
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering                                    IJISAE, 2023, 11(9s), 267–276 |  267 

An Efficient Low-Loss Data Transmission Model for Noisy 

Networks 

Pallavi Parlewar1,Vandana Jagtap2, Uma Pujeri3, Masira M. S. Kulkarni4, Dr. Shrinivas T. 

Shirkande5, Ambuj Tripathi6 

Submitted: 24/04/2023      Revised: 27/06/2023           Accepted: 07/07/2023 

Abstract: Now the Internet become fully-grown, video streaming has mature in popularity and at present consumes more 

bandwidth than other applications. Due to the growing demand for high quality and dependable image and video data 

transmission, the need for efficient and low-loss data transmission models in noisy networks has become increasingly 

crucial. Existing models, however, have limitations including high loss and poor performance in noisy network 

environments. To overcome these limitations, we propose a novel data transmission model that employs intelligent 

redundancy injection on windowed samples that overlap and use contour let transforms for encoding and decoding the data 

samples. Our proposed model employs an intelligent redundancy embedding process for transmitted data, thereby improving 

the transmission's reliability and quality levels. The model's Peak Signal-to-Noise Ratio (PSNR) exceeds 40 dB, indicating a 

high level of data integrity and quality. Real-time use cases for this model include video conferencing, live streaming, and 

remote sensing applications where the transmission of high-quality image and video data must be both reliable and efficient. 

The ability of the proposed model to operate effectively in noisy network environments renders it a valuable resource for 

numerous applications in a variety of fields. In conclusion, the proposed model represents a substantial improvement over 

existing data transmission models, as it achieves high level of reliability, efficiency, and quality in noisy network 

environments. 

Keywords: Noisy Networks, Intelligent Redundancy Injection, Whale Optimization Algorithm, