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Abstract: Mobility in sensor nodes, targets, base stations, or charging vehicles can increase performance in a resource-constrained 

wireless sensor network (WSN) in terms of the energy economy, minimizing the latency with a longer lifespan, and increasing 

throughput. It is suggested to use mobile charger scheduling algorithms to recharge the SNs. According to the network scale, single and 

multiple mobile charger scheduling techniques are suggested in this context. When a new or developing request is received, the charging 

activity is interrupted when a single MC uses pre-emptive scheduling of the MC. This strategy increases the length of the mobile 

charger's journey path while maximizing its utility. Unfortunately, a single charger is unable to fulfil the needs of a big network, hence 

several chargers are required. As a result, multiple mobile charger scheduling for WSNs that is delay-tolerant is also suggested. This 

clustering algorithm groups the sensors into equal-sized clusters using a new K-medoid structure. The cluster head (CH) is then chosen 

using the WDWWO (Wind Driven Water Wave Optimization) algorithm, which considers both the distance to the cluster's midway 

position and the remaining energy. The mobile charger has a WET that may traverse the network either on demand or along a 

predetermined path to recharge the SNs. One or more chargers are utilized to recharge the SNs depending on the size of the WSNs. To 

validate the efficacy of the projected strategy, the performance of the projected algorithms is compared to that of a number of already-

existing algorithms. From this, we can conclude that our suggested method achieves better charging scheduling to charge the lifetime 

important sensors than the current works based on the simulation results. 

Keywords: WSN, SN, MC, CH, WET, WDWWO. 

1. Introduction 

In terms of the connectedness and intelligence of 

different kinds of sensor devices, the IoT (Internet of 

things) is introducing a new paradigm. Radiofrequency 

identification (RFID) tags and the broad use of wireless 

sensor networks have become commonplace because of 

advancements in semiconductor fabrication technology. 

Wireless sensor networks, which consider sensor devices 

as network nodes, are crucial IoT enablers because they 

allow for the seamless real-time flow of data between 

sensor nodes, enabling the monitoring, localization, and 

tracking of objects [1]. The significance of promptly 

charging the sensor nodes cannot be overstated because 

the sustainable operation of wireless sensor networks is a 

key issue, particularly with mission-critical sensor 

networks. Batteries-powered devices often have short 

lifespans, and the majority of wireless sensor networks 

stop working when even a single or small group of 

sensor nodes run out of energy. Consequently, extending 

the network lifetime without sacrificing sensing 

performance is one of the main goals taken into account 

while constructing a wireless rechargeable sensor 

network (WRSN) made up of sensor nodes with batteries 

[2]. 

WSNs are one of the key technologies for perceiving the 

physical environment because of their self-organization 

and ease of deployment. The sensor node possesses the 

capabilities of processing, sensing, data gathering, data 

aggregation, and compression coding [3]. In addition to 

this, the cloud server can send control instructions to the 

sensor node, which can then be received by the 

integrated wireless communication module on the sensor 

node, and the sensor node can then upload data to the 

cloud server of either the sink node or the base station in 

real time. Because sensor nodes will process and transfer 

an overwhelming amount of information over time, the 

system's energy would steadily deplete, eventually 

leading to the system's inability to function properly. 

Because the battery energy cannot be restored once it has 

been depleted, the sensor nodes will stop functioning, 
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which will result in a "hot spot" problem. As a 

consequence of this, the amount of energy that sensor 

nodes consume is becoming an increasingly important 

topic of discussion and is seen as an essential component 

in the wider implementation of WSNs [4]. In contrast, 

the condition of sleep will require a far lower amount of 

energy to maintain than the states of sensing, data 

receiving, or transmission. The projected scheduling 

algorithms for sensor nodes aim to increase energy 

utilisation and, as a result, effectively extend the lifetime 

of WSN (wireless sensor networks). The vast majority of 

sensor node batteries are not detachable, and when the 

nodes' ability to function is compromised due to low 

battery power, the nodes will eventually stop working. 

