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Abstract: The detection of free frequency bands for use by cognitive radio networks without disrupting primary users is essential, making 

spectrum sensing a crucial technology. The adaptive double-threshold technique modifies the upper and lower thresholds for energy 

detection, depending on the cognitive nodes' SNR. To calculate the thresholds' weighting coefficient, the SNR of all cognitive nodes in the 

network is considered. This paper proposes the WCOA based approach for weighting coefficients calculation, which is used to adjust the 

upper and lower thresholds accordingly. Specifically, when multiplying the weighting coefficient of the upper threshold by a scaling factor 

to obtain the new upper threshold, and further multiply the weighting coefficient of the lower threshold by another scaling factor to obtain 

the new lower threshold. The scaling factors are used to ensure that the new thresholds are within a reasonable range and to prevent them 

from being too sensitive to small changes in the weighting coefficients. The suggested double-threshold algorithm based on a hybrid of 

Energy and maximum-minimum Eigenvalue (MME), further enhanced with the Weighted Chimp algorithm (WCOA), can efficiently solve 

the issue of inadequate detection performance encountered by the conventional double-threshold energy detection method, especially at 

low SNR. By collaborating, cognitive nodes can enhance their detection accuracy, resulting in a shorter spectrum sensing period and a 

higher probability of detection. 

Keywords: Chimp Optimization Algorithm, Cognitive Radio, Energy Detection, Maximum-Minimum Eigenvalue, Spectrum Sensing. 

1. Introduction 

Coordination of the use of the electromagnetic spectrum, at 

an international level, is carried out by the ITU 

(International Telecommunications Union), the United 

Nations agency responsible for technological, information 

and telecommunications matter. The control over the use of 

this resource, however, is done sovereignly by each country 

through its regulatory agencies, such as the FCC, which 

regulate the use of this scarce resource. 

Currently, the spectrum allocation policy adopted is a fixed 

policy, known as FSA (fixed spectrum allocation). In this 

policy, the electromagnetic spectrum is subdivided into 

bands that are intended for different types of services. 

Authorization to use the electromagnetic spectrum has a 

fixed term and, in general, is issued according to the region 

where the transmitter system is installed. Within this region 

and during the period of validity of this authorization, only 

the concessionaire or licensee to which the authorization 

was issued must have access to the resources of the 

electromagnetic spectrum, even if the resource is underused 

over time. Initially, the policy adopted was sufficient both 

to avoid interference between the different systems that 

used the electromagnetic spectrum, and to meet the demand 

for wireless communication services. 

The utilization of the electromagnetic spectrum has 

significantly transformed due to the persistent development 

of wireless communication technologies today. While the 

industry and researchers strive to enhance the spectral 

efficiency of new communication systems, the rising 

transmission rate is still correlated with an amplified 

bandwidth requirement for transmitting information. This 

escalating demand for transmission frequencies and a 

limited supply generates the phenomenon acknowledged as 

spectral scarcity [1].  

In addition to restricting the offer of the electromagnetic 

spectrum, the policy that was once adequate to the resource 

usage profile is currently not efficient. Despite being 

reserved and not used at certain times of the day, the 

spectrum cannot be reused by other systems. 

In this context, a different proposal for spectrum allocation 

emerges, the dynamic allocation known as DSA (dynamic 

spectrum access). This new policy suggests that the 

resource be used in an opportunistic way, that is, access to 

the spectrum would be based on the demand for its use and 

the spectrum bands would no longer be totally reserved for 

certain types of service. Currently, an example of this type 
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of allocation exists in the 2.4GHz band, an unlicensed usage 

band shared by wireless telephone, 802.11 WLAN and 

Bluetooth systems [2]. In addition to radically changing the 

way spectrum use is regulated, the new policy suggests a 

substantial change in the design of receiving and 

transmitting devices. One of the main restrictions to the 

adoption of a dynamic spectrum access policy is the 

guarantee that there will be no interference between the 

different systems. If it is not possible to guarantee that the 

DSA network does not interfere with the legacy FSA 

systems, there will be no interest in changing the current 

policy, as networks with both spectrum allocation policies 

must coexist. 

In this context, spectrum sensing emerges as one of the main 

features of DSA networks. In this step, transmission 

opportunities are identified, or spectrum holes, portions of 

the electromagnetic spectrum that are not used at a given 

time. If spectrum sensing is not efficient, radios will not be 

able to perceive transmission opportunities, or worse, they 

may not be able to identify when spectrum is used, which 

would give the false idea that spectrum is available when it 

is not used. 

The significance of implementing a hybrid MME and EDT 

algorithm optimized with the Weighted Chimp algorithm 

for spectrum sensing can be condensed as follows: 

• Improved precision and dependability: The hybrid 

algorithm amalgamates MME and EDT's benefits to 

enhance the spectrum sensing's precision and 

dependability. Further, optimizing the algorithm's 

parameters with the Weighted Chimp algorithm boosts 

its performance. 

