crucial to separate the artefacts of 

non-stationary components resulting from external causes 

from the true changes in the HRV signal. As a non-

stationary signal, HRV may benefit more from a segment-

by-segment analysis. Changes in breathing rate, posture, 

and mental state are the three primary contributors to the 

shift in RR interval variability that occurs during the 

practise of meditation and yoga. 
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Fig I: Representative HRV signals of (a) meditator before meditation, (b) meditator during meditation, (c) normal subject, 

(d) high-risk hypertensive patient, (e) CHF persistent, and (f) persistent having paroxysmal atrial fibrillation. 

There are various kinds of HRV indicators because linear 

time domain analysis measures RR interval variability 

from various angles. These indices are often calculated 

with normal (no ectopic) beats as the basis. An ectopic 

beat is replaced with a normal beat using a pre-processing 

technique so that the data has normal to normal (NN) 

intervals. Several time-domain indices and parameters are 

derived from these NN intervals using statistical and 

geometrical techniques. In order to analyse HRV, 

geometrical approaches use patterns of geometry in 

conjunction with the parameters derived from the 

probability distribution of NN intervals. They use the 

probability distribution to determine values such as the bin 

width that corresponds to the frequency of observation 

indicated, various geometrical parameters based on the 

approximation of the shape of the distributions, etc. 

Conventional spectrum analysis methods, however, have 

the significant drawback of assuming that the signal being 

analysed is steady. Yet, in practise, HRV, like most 

biological signals, is non-stationary, meaning that its 

behaviour varies slightly from segment to segment. More 

insight can be gained from the analysis of a non-stationary 

signal, such as HRV, by employing a time-frequency 

representation-based approach. Possibly as a result, 

current efforts on spectral analysis of HRV have relied 

heavily on tools like the wavelet transform (WT), 

empirical mode decomposition (EMD), and variational 

mode decomposition (VMD). When discussing WTs, the 

continuous wavelet transform (CWT) and discrete 

wavelet transform (DWT) are two of the most common 

methods. Because it only uses the approximate 

coefficients of a decomposed signal and ignores the detail 

coefficients, CWT provides arbitrarily high frequency 

resolution, while DWT provides excellent computational 

efficiency with restricted frequency resolution. Most 

signals can be effectively analysed with DWT as long as 

the depth of decomposition is set to the level you need. 

However, DWT can lead to mixing of high frequency and 

low frequency components of HRV spectra under the 

same DWT coefficient, which is problematic for 

analysing HRV signals. WPT's great frequency resolution 

may make it particularly useful for evaluating low 

frequency signals like HRV. While WTs necessitate that 

you pick an appropriate analysis function, EMD, VMD, 

and the empirical wavelet transform (EWT) are all based 

on adaptive decomposition techniques that eliminate this 

step. While these techniques have seen significant use, 

they still have limitations when it comes to isolating small 

differences in frequency. 

In this research, we will offer robust HRV markers to 

capture the nonlinear dynamics of HRV signal and the 

assessments of its dynamical complexity. With the goal of 

enabling strong differentiation between signals of various 

natures and degrees of complexity, a new entropy 
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parameter, improved multiscale distribution entropy 

(ImDistEn), is presented. The proposed entropy marker's 

secondary goals are to decrease its susceptibility to fixed 

parameters and increase its stability over short data 

lengths. In order to do this, we extract the embedded 

vectors (in phase space representation) from the time 

series and analyse their properties. A novel distance 

metric is constructed using the l1-norm plus angular and 

ordinal information. The probability distribution of this 

metric is evaluated. Three real-world signals are used to 

examine the effectiveness of the ImDistEn parameter 

using a t-test with a significance level of 0.01. To better 

examine the multifractal nature of HRV signals with 

shorter data sets, a novel multifractal analytic method is 

also proposed. 

What follows is the outline for the rest of the chapter. The 

related work is briefly described in Part 2, and the 

methodology and theoretical foundations of the methods 

used are described in Section 3. The simulation results and 

analyses are presented in Section 4. For the chapter's final 

section, "Key Findings," we summarise the most 

important results. 