Even if the node sleep scheduling options are more 

feasible for extending the life of a battery, the problem 

that was previously noted has not yet been completely 

overcome [5]. 

The use of a mobile sink in the methodology helps to 

alleviate the problem of hotspots and improves data 

collecting. It is able to support the SNs for a short length 

of time but cannot do so for an extended period of time 

[6]. Despite the fact that it distributes energy uniformly 

throughout the SNs, it cannot. In this regard, the research 

recommends two techniques for recharging the sensor 

nodes that are distributed over a network: the first 

method makes use of a single mobile charger, while the 

second method makes use of many chargers. The 

preliminary MCUMPS (Mobile Charger Utility 

Maximization through Preemptive Scheduling) proposal 

[7] calls for the use of a single mobile charger in 

conjunction with a partial scheduling mechanism. This 

method stipulates that the action of charging a mobile 

device may be interrupted at any moment. Regrettably, 

the requirements of a large network cannot be satisfied 

by a single charger; hence, more chargers are necessary 

[8]. 

According to a recent breakthrough in the field of 

wireless power transmission based on highly coupled 

magnetic resonances, it is now possible to power a 60W 

light bulb at a distance of two metres away without the 

use of wires or plugs, and the wireless power transfer 

efficiency is estimated to be around 40%. This 

breakthrough was made possible as a result of the fact 

that it is now possible to power a light bulb based on 

highly coupled magnetic resonances. Industry research 

has brought wireless power transfer efficiency up to 

75%, allowing for the transfer of 60W of electricity 

across a distance of up to two to three feet. This 

represents a significant improvement over previous 

levels of efficiency. Commercial goods that are currently 

available on the market and are based on wireless energy 

transfer technology include examples such as sensors [9], 

RFIDs, cell phones, and vehicles. These are only some 

examples. It is possible for this cutting-edge technology 

to give sensors the ability to charge at high and stable 

rates. A recent breakthrough in the creation of ultra-fast 

charging battery materials [10] provides additional 

support for the practicability of the wireless power 

transfer technique. Researchers from MIT devised an 

ultra-fast charging method for the LiF eP O4 material, 

which has a charging rate of up to 400 Coulombs per 

second. As a result, the amount of time necessary to 

completely charge a battery can be cut down to only a 

few seconds. In light of this, wireless power charging is a 

strategy that shows a lot of promise for prolonging the 

lifetime of WSNs [11]. 

The outline for the rest of the paper will be presented in 

the following paragraphs. In part 2, we provide a brief 

description of the relevant work, and in section 3, we 

provide a description of the methodology as well as the 

theoretical foundations of the methods that were 

employed. In section 4, both the results of the simulation 

and an analysis of them are presented. In the final section 

of the chapter, under "major findings," we provide a 

summary of the most significant findings. 

 

2. Related Previous Work Done 

The mobile charger has a WET that may traverse the 

network either on demand or along a predetermined path 

to recharge the SNs. One or more chargers are utilized to 

recharge the SNs depending on the size of the WSNs. A 

few academics suggested employing deep reinforcement 

learning (DRL) to develop an effective on-demand 

charging system for WRSNs. Similar to this, workers 

employed DRL in other research to deal with the MC 

arranging in the surroundings. In both situations, the next 

node to be charged is selected using the effective reward 

function. These two methods, however, are centralized 

and have a high level of computing complexity [12]. 

They evaluated delay-aware scheduling by balancing 

data collection and energy use [13]. Researchers have 

suggested a fusion meta-heuristic-grounded MC 

arranging approach for WRSNs. In order to solve the 

problem, they combine Cuckoo Search methods with 

Genetic algorithms. Several researchers have suggested 

placing static chargers in order to maximize the utility of 

wireless charging by utilizing an approximation 

approach. These algorithms, however, need a lot of 

processing and take a while to procedure the appeal and 

choose the order [14]. 