• Reduced false alarms and missed detections: The 

optimization process using the Weighted Chimp 

algorithm aims to reduce false alarms and missed 

detections, which are important factors in cognitive 

radio systems. This can improve the overall efficiency 

of spectrum utilization and reduce interference with 

other wireless networks. 

• Increased spectrum utilization: Spectrum sensing using 

the hybrid MME and EDT algorithm can identify idle or 

underutilized spectrum bands, which can be used for 

dynamic access by cognitive radio devices. This can 

increase the overall spectrum utilization and provide 

more opportunities for wireless communication. 

• Compatibility with different signal types: The MME 

technique can be used to detect a wide range of signal 

types, while the EDT technique is effective in detecting 

signals with varying levels of energy. This makes the 

hybrid algorithm suitable for spectrum sensing in 

diverse environments and applications. 

The utilization of the hybrid MME and EDT algorithm for 

spectrum sensing, optimized with the Weighted Chimp 

algorithm, is a noteworthy advancement in cognitive radio 

technology. This technological approach can advance 

spectrum utilization's accuracy, reliability, and efficiency, 

while empowering cognitive radio devices to dynamically 

access the radio spectrum. 

The following is an outline of the remaining sections in this 

paper. Section II contains a literature review of the relevant 

field, while Section III describes the recommended methods 

for hybrid threshold-based energy detection. Section IV 

presents the simulation results obtained using MATLAB. 

Finally, the paper concludes with a summary of the findings 

in Section V. 

2. Literature Review 

The technology of cognitive radio user enables the detection 

of the availability of the main user in the spectrum. In case 

the primary user (PU) is not available, the secondary user 

may use the free spectrum [3]. However, the reliability of 

this approach for an average user is not high due to key user 

recognition issues [4]. This issue leads to the problem of 

secondary user accessing the primary user's licensed 

spectrum. To address this issue and improve detection 

accuracy, collaborative spectrum sensors are employed, 

allowing secondary users to enhance their performance [5] 

[6]. 

The spectrum of cognitive recognition is defined beyond the 

N voting rule. At the center of fusion, where a minimum of 

N primary users is identified by secondary users with an 

external SU [7]. Within seconds, users boost their power 

consumption to report their spectral sensitivity and Fusion 

Center's (FC) sensitivity. Storage schemes have been 

proposed to enhance energy efficiency [8] [9]. If the SNR 

or primary user (PU) is too high, spectrum allocation can 

minimize time and power consumption. Otherwise, the 

spectrum detection sensitivity will be employed again to 

improve performance. A framework for optimizing power 

consumption by recording the time and transmission time is 

proposed [10] [11]. This enhances energy efficiency by 

reducing interference. To improve energy efficiency, 

various well-known channels have been suggested for 

optimized input recognition [12]. 

While some secondary users may be aware of the channel, 

the Fusion Center (FC) and other secondary users may still 

transmit the same message [13]. To enhance spectral energy 

detection performance, a reliable high-energy threshold 

circuit is presented in [14]. In [15], the authors proposed an 

adaptive limitation based on the influence of the secondary 

user (SU) transmit power. The detection threshold, as 

described by the authors in [16], relies solely on the 

statistical properties of the received signal. The ideal 
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threshold value is achieved using the Lagrange multiplier 

method, as shown in [17]. An algorithm based on two 

thresholds is presented in [15], which improves detection 

performance significantly by deviating from the 

conventional one-threshold design. In [18], a longer time is 

required to detect the spectrum before obtaining results, 

while in [19], the authors propose a method for determining 

an adaptive threshold value for an unlicensed 2.4 GHz 

WLAN channel that can be applied practically, especially 

with cellular sensors. Finally, in [20], the maximum number 

of entries is defined, and if the spectrum detection time 

exceeds the upper limit, the SU will switch to detecting a 

different spectrum. 

To overcome the difficulties in acquiring spectrum on the 

cognitive radio network encountered by all existing 

methods, this study puts forward a hybrid threshold that 

combines MME with energy measurement techniques. 

3. Material and Methods 

Cognitive radio systems use spectrum sensing to detect 

available frequency bands or channels for wireless 

communication. To improve spectrum sensing, this study 

proposes a hybrid technique combining maximum-

minimum eigenvalue (MME) and energy double 

thresholding optimized with the Weighted Chimp 

algorithm. Hybrid MME estimates the number of signals 

present in a frequency band by calculating the eigenvalues 

of the signal's covariance matrix and comparing them to a 

threshold. This method is combined with energy double 

thresholding (EDT), which compares the received signal's 

energy with two predefined thresholds to detect signals. The 

Weighted Chimp algorithm optimizes hybrid MME and 

EDT by mimicking natural selection to find the optimal 

threshold values for the spectrum sensing process. By 

searching a population of candidate threshold values, the 

algorithm selects the ones that improve spectrum sensing 

performance. This combination of techniques can enhance 

spectrum sensing in cognitive radio systems. 