2. Existing Work Done: 

Using multiscale entropy (MSE) analysis, we may 

ascertain whether or not supplementary information is 

distributed across multiple temporal scales in the signal, 

or whether it is localised to a single scale. However, there 

are a few problems with entropy-based evaluation and 

differentiation of signals; these include instability, 

sensitivity to short data length, noise, and tuning 

parameters. Two widely used indices, approximate 

entropy (ApEn) and sample entropy, were used to evaluate 

the dynamical complexity of the HRV signal (SampEn). 

In phase space, they measure the complexity of a signal 

by the distance between its embedding vectors at each 

unit-size step. Despite their widespread application in 

HRV-based disease detections, they suffer from the 

drawback of producing unpredictable outcomes for short 

time series data. About the threshold distance r, which is 

highly sensitive to a chosen parameter, is also important. 

Permutation entropy (PEn), calculated from ordinal 

rankings, is more reliable in this setting. 

Nevertheless, it cannot analyse time series with a string of 

consecutively equal values, nor can it determine the 

direction in which changes in amplitude actually take 

place. The increment entropy, the refined composite PEn 

(RCMPE), and the weighted PEn are also offered as 

enhancements. Symbolic entropy (SymDynEn), base-

scale entropy (BsymEn), dispersion entropy (DispEn), 

and slope entropy (SlopEn) are all examples of entropy 

measures that use a signal's symbolic representation. 

Distribution entropy (DistEn) is a new entropy proposed 

by the authors to address the sensitivity problem with 

ApEn and SampEn. Its multiscale variant (MDistEn) is 

proposed by Lee and Choi [33]. In contrast to ApEn and 

SampEn, which only take into account distances that are 

less than some threshold r, the DistEn algorithm makes 

use of the PDF of vector distances. DistEn, however, 

ignores angular and ordinal data. Hence, while it can 

provide a reliable estimate of the complexity of many 

signals, it is unable to differentiate chaotic, white 

Gaussian noise (WGN), and MIX (combination of 

periodic and random) processes at numerous scales. With 

these problems plaguing current entropy markers, it is 

crucial to develop an entropy marker that can reliably 

reveal the full complexity of HRV signals and time series, 

even when dealing with limited amounts of data. Fractal 

and multifractal behaviour in HRV signals, and how they 

change in response to pathological states of the heart, is 

another interesting feature of HRV signals. Fractal or self-

similarity activity is observed in a wide variety of natural 

objects and signals, including mountains, leaves, DNA 

sequences, network traffic time series, etc. Since the HRV 

signal is the scatter plot of RR interval variability against 

the time of occurrences of RR intervals, we can more 

accurately refer to it as a self-affine fractal. Fractal 

characteristics of the HRV signal vary from one segment 

to the next because of its non-stationary nature. Hence, the 

fractal nature of an HRV signal cannot be completely 

described by a global scaling exponent for all the 

segments. In this case, a multifractal analysis of the HRV 

signal is required. Due to the presence of varied trends, 

which need to be detrended before analysis, DFA-based 

approaches detect more significance for HRV signals. 

Linear, quadratic, or higher order regression methods are 

commonly used to detrend HRV signals, while EMD-

based, wavelet-based, or smoothness priors-based 

methods are typically employed to detrend other 

biological signals. Across a range of window sizes, linear 

regression methods appear to struggle to adequately 

capture the trend. The computational complexity grows 

proportionally with the order of the regression. However, 

the maximum and minimum envelopes of the HRV 

signals are often captured by wavelet or EMD-based 

algorithms. Finding the right detrending method for HRV 

signals is a crucial challenge under these conditions. In 

addition, the data lengths of HRV signals can range from 

a few minutes to a few hours, whereas the minimal data 

length for multifractal analysis in practise is often around 

8000 samples. We suggest a straightforward method for 

detrending that makes use of a low-pass filter and, unlike 

previous methods, use a window that overlaps with the 

data rather than a series of non-overlapping windows, 

therefore resolving these two major concerns. 
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3. The Proposed Algorithm: 

Across a range of window sizes, linear regression methods 

appear to struggle to accurately capture the trend. 

Computational complexity grows as the order of 

regression rises. However, the maximum and minimum 

envelopes of the HRV signals are often captured by 

wavelet or EMD-based algorithms. Finding the 

appropriate detrending method for HRV signals is thus a 

significant problem under such conditions. The data 

lengths of HRV signals can range from a few minutes to 

many hours, whereas the minimum data length for 

multifractal analysis in use is typically 8000 samples. To 

address these two major challenges, we present a low-pass 

filter-based overlapping window detrending method, 

which is both straightforward and effective. 