The lengthy path and high computational complexity of 

this technique, however, are the results. A WSN's dead 

node count can be reduced effectively by using research 

conducted by a variety of academicians [15]. This 

method primarily emphases on the energy loss 

observation while the other SNs are moving and 

charging. In their partial scheduling method, researchers 
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charge the SNs in the WRSNs. Even if around of the SNs 

are not accomplishment their threshold, numerous 

academics claimed that charging multiple SNs 

simultaneously is possible in their work [16]. Several 

MCs were used in a study that projected a cooperative 

charging approach for WRSN utility maximization. In 

order to decrease the trajectory of the MCs and maximize 

utility, they used a path-merging strategy. Several mobile 

chargers aren't always economical [17]. 

In this, the early and delayed jobs are used to identify the 

charging nodes. WRSNs have an effective simultaneous 

charging approach suggested by a few academics. To 

determine the accusing time and stallion trajectory for 

MC efficacy intensification, the authors here suggested a 

mixed-integer optimization technique [18]. The order of 

charging must be determined using this approach, which 

takes additional work. In a study, a multiple MC 

scheduling approach based on fuzzy logic for 

rechargeable WSNs is explored. Before scheduling the 

MCs, academicians split the network in this case. 

Nevertheless, adding more chargers to a network raises 

the cost of deployment and maintenance. For both the 

choice of the SNs' command and the total of energy to be 

accused during the arranging, a group of researchers 

offered a task-driven MC scheduling [19-20]. 

The radiation avoidance of on-demand multi-node 

energy charging using a number of MCs is discussed in a 

study. In this research, a novel charging protocol for 

WRSNs was presented [21]. A few other researchers 

created an energy-conscious multiple MCs coordination 

for WRSNs. This article resolves coordination concerns 

between numerous MCs under various system 

requirements. This approach aimed to lessen the power 

depletion of MCs, ensuring that no sensor would run out 

of power [22]. CCA-NDC (Collaboration Charging 

Algorithm based on Network Density Clustering) for 

WRSN was created in this study. A few researchers 

developed a revolutionary wireless charging algorithm 

that uses reinforcement learning to charge mobile WSNs 

(RL) [23]. SNs were given both stationary and portable 

wireless chargers to represent the article. To develop the 

charging function in RWSNs, other researchers started 

supple arranging and charge-oriented sensor node 

placement. In this article, charge assignments are jointly 

deliberated upon, and node positions are optimized [24]. 

Recently, wireless charging methods have been used to 

produce WRSNs, which can conduct long-term sensing 

and data-gathering duties. However, in WRSN, effective 

path scheduling for MWCVs is seen as a fundamental 

research problem. Two significant WMC issues are 

optimizing movement trajectory and charging time. 

Some more research suggested using the WMC 

technique's route optimization to find the best trajectory, 

which results in a balanced energy depletion time. With 

the aid of WRSNs, data-collecting systems are developed 

to accomplish critical area monitoring [25]. 

 

3. Purpose of the Work 

1) To develop mobile charger arranging for WSN and 

design mobility-based algorithms. 

 

4. The Projected Algorithm: 

The MCUMPS method is described here. Here, we're 

primarily concerned with making sure the sink processes 

requests in a timely manner so that the nodes can be 

charged. We also determine the STC (Sojourn Time 

Computation), which is how long the MC will be able to 

stay in SN. CNs (Crucial nodes), ENs (emerging nodes), 

and LNs (leaf nodes) are the three types of deployed SNs 

that the MCUMPS distinguishes (LNs). 

It is possible to think of an SN as a Critical Node, 

denoted by the letter S, in the network. If we take off S, 

the network could get split up into several segments. 

Given the potential for network fragmentation in the 

event of a CN failure, it is imperative that we treat such 

nodes as critical infrastructure. 