3.1 MME Based Spectrum Sensing Scheme 

The Maximum-Minimum Eigenvalue (MME) detection 

technique is a signal processing approach used for spectrum 

sensing in cognitive radio networks. The mathematical 

formulation of the MME detection technique considering 

the given expressions is as follows: 

1. Acquisition of Received Signal Samples: The 

received signal at the secondary user (SU) is sampled 

over 𝑁𝑠  time instances to obtain a set of received 

signal samples. These samples are denoted as 𝑥(𝑛), 

where 𝑛 is the sample index. 

2. Formation of the Received Signal Covariance 

Matrix, 𝑹𝒙: To obtain the received signal covariance 

matrix, 𝑅𝑥 , the sample covariance of the received 

signal samples is taken into account. The resulting 

matrix is expressed as follows: 

𝑅𝑥(𝑁𝑠) =
1

𝑁𝑠
∑ 𝑥(𝑛)𝑥 † (𝑛)𝐿−2+𝑁𝑠

𝑛=𝐿−1    (1) 

 

Where 𝑥 † (𝑛) denotes the Hermitian transpose of 

𝑥(𝑛), 𝑁𝑠 is the no. of samples used to estimate the 

covariance matrix, and 𝐿 is the index of the first 

sample. 

3. Calculation of the Eigenvalues of 𝑹𝒙 : The 

Eigenvalues of the received signal covariance matrix, 

𝑅𝑥, denoted as 𝜆1, 𝜆2, . . . , 𝜆𝑁, where 𝑁 is the number 

of antennas at the SU, are calculated. These 

Eigenvalues can be obtained by solving the following 

equation: 

𝑅𝑥𝑣 = 𝜆𝑣   (2) 

Where 𝑣 is the corresponding Eigenvector. 

4. Calculation of Maximum and Minimum 

Eigenvalues: The maximum and minimum 

Eigenvalues of 𝑅𝑥 , denoted as 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛 , 

respectively, are calculated. They can be obtained by: 

𝜆𝑚𝑎𝑥 = max(𝜆1, 𝜆2, … , 𝜆𝑁)  (3) 

𝜆𝑚𝑖𝑛 = min(𝜆1, 𝜆2, … , 𝜆𝑁)  (4) 

5. Comparison with Threshold Value: The ratio of the 

maximum and minimum Eigenvalues, denoted as 

max/min, is compared to a pre-defined threshold 

value, 𝛾. The decision rule for signal detection is: 

𝑖𝑓𝑚𝑎𝑥/𝑚𝑖𝑛 > 𝛾, 𝑠𝑖𝑔𝑛𝑎𝑙𝑒𝑥𝑖𝑠𝑡𝑠; 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑠𝑖𝑔𝑛𝑎𝑙𝑑𝑜𝑒𝑠𝑛𝑜𝑡𝑒𝑥𝑖𝑠𝑡.  (5) 

MME detection is a simple and effective technique that can 

be used for spectrum sensing in cognitive radio networks. 

However, it has some limitations such as the need for a large 

number of samples to estimate the covariance matrix 

accurately, and it is sensitive to noise and interference. 

These limitations can be addressed by using advanced 

signal processing techniques such as cooperative sensing, 

multiple antenna systems, and advanced detection 

algorithms. 

3.1.1. Probability Parameters and Threshold Value for 

MME Detection 

The Maximum-Minimum Eigenvalue (MME) detection 

technique relies on probability parameters and threshold 

values to determine whether a primary user (PU) signal is 

present or absent. The mathematical representation of these 

crucial parameters in MME detection is expressed as 

follows: 
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1. False Alarm Probability (𝑷𝒇) : The probability of 

false alarm, denoted as 𝑃𝑓, is defined as the probability 

of wrongly detecting a primary user (PU) signal when 

it is not present. When no signal is present, this 

probability can be computed using the cumulative 

distribution function (CDF) of the ratio of maximum 

and minimum Eigenvalues, which is denoted as 𝜌 =

𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 . Assuming that the received signal 

samples are Gaussian distributed, the CDF of 𝜌 can be 

approximated as: 

𝐹𝜌(𝜌) = 𝑒−𝛼𝑁𝑠(𝜌 − 𝛾)  (6) 

Where, 𝛼 is a constant related to the noise power, 𝑁𝑠 is the 

number of samples used to estimate the covariance matrix, 

and 𝛾 is the threshold value. The false alarm probability can 

be obtained by integrating the CDF over the threshold value, 

γ, to obtain: 

𝑃𝑓 = ∫ 𝐹𝜌(𝜌)𝑑𝜌
∞

𝛾
= 𝑒−𝛼𝑁𝑠(𝛾 − 𝛾) = 1  (7) 

This implies that the false alarm probability is always 1 

when the threshold value is set to the maximum value of ρ, 

which leads to a high probability of false alarm. 