In light of the foregoing, we first describe the proposed 

multiscale entropy analysis method, and then the 

multifractal analysis method, both of which are applied to 

HRV data. We begin with a quick introduction to data pre-

processing, followed by a presentation of pertinent 

existing techniques and, finally, the proposed methods. 

The l1-norm, angular (orientation-based), and Spearman 

(ordinality-based) distance information for embedded 

vectors in the phase space domain are utilised in the 

suggested entropy measure, entitled improved distribution 

entropy (ImDistEn). This proposed entropy is developed 

to extract comprehensive details of the test signals under 

examination by linearly combining the vector distances to 

get a weighted average distance. By processing 

normalised first-order difference (FOD) time series, 

ImDistEn may provide an objective estimation of the 

complexity of signals in a wide variety of domains and at 

varying amplitudes.

 

Fig II: The Proposed Block Diagram. 
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Then, the suggested ImDistEn is formulated using the 

FOD series by performing the following steps: 

Step 1: It is about multiscale analysis, a moving average 

(MA) technique is used to partition a series of normalised 

FOD (nFOD) values. When a time series is normalised, 

the data points are transformed into uniform intervals of 

similar amplitude. 

Step 2: A time series must be transformed into the phase 

space form in order to capture the correlation behaviour 

between the samples and to also study their temporal 

structure. 

Step 3: The Spearman distance is calculated to investigate 

the ordinal patterns of the vectors; this distance is the 

measure of the similarity between two vectors in terms of 

their ordinal positions. 

Step 4: we may use the city-block (CB) (or l1-norm) 

distance to determine how far apart vectors of time delays 

are in all embedding dimensions. 

Step 5: The cosine of the angle between two embedded 

vectors provides the distance metric. 

Step 6: The ePDF of weighted vector distances can be 

calculated by using the upper/lower triangular members of 

the Da(i, j) matrix. 

𝐷𝑎(𝑖, 𝑗) =
𝑤1𝐷𝑠(𝑖,𝑗)+ 𝑤2𝐷𝑏(𝑖,𝑗)+𝑤1𝐷𝑐(𝑖,𝑗)

𝑤1+𝑤2+𝑤3
                                     (1) 

Where, 

𝐷𝑠(𝑖, 𝑗): Spearman distance 

𝐷𝑏(𝑖, 𝑗): City-block distance 

𝐷𝑐(𝑖, 𝑗): Cosine distance 

𝑤1, 𝑤2, 𝑤3= Weight Vectors 

𝐼𝑚𝐷𝑖𝑠𝑡𝐸𝑛 = − ∑ 𝑃 log 𝑃𝑀
𝑖=1                                                 (2) 

Due to its non-stationary nature, HRV signals necessitate 

detrending in order to remove the noise introduced by the 

underlying dynamics during analysis. An LPF, or low pass 

filter, is a tried and true method of filtering out 

information that occurs at frequencies over a specified 

threshold. HRV signals have a known frequency range, 

hence low-order low-pass filters (LPFs) work well for this 

purpose. 

4. Result and Discussion: 

The effectiveness of the suggested ImDistEn is measured 

using a variety of synthetic time series data that follows 

industry standards. We have created 50 realisations of 

each synthetic signal with data lengths (N) ranging from 

50 to 1500 in order to study the sensitivity of the proposed 

ImDistEn to signal length.  

Table I: Normalized entropy measures Comparison. 

Data Length Chaotic (Entropy) WGN (Entropy) 

RCMDE MDistEn ImDistEn RCMDE MDistEn ImDistEn 

100 0.51 0.91 0.93 0.76 0.87 0.93 

200 0.53 0.93 0.95 0.86 0.89 0.94 

300 0.52 0.95 0.95 0.96 0.88 0.95 

500 0.54 0.94 0.96 0.98 0.87 0.94 

700 0.56 0.95 0.95 0.97 0.85 0.95 

1000 0.55 0.95 0.96 0.98 0.84 0.96 
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Fig II: Normalized entropy measures for logistic-map based chaotic. 