 

Fig I: The projected MCUMPS algorithm. 
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Although several nodes link the ENs and SNs together, 

their loss does not cause the network to split. However, 

this will change the routing path taken by the other 

sensor nodes. Misdirection attacks can result from such a 

shift in strategy. Keeping the ENs powered up is crucial 

for protecting against diversionary tactics. Consequently, 

the MC must be scheduled anytime any node in this 

cluster requires an energy restoration. Nonetheless, it 

does not pose the same threat as CN trains. Data 

collection efficiency can be enhanced by carefully 

selecting ENs to ensure that network energies are 

balanced. We take into account the SNs with an in degree 

of 0 as the LNs. Since the leaf nodes have no impact on 

the network or any other nodes, they are assigned the 

lowest charging priority. For simplicity's sake, we'll call 

any nodes that don't fit either the CN or LN categories 

"entries". 

4.1. Sojourn Time Computation: The Sojourn Time is the 

combined waiting time of all SNs within MC's 

communication range when the MC is stationed at an SN 

to recharge. To determine the stay time, just the nodes 

that were specifically asked about are taken into account, 

rather than all of the nodes within range of the device's 

communications. To determine, the STC employs the 

symbol 𝜔. Using Eq. 1, we can determine the STC of the 

projected work. 

𝑆𝑇𝐶 =
1

𝜇
√

1

|𝜑|
∑ (𝜔𝑖 − 𝜇)2|𝜑|

𝑖=1                                                   

(1) 

Where, 𝜇 is evaluated by equation 2: 

𝜇 =
1

|𝜑|
∑ 𝜔𝑖

|𝜑|
𝑖=1                                                                      

(2) 

4.2. K-medoids Clustering Algorithm: Using K-medioids 

the network's useful life span can be extended and energy 

costs can be lowered by employing a clustering 

technique. The concept of universal clustering serves as 

the foundation for this algorithm. The optimised k-

medoids algorithm decreases the number of required 

iterations by estimating the central circle's mean point 

and residual energy. 

Step 1: Choice of the first medoid: Each pair of nodes 

should have its distance calculated using the Euclidean 

metric. Assigning each node to the nearest medoid yields 

the initial cluster. 

Step 2: This step is to update the medoids, which entails 

finding new medoids for each cluster that have the 

smallest overall distance to the other nodes in their 

cluster.  

Step 3: Medoids are assigned nodes. Each node is then 

connected to its neighbouring medoids, yielding a 

clustering result. The average distance between each 

node and its medoids is calculated. If the new amount is 

the same as the old one, then the procedure ends. If not, 

return to the second step. 

4.3. WDWWO algorithm for CH selection: The 

WDWWO method uses a model of the water's surface 

waves to discover a prime resolution to the optimization 

problem. This technique is a hybrid of the WDO (Wind 

Driven Optimization) and the WWO (Water Wave 

Optimization) methods. The wave's wavelength grows or 

shrinks as it travels from deep to shallow water, or vice 

versa. The problem-solving procedure takes into account 

three different sorts of operations: propagation, 

refraction, and breaking. For nodes in deep water, the 

depth of the ocean or the distance between the seafloor 

and the surface is taken into account while calculating 

the residual energy. 

WDWWO algorithm: 

1. Sensor node array as input 

2. Successfully Optimized CHs 

3. Each of the n waves (sensor nodes) in the 

population P is set up at random. 

4. in the meantime the cut-off condition is not met 

5. what if x P for all x 

6. Create an x′ by propagating x. 

7. The condition is met if and only if f(x′) > f(x). 

8. then (if f(x′) > f(x)) 

9. Split x′ ; 

10. Replace x with x′; 

11. Swap out x for x′; 

12. else 

13. x.h is decreased by one; 

14. Conditional Statement: 

15. Change x to x′ by refraction; 

16. Correct the wavelengths; 

17. end if 

18. end if 

19. end if 

20. conclusion for 

21. cease during 

22. The x that was returned was 

4.4. Hybrid GFSO (Galactic Sun Flower Optimization) 

algorithm: In the first step of the hybrid GSFO process, 

the primary population P is generated at random using 

the GSO method. Following one round of the GSO 

algorithm, the optimal answers are saved for future 

iterations. For better performance of the SFO algorithm, 

the GSO algorithm can be utilised to find with local 

search capability. The objective function takes care of 

the necessity of charging dynamic sensors by using 

numerous MCs. In this algorithm, the population size 

and number of iterations begin with the first definition of 
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GSO and SFO parameters. This algorithm's output 

should be the maximum value of the fitness function. 

5. Result and Discussion:  

In this section, we give a thorough simulation 

experiment-based performance study of Hybrid GSFO 

and compare it to state-of-the-art systems. Our Hybrid 

GSFO algorithm is now operational, and it runs on the 

Java platform. Many measures are used to calculate how 

much of an improvement in quality the Hybrid GSFO 

actually offers. Table I lists the simulated parameters 

used for this charging scheduling procedure. A 

rectangular area of 600 x 450 metres is used for the 

simulation, with 100 to 500 sensors spread out across the 

region in a random and uniform fashion. At the region's 

epicentre, you'll find the lone BS. 

5.1. Energy Reduction: The word "energy reduction" 

is applied to define the whole expanse of power that is 

utilized by a network all over the development of 

sending and receiving data. This value is extremely 

important for the routing process; but, once clusters 

begin to form, it also becomes an energy drain.  

5.2. Network Lifetime: This subsection assesses the 

network's expected lifespan in relation to the total 

network area. Network lifetime is the period that elapses 

before the first node dies from lack of power. The 

implemented scheme's energy efficacy can be gauged by 

its ability to assess the network's lifetime. 

5.3. PDR (Packet delivery ratio): PDR is the ratio of 

packets received to packets sent. The primary success of 

wireless networks is the transmission of packets. As far 

as PDR is concerned, this delivery ratio is a success. 

𝑃𝐷𝑅 =
𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡 𝐶𝑜𝑢𝑛𝑡

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡 𝐶𝑜𝑢𝑛𝑡
                                                      

(3) 

5.4.  Packet loss occurs when sent data does not arrive 

at its intended destination. The network's efficacy and 

durability are both improved by a decrease in the packet 

loss rate. 

𝑃𝐿𝑅 = 𝐹𝑜𝑟𝑤𝑎𝑑𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡 − 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡                                 

(4) 

5.5.  End-to-end delay: Reducing Reduced power 

consumption and increased reliability are two benefits of 

end-to-end (E2E) delay. Hence, less time spent waiting 

improves both efficacy and dependability. E2E delay 

measures how long it takes for a packet to go from one 

node to another. Time spent on tasks such as data 

processing, transmission, and reception are all factored 

into the end-to-end delay. 

𝐸𝑛𝑑 𝑡𝑜 𝑒𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 =

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 (𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝐷𝑎𝑡𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 +

𝐷𝑎𝑡𝑎 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 )       (5) 

5.6.  Throughput: The throughput is the rate at which 

data packets are successfully relayed from the sending 

node to the receiving node. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐹𝑜𝑟𝑤𝑎𝑑𝑒𝑑 𝑑𝑎𝑡𝑎

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
                                                      

(6) 

 

Table I: Comparison of existing and projected algorithms concerning different performance metrics by varying the number 

of sensor nodes between 100 to 500. 

Parameters Nodes Count Approach 

FEEC-IIR Hybrid GSFO 

Throughput (kbps) 100 0.91 1.31 

300 0.73 1.18 

500 0.63 1.12 

PDR 100 98.14 99.25 

300 97.36 97.45 

500 96.11 96.12 

Packet Loss Ratio  100 2.13 0.81 

300 3.24 2.21 

500 5.41 4.32 

Energy Depletion (J) 100 52 15 

300 104 26 
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500 153 32 

End-to-End Delay (sec) 100 2.1 0.1 

300 4.5 1.2 

500 6.3 2.3 

 

 

 Fig III: Throughput comparison of projected method with existing FEEC-IIR. 

 

Figure III depicts a performance evaluation of 

throughput. Throughput is more valuable when more 

nodes are added to the network. Furthermore, it is 

connected to the currently used methodologies, such as 

FEEC-IIR approaches. Figure III demonstrates how the 

suggested hybrid procedure excels over the state-of-the-

art methods. Because the suggested approach 

incorporates optimal power allocation and time 

management for charging, it is meant to maximise 

throughput. 

 

 

Fig IV: PDR comparison of projected method with existing FEEC-IIR. 
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Results from the comparison reveal that as the number of 

SNs increases, the PDR achieved by the suggested 

technique improves. As a result of the projected hybrid 

algorithm accurately assigning charging schedules to the 

MCs, the network will experience zero outages. Hence, 

the suggested method obtains a greater delivery ratio 

since data packets can be sent between nodes without 

restriction as shown in Figure IV. 

 

 

Fig V: PLR comparison of projected method with existing FEEC-IIR. 

In Figure V, we see PLR's evaluation in terms of the total 

number of nodes. The projected technique achieves a 

lower PLR rate than do current approaches. Reduced 

packet loss is primarily attributable to the MCs' charging 

schedules being optimally assigned. Since sensor battery 

life has little bearing on the transmission of data, and 

hence less packet loss is experienced when information 

travels from node to node. 

 

 

Fig VI: Energy Depletion comparison of projected method with existing FEEC-IIR. 

Methods like FEEC-IIR are used as benchmarks for the 

projected hybrid approach. One hop communication 

requires sending information from one end to the other, 

which uses more power. The projected hybrid algorithm 

utilises the best CH based on the hybrid WDWWO 

algorithm to transmit data from a specific node to the BS, 

resulting in a significant reduction in energy 

consumption compared to conventional approaches as 

presented in Figure VI. 
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Fig VII: End to End Delay comparison of projected method with existing FEEC-IIR. 

Figure VII depicts the E2ED performance calculation in 

terms of the total number of nodes. The projected method 

incurs a growing delay as the number of nodes expands. 

In comparison to conventional approaches, the projected 

method achieves extremely low delay at 100 nodes. 

Since the suggested technique reliably transmits data 

over the CH in the absence of restrictions. 

6. Conclusion: 

The strategy that makes use of mobile sinks lessens the 

effect that hotspots have while also improving data 

collecting. Even while it performs a decent job of 

distributing power across the SNs, it is not adequate to 

keep the sensor nodes functioning for a very long time. 

In this article, we will discuss some of the Hybrid GSFO 

mobile charger scheduling algorithms that are 

appropriate for usage with rechargeable WSNs. These 

algorithms can be found in other related works. The 

Hybrid GSFO is responsible for coordinating the use of a 

large number of mobile chargers while taking into 

consideration the recharging cycles of each sensor in the 

network. After the K-medoids clustering has been 

completed with the help of the Hybrid GSFO, the 

WDWWO method is used to select the ideal cluster head 

from each cluster. This method takes into account both 

distance and residual energy. In conclusion, a hybrid 

version of the GSFO algorithm is presented here as a 

potential answer to the problem of charging schedules for 

multiple chargers. The goal of hybrid GSFO approaches 

is to cut down on the total number of nodes in a network 

that fail at some point. In order to demonstrate that the 

projected technique is effective, the performance of the 

algorithms that are projected is compared to the 

performance of a number of algorithms that are already 

in existence. Because of this, we are able to draw the 

conclusion that the way that we have provided produces 

better charging schedule to charge the lifetime essential 

sensors than the current method that is being used, which 

is based on the simulation findings. 
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