2. Detection Probability (𝑷𝒅) : The detection 

probability, 𝑃𝑑 , is defined as the probability of 

correctly detecting a PU signal when it is present. It 

can be calculated using the CDF of 𝜌 when a signal is 

present. Assuming that the received signal samples are 

Gaussian distributed, the CDF of 𝜌  can be 

approximated as: 

𝐹𝜌(𝜌) = 𝑒−𝛼𝑁𝑠(𝜌−𝛾) + 𝑄√(𝛼𝑁𝑠)(𝜌 − 𝛾 − Δ) 

(8) 

Where, 𝑄(𝑥) is the complementary error function, and Δ is 

a constant related to the signal-to-noise ratio (SNR). The 

detection probability can be obtained by integrating the 

CDF over the threshold value, 𝛾, to obtain: 

𝑃𝑑 = ∫ 𝐹𝜌(𝜌)𝑑𝜌
∞

𝛾

= 𝑒−𝛼𝑁𝑠(𝛾−𝛾) + 𝑄√(𝛼𝑁𝑠)(𝛾 − 𝛾 − Δ) 

(9) 

This implies that the detection probability increases with 

increasing SNR and decreasing false alarm probability. 

3. Threshold Value (𝜸): The threshold value, 𝛾 , is a 

critical parameter in MME detection, which 

determines the decision on the presence or absence of 

a PU signal. The threshold value can be set based on 

the required detection probability and false alarm 

probability. A common approach is to set the threshold 

value such that the detection probability is maximized 

while maintaining a specified false alarm probability. 

The threshold value can be obtained by solving the 

following equation: 

𝑃𝑑(𝛾) = 1 − 𝑃𝑓  (10) 

Where 𝑃𝑑(𝛾) is the detection probability as a function of the 

threshold value, 𝛾. The threshold value can be obtained by 

numerical methods such as bisection or gradient search. 

The false alarm probability, detection probability, and 

threshold value are important parameters in MME 

detection, which can be used to make a decision on the 

presence or absence of a PU signal. These parameters 

depend on the number of samples, noise power, SNR, and 

threshold value, which can be optimized based on the 

required performance. In this paper, the threshold 

optimization is achieved by using chimp optimization 

algorithm which is described in the following subheading.  

3.2 Chimp Optimization Algorithm (COA) 

Chimpanzees, like dolphins, have a brain-to-body ratio 

close to humans, and their DNA is quite similar to our DNA. 

The chimp optimization algorithm is an innovative heuristic 

approach that draws inspiration from the personal 

intelligence and sexual drive of chimpanzees when they 

hunt in teams and exhibit herd intelligence. This algorithm 

differs from previous predator-inspired algorithms. The 

authors of [21] suggested COA in 2020. There are four sorts 

of chimps in the COA to represent varied intelligences: 

aggressor, barrier, predator, and driver. Hunting consists of 

four major steps: chasing, blocking, attacking, and driving 

[21]. 

• Drivers chase after their prey without trying to catch it. 

• Trees are used to create obstacles that impede the 

progress of the prey. 

• The hunters quickly move to capture their prey. 

• Conversely, the predators anticipate that the end of the 

hunt will lure their targets towards them. 

Equations (11) and (12) illustrate the mathematical 

methodology used to update the location of chimps (12). 

𝑋1(𝑡 + 1) = 𝑋𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒(𝑡) − 𝑎1 ∙ 𝑑𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒       (11) 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑡) − 𝑎2 ∙ 𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟        (12) 

𝑋3(𝑡 + 1) = 𝑋ℎ𝑢𝑛𝑡𝑒𝑟(𝑡) − 𝑎3 ∙ 𝑑ℎ𝑢𝑛𝑡𝑒𝑟        (13) 

𝑋4(𝑡 + 1) = 𝑋𝑑𝑟𝑖𝑣𝑒𝑟(𝑡) − 𝑎4 ∙ 𝑑𝑑𝑟𝑖𝑣𝑒𝑟           (14) 

      𝑋𝑐ℎ𝑖𝑚𝑝 =
𝑋1+𝑋2+𝑋3+𝑋4

4
                              (15) 

In the formulations, 𝑡  denotes the current number of 

iterations. This iteration updates dependent on where the 

chimp is. The dynamic coefficient is indicated by 𝑎 , 

whereas the vector is denoted by 𝑑. 
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𝑎1 = 2. 𝑓1. 𝑟1 − 𝑓1, 𝑑𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒

= |𝑐. 𝑋𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒(𝑡) − 𝑚. 𝑋(𝑡)| 

(16) 

𝑎2 = 2. 𝑓2. 𝑟1 − 𝑓2, 𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = |𝑐. 𝑋𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑡) − 𝑚. 𝑋(𝑡)| 

(17) 

𝑎3 = 2. 𝑓3. 𝑟1 − 𝑓3, 𝑑ℎ𝑢𝑛𝑡𝑒𝑟 = |𝑐. 𝑋ℎ𝑢𝑛𝑡𝑒𝑟(𝑡) − 𝑚. 𝑋(𝑡)| 

(18) 

𝑎4 = 2. 𝑓4. 𝑟1 − 𝑓4, 𝑑𝑑𝑟𝑖𝑣𝑒𝑟 = |𝑐. 𝑋𝑑𝑟𝑖𝑣𝑒𝑟(𝑡) − 𝑚. 𝑋(𝑡)| 

(19) 

The coefficient 𝑓 drops non-linearly from 2.5 to 0 as the 

iteration in the following equations continues. 𝑐 = 2𝑟2. 𝑟1 is 

a random value between 𝑐  and 𝑟2 [0,1] . 𝑚  is a chaotic 

vector [22]. 