 

Fig III: Normalized entropy measures for WGN. 

In Figure II and Figure III, we have a visual representation 

of the entropy's relationship to the data's length. It 

demonstrates that very short data lengths yielding very 

small standard deviations have a negligible impact on 

ImDistEn, MDistEn, and RCMPE. Yet, for all three types 

of signals, RCMDE-based metrics show a decrease in 

fluctuations after N >= 700. Consequently, we have set N 

= 500 to assess their capacity to differentiate between 

signals of varying complexity and origin. 

Nonetheless, the suggested ImDistEn measure has 

performed better than the state-of-the-art methods on all 

three datasets. In Table II, we can see that the computation 

time for ImDistEn is significantly higher than that of the 

other methods. 

Table II: Computation time of entropy measures for scale=20 and m=3. 

Entropy Computation time (sec) for different data length 

100 200 500 1000 

MDistEn  0.12 0.17 0.28 0.67 

ImDistEn  0.28 0.36 0.65 1.19 

RCMDE  0.28 0.35 0.44 0.65 
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Fig IV: Computation time of entropy measures Comparison. 

In this paper, we introduce a brand new complexity 

descriptor called ImDistEn with the intention of giving a 

valid categorization between signals of varied degrees of 

complexity. For the purpose of illuminating the intrinsic 

motion of a signal, the proposed marker makes use of the 

angular, ordinality, and l1-norm distance information 

contained within the signal's embedded vectors. It has 

solved the issue of MDistEn by illuminating the 

distinctions between WGN, 1/f noise, and chaotic signals 

at a variety of length scales, which was the difficulty that 

MDistEn was trying to tackle. It is also able to accurately 

differentiate between the study group and the control 

group when it is applied to datasets derived from the actual 

world. 

We have performed statistical significance tests on the 

characteristics recovered from the multifractal analyses; 

the paired t-test for the MEDITATION dataset and the 

independent t-test for the PAF datasets, respectively. 

Based on the results of Table III, it appears that the 

MFDFA method has been successful in distinguishing 

between the meditative and pre-meditative states when the 

Ws and value is less than 5, but that it has been less 

successful in distinguishing between the PAF and CHF 

data and the healthy data in other respects. 

Table III: Variation of scaling exponents with respect to q for meditative and pre-meditative HRVs using MFDFA and 

proposed method. 

S. 

No. 

Q 

Value 

MFDFA method Proposed method 

Pre-Meditation Meditation Pre-Meditation Meditation 

1 -5 1.81 2.0 1.11 1.62 

2 -3 1.79 1.98 1.15 1.61 

3 -1 1.76 1.96 1.21 1.51 

4 0 1.78 1.82 1.10 1.45 

5 1 1.77 1.75 0.98 1.20 

6 3 1.75 1.71 0.97 1.12 

7 5 1.74 1.65 0.96 0.95 
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Fig V: Variation of scaling exponents with respect to q for meditative and pre-meditative HRVs using MFDFA and 

proposed method. 

5. Conclusion: 

The complexity of the HRV signal's dynamics can shed 

light on heart physiology in novel ways. The dynamical 

complexity of the HRV signal has been quantified using 

the idea of mono/multiscale entropy. Analysis of the 

signal using multiscale entropy (MSE) can reveal whether 

or not extra information is distributed across multiple time 

scales. However, there are certain problems, including 

instability in entropy-based evaluation/distinction of 

signals and susceptibility to short data length, noise, and 

tuning parameters. With the goal of providing reliable 

classification between signals of varying complexity, we 

present a new complexity descriptor (ImDistEn) in this 

study. The suggested marker makes use of a signal's 

embedded vectors' angular, ordinality, and l1-norm 

distance information to reveal the signal's intrinsic 

motion. It has solved the problem of MDistEn by 

elucidating the differences between WGN, 1/f noise, and 

chaotic signals at various length scales. When applied to 

real-world datasets, it is also able to accurately distinguish 

between the study and control groups. Also, we provide a 

multifractal analytic technique that yields consistent 

outcomes with significantly less data (data length 1000 

data points). We put the suggested multifractal approach 

through its paces with both synthetic and real-world HRV 

data. Statistical significance tests and experimental results 

show that it can discriminate between normal and 

abnormal heart states by characterising various fractal 

data. 
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