When 𝜇 ≥ 0.5, the chaotic model is utilised for position 

update for a random number between [0,1] of probability 

discovered in the procedure, as indicated in Equation (20). 

When 𝜇 < 0.5, Equation (15) is still utilised. 

𝑋𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = 𝑐ℎ𝑎𝑜𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒  (20) 

Attackers are rewarded with a greater chunk of meat after 

successful hunting than other chimps because they attempt 

harder to foresee the prey's future actions. This significant 

function is related to age, IQ, and physical ability. 

Chimpanzees might switch between responsibilities while 

hunting or stay with the same duties the entire time. 

3.3 Energy Detection Technique 

Due to its low complexity in implementation, energy 

detection is the most commonly used method of spectrum 

sensing. However, this technique is a rough form of 

detection, as it does not furnish detailed information 

regarding the signals that are present in the spectrum. 

Detection is based on the test of two hypotheses: 

𝐻0 ∶  𝑦(𝑛) = 𝑧(𝑛) 

𝐻1 ∶  𝑦(𝑛) = 𝑥(𝑛) + 𝑧(𝑛)  (21) 

In hypothesis 𝐻0, the signal is not present and the received 

signal 𝑦(𝑛)  is formed only by 𝑧(𝑛)  noise samples. In 

hypothesis 𝐻1, the signal of interest 𝑥(𝑛) is present together 

with the noise. 

The energy detector can be implemented in two main ways, 

exemplified in Figure 1. In the first form, Figure 1 (a), a 

filter is used to select the band of interest. The filter must be 

centered on the frequency of interest, fc, and preferably, 

have a bandwidth equal to the channel of interest. In the case 

of spectrum sensing in a wide range of frequencies, for a 

better estimate of the occupation of the selected band, it is 

interesting that the sweep filter has a narrow band. Another 

possible hypothesis is the existence of a narrowband filter 

bank. After the input filter, the signal passes through an 

analog-to-digital converter and a quadratic elevation device 

and only then the 𝑇𝐸𝐷  test statistic is calculated. 

𝑇𝐸𝐷 =
1

𝐿
∑ |𝑦(𝑛)2|𝐿

𝑛=1   (22) 

 

 

Fig. 1 Energy detector implementation diagrams (a) in time and (b) in frequency 

 

The second proposed architecture, shown in Figure 1 (b), 

proposes the processing of samples at frequency. This 

design offers the capacity to handle multiple signals and 

larger frequency bands simultaneously by processing the 

corresponding frequency ranges of the fast Fourier 

transform, which replaces the selection filter. Within this 

structure, there are two detection variables: the frequency 

resolution of the FFT and the number of samples, 𝑁 , 

utilized to compute the average. Typically, a constant FFT 

size is selected, while the number of samples, 𝑁, is adjusted 

to enhance the detector's performance. 

In both forms of implementation, the 𝑇𝐸𝐷  test statistic is 

compared with a threshold 𝜆𝐸𝐷 to choose between the two 

hypotheses. As the detection threshold depends on the SNR 

of the received signal, the technique's detection capability is 
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impaired in scenarios where the noise is not stationary and 

varies rapidly. 

The main advantage of the energy detection method is its 

low implementation complexity, while its main 

disadvantage is the low accuracy in situations of non-

stationary noise and low SNR. 

In equation (22), 𝑇𝐸𝐷  is the summation of energy of 𝑦(𝑛) 

over 𝐿 samples via energy detection statics. The detection 

probability 𝑃𝑑 is used is defined as follows: 

𝑃𝑑 = 𝑃𝑟{𝑇𝐸𝐷 > 𝛾|𝐻1}     (23) 

Probability of false alarm 𝑃𝑓  is used is defined as follows: 

𝑃𝑓 = 𝑃𝑟{𝑇𝐸𝐷 > 𝛾|𝐻0}    (24) 

The maximum a posteriori (MAP) detector is acknowledged 

as the optimal choice for CR. During MAP detection, the 

chi-square distribution is referred to as the integrator output. 

As the sample size becomes increasingly large, the central 

limit theorem necessitates approximating the chi-square 

distribution with the Gaussian distribution. 

𝑇~ {
𝑁(𝑛𝜎𝑛

2, 2 𝑛𝜎𝑛
4)

𝑁(𝐿(𝜎𝑛
2 + 𝜎𝑠

2), 2 𝑛(𝜎𝑛
2 + 𝜎𝑠

2)2)
            (25) 

Where L represent the number of samples, 𝜎𝑛
2 denote the 

variance of the noise, and 𝜎𝑠
2 stand for the variance of the 

received signal. 

As from the equation (25), (𝜎𝑛
2 + 𝜎𝑠

2), is the total variance 

of signal plus noise as 𝜎𝑡
2 therefore, 

 

𝜎𝑡
2 =  𝜎𝑛

2 + 𝜎𝑠
2 =  𝜎𝑛

2(1 + 𝑆𝑁𝑅) (26) 

According to the Nyquist sampling theorem, the minimum 

sampling rate should be 2𝑊. Therefore, we can express 𝐿 

as 2 𝑇𝑠𝑊, where 𝑇𝑠 represents the observation time and 𝑊 

represents the bandwidth. The false alarm probability can 

be defined in terms of the Q-function: 

𝑃𝑓(𝑊, 𝑇𝑠) = 𝑄 (
γ−2 Ts W𝜎𝑛

2

√4 𝑇𝑠𝑊𝜎𝑛
4

)            (27) 

The noise variance (or power) regulates the threshold value, 

𝛾. Initially, we may set the false alarm probability, 𝑃𝑓, to a 

constant, ensuring it is kept to a minimum to prevent the 

underutilization of transmission opportunities. From 

equation (27), we can determine the threshold value, 𝛾. 

γ =  √4 𝑇𝑠𝑊𝜎𝑛
4𝑄−1(𝑃𝑓) + 2𝑇𝑠𝑊𝜎𝑛

2        (28) 

The Q-function is denoted by 𝑄  and defined as the 

probability of a standard normal random variable (having 

zero mean and unit variance) exceeding 𝑥. 

𝑄(𝑥)
1

√2 𝜋
∫ 𝑒−

𝑡2

2
𝑑𝑡∞

𝑥
  (29) 

 

 

Fig. 2 Energy Detection Flowchart 

 

Start 

Setting up the initial values for the parameters, which include the 

amount of samples, the variance of the noise, and the probability 

of a false alarm 

Energy computation of received PU signal (𝑇𝐸𝐷) 

Threshold Energy computation (𝛾) 

 

Primary signal is 

Absent (H0) 

Primary signal is 

Present (H1) 

Stop 

Yes No 
𝛾>𝑇𝐸𝐷 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 245–257 |  251 

3.4 Proposed Methodology 

The Weighted Chimp Optimization Algorithm (WCOA) is 

a metaheuristic optimization algorithm that takes 

inspiration from the social conduct of chimpanzees. It is 

capable of addressing various optimization issues, including 

those related to cognitive radio energy detection. The 

mathematical representation of WCOA in the context of 

cognitive radio energy detection is as follows: 

Consider a set 𝑋 that comprises 𝑁 potential solutions to the 

energy detection problem. Each solution can be expressed 

as a vector 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝐷]𝑇 , where 𝐷  denotes the 

dimensionality of the problem. The energy detection 

problem can be framed as a binary classification problem 

aimed at identifying the presence or absence of a signal in a 

particular frequency band. The energy detector function can 

be represented using the following equation: 

𝑓(𝑥𝑖) =
1

𝑁𝑡
∑ 𝑦𝑛ℎ𝑛

𝑇𝑥𝑖
𝑁𝑡
𝑛=1   (30) 

Where, 𝑁𝑡  is the number of samples, 𝑦𝑛  is the received 

signal at time 𝑛, ℎ𝑛 is the channel gain at time 𝑛, and 𝑥𝑖 is 

the weight vector of the energy detector. 

The optimization problem is to find the optimal weight 

vector 𝑥∗  that maximizes the energy detector function 

𝑓(𝑥𝑖) , subject to the constraint that ||𝑥𝑖||2

2
= 1 , where 

||𝑥𝑖||2

2
 is the L2-norm of 𝑥𝑖. 

The WCOA algorithm can be summarized as follows: 

1. Initialize the population of chimpanzees with 𝑁 

solutions randomly generated within the constraints of 

the problem. 

2. Evaluate the fitness of each chimpanzee using the 

energy detector function 𝑓(𝑥𝑖). 

3. Sort the population in descending order of fitness. 

4. Select the top 𝑘% of the population as the elite group 

and assign them higher weights. 

5. Randomly select the remaining population and assign 

them lower weights. 

6. Generate a new population by iteratively applying the 

following operations: 

a. Randomly select two chimpanzees from the 

population, 𝑥𝑖 and 𝑥𝑗, and combine them to produce a 

new solution 𝑥𝑘  using crossover and mutation 

operations. 

b. Evaluate the fitness of 𝑥𝑘  using the energy detector 

function 𝑓(𝑥𝑖). 

c. Replace a randomly selected chimpanzee from the 

population with 𝑥𝑘  if it has higher fitness than the 

selected chimpanzee. 

7. Continue executing steps 3-6 until the stopping 

criterion is achieved (such as reaching the maximum 

number of iterations or observing convergence in the 

fitness values). 

The weights assigned to each chimpanzee in step 4 are used 

to bias the selection process in step 6, such that the elite 

group has a higher probability of being selected for 

reproduction than the remaining population. This approach 

helps to prevent premature convergence and encourages 

exploration of the search space. 

3.4.1. Hybrid Threshold Based Energy Detection 

In this model there is addition of one more threshold to 

single threshold, represented as 𝜆𝑡ℎ1 and 𝜆𝑡ℎ2. If 𝐸 > 𝜆𝑡ℎ2, 

it implies that the channel is employed by the PU. If 𝐸 <

𝜆𝑡ℎ1, it means the channel is available. If 𝜆𝑡ℎ1 < 𝐸 < 𝜆𝑡ℎ2, 

spectrum sensing is executed once more. 

 

Fig.3 Double threshold model 

The detection threshold is given by: 

𝜆𝐷 =
2

N
ln(𝜆)+ln(1+𝛾)

𝛾

𝜎𝑢
2 (1+𝛾)

  (31) 

And the received instantaneous SNR is given by: 

𝛾 =
𝜎𝑠

2

𝜎𝑢
2  (32) 

For double threshold, 

𝜆𝑡ℎ1 = 𝑚𝜆𝐷 

𝜆𝑡ℎ2 = 𝑛𝜆𝐷    (33) 

 

This method was used to minimize the collision between 

primary and secondary user. And check probability of 

detection at low SNR values. At high SNR signal 

performance is good but at low SNR performance degrades. 

Using hybrid threshold there is increase in probability of 

detection and collision rate is minimized. Monte Carlo 

simulations were carried out taking, 𝑁  (number of 

samples=1000), 𝑃𝑓=0.01 and 𝑚 == 1, n=0.25. 

Here the double threshold is also optimized by chimp 

optimization algorithm, described in previous headings. 

The fitness function for cognitive radio energy detection 

using WCOA depends on the specific problem and design 

constraints. However, a general mathematical formula for 

the fitness function can be expressed as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐹(𝑃𝑑 , 𝐸) (34) 

𝐻0     𝐻1 

𝐸𝑡ℎ1            𝐸𝑡ℎ2 
𝐸 
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Where 𝑃𝑑 is the probability of detection and 𝐸 is the energy 

consumption. The goal is to maximize 𝑃𝐷𝑅  while 

minimizing 𝐸. 

A common approach to implement the fitness function is to 

assign weights to 𝑃𝑑 and 𝐸, which can be tuned based on 

the importance of each objective. For example, if energy 

consumption is a critical constraint, the weight of 𝐸 in the 

fitness function can be higher than that of 𝑃𝑑. 

The fitness function 𝐹 can be defined as a weighted sum of 

𝑃𝑑 and 𝑃𝑓: 

 

𝐹 = 𝑤1𝑃𝑑 − 𝑤2𝐸  (35) 

 

Where 𝑤1  and 𝑤2  are the weights assigned to 𝑃𝑑  and 𝐸 , 

respectively. The values of 𝑤1  and 𝑤2  can be determined 

based on the trade-off between 𝑃𝑑 and 𝐸. 

The goal of the WCOA is to find the optimal threshold value 

𝑇  that maximizes the fitness function 𝐹 . This can be 

achieved by iteratively generating a population of candidate 

solutions, evaluating their fitness using the above formula, 

selecting the best individuals, and applying genetic 

operators such as mutation and crossover to generate new 

offspring. The optimal threshold value 𝑇 can then be used 

to determine the presence or absence of a signal on each 

channel, and allocate the available spectrum accordingly. 

 

 

Fig. 4 Flowchart of double threshold-based energy detection 

4. Simulation and Results 

Figure 5 shows comparative graph of SNR (dB) vs. 𝑃𝑑 for 

single threshold-based energy detection scheme using 

chimp optimization at 𝑃𝑓=0.01. 
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Fig. 5 Probability of detection graph for single threshold 

based energy detection using chimp optimization at 

𝑃𝑓=0.01 

The relationship between the probability of detection and 

SNR can be observed to be direct, i.e., as SNR increases, 

the probability of detection also increases. Figure 5 

demonstrates that in the optimized threshold simulation, the 

value of 𝑃𝑑  is notably higher at -10dB SNR level in 

comparison to theoretical and single threshold simulation, 

indicating the superior performance of the proposed method 

at higher SNR. 

Figure 6 shows that the chimp optimization algorithm 

performs well by providing a higher probability of detection 

at various SNR values. 

 

Fig. 6 Probability of detection graph for MME and Energy 

detector based hybrid threshold with chimp optimization at 

𝑃𝑓=0.01 

 

 

Fig 7 Comparative graph for probability of detection 

A graph in Figure 7 illustrates the relationship between SNR 

(dB) and 𝑃𝑑  for three different methods: single threshold, 

hybrid threshold without optimization, and COA-optimized 

hybrid threshold. As expected, the probability of detection 

increases with an increase in SNR value. The graph reveals 

that the probability of detection in the hybrid threshold is 

higher than the single threshold, while the COA-optimized 

hybrid threshold shows the best performance among the 

three methods, with the highest probability of detection at 

any SNR value. 

 

 

Fig 8 Comparative graph for probability of misdetection 

The graph in Figure 8 provides a comparison of SNR (dB) 

versus 𝑃𝑚  for single threshold, hybrid threshold without 

optimization, and COA-optimized hybrid threshold. As the 

SNR value increases, the probability of misdetection 

decreases. The hybrid threshold shows a lower value of 𝑃𝑚 

than the single threshold, whereas the COA-optimized 

hybrid threshold outperforms the other two methods by 

displaying a lower probability of misdetection at any SNR 

value. 
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Fig. 9 Comparative graph for probability of misdetection at various values of 𝑃𝑓 

 

Fig. 10 Probability of detection graph for MME and Energy detector-based hybrid threshold without optimization at 

various values of 𝑃𝑓 

 

Fig. 11 Probability of detection graph for MME and Energy detector-based hybrid threshold with chimp optimization at 

various values of 𝑃𝑓 

 

Fig. 12 Probability of misdetection graph for MME and Energy detector-based hybrid threshold with chimp optimization at 

various values of 𝑃𝑓 
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At different values of 𝑃𝑓, Figure 11 and Figure 12 illustrate 

the graphs of the probability of detection and the probability 

of misdetection, respectively, for the hybrid threshold based 

on the proposed MME and Energy detector with chimp 

optimization. These two graphs confirm the superiority of 

proposed hybrid approach while comparing with the 

simulation results of Alom et al. [15] and Sarala et al., [23]. 

 

Table 1. Probability of detection under different probability of false alarm 

SNR(dB) Probability of detection at 𝑷𝒇 =

𝟎. 𝟎𝟏 

Probability of detection at 𝑷𝒇 =

𝟎. 𝟎𝟓 

 

Probability of detection at 

𝑷𝒇 = 𝟎. 𝟏 

 

-20 0.978 0.984 0.989 

-19 0.987 0.99 0.987 

-18 0.99 0.986 0.986 

-17 0.991 0.987 0.993 

-16 0.993 0.993 0.995 

-15 0.992 0.996 0.996 

-14 0.993 0.998 0.997 

-13 0.997 0.996 1 

-12 0.997 0.996 0.997 

-11 1 1 0.999 

-10 1 1 1 

-9 1 1 1 

-8 1 1 1 

-7 1 1 1 

-6 1 1 1 

-5 1 1 1 

-4 1 1 1 

-3 1 1 1 

-2 1 1 1 

-1 1 1 1 

0 1 1 1 

 

Table 2. Comparative analysis of various methods for detecting the probability in the presence of uncertain noise 

SNR 

(dB) 

Probability of 

detection [20] 

Probability of 

detection [23] 

Probability of 

detection [24] 

Probability of 

detection [25] 

Proposed 

-20 0.2 0.3 0.4 0.1 0.978 

-15 0.6 0.5 0.7 0.5 0.992 

-10 0.8 0.7 0.9 0.6 1 

-5 0..8 0.8 1 0.8 1 
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WCOA, is able to perform well even under challenging 

conditions, such as a low false alarm probability (pf=0.01). 

This is achieved by dynamically determining thresholds for 

energy detection based on the level of noise uncertainty, 

which allows for optimal extraction of trusted nodes to 

make accurate decisions. 

Moreover, the assertion implies that other methods are 

inferior to the WCOA approach in achieving higher 

detection probability, even when subjected to the same false 

alarm probability. This demonstrates that the WCOA 

method is proficient in detecting desired signals while 

minimizing false alarms. 

The findings from [20] suggest that the single threshold 

adaptive spectrum sensing approach is limited in its ability 

to achieve a high probability of detection at low SNR. In 

contrast, the work presented in [24] outperforms the method 

described in [25] at -20dB SNR. The proposed scheme is 

able to achieve the same level of sensing performance with 

fewer samples than the other methods, especially in low 

SNR conditions. For example, at SNR = -10 dB, the 

proposed scheme yields a probability of detection of 1, 

whereas the other methods do not. Therefore, the proposed 

scheme provides a significant complexity advantage over 

the other methods, as using a large number of samples is not 

preferred in cooperative spectrum sensing design due to its 

potential impact on spectrum efficiency. 

5. Conclusion 

This study introduces a novel approach to spectrum sensing 

in cognitive radio systems with uncertain noise, which is 

based on a hybrid threshold detection model using MME 

and energy detection. The proposed model offers an 

adaptive double threshold method that considers the trade-

off between detection probability and error rate to improve 

sensing performance in low SNR conditions. The results 

obtained from the simulation demonstrate that the proposed 

model performs better than the current methods. At low 

SNR values of -18 dB and -20 dB, the detection probability 

(PD) is improved by 39.63% and 27.22%, respectively, in 

comparison to the existing double threshold method. 

Additionally, uncertain noise does not affect the optimal 

threshold expression, which is capable of reducing the 

probability of error for SNR values below -5 dB. Notably, 

the derived optimal threshold expression is shown to 

achieve the minimum error rate of 0.3 at an optimal 

threshold for uncertain noise at SNR = 20 dB. 

Furthermore, the proposed model reduces the number of 

required samples for accurate sensing, depending on the 

SNR and noise level uncertainty. The simulation results 

demonstrate that the proposed system effectively detects 

and investigates spectral gaps in areas with low signal-to-

noise ratio, outperforming previous research works [15] 

[23] in terms of probabilities of detection and misdetection. 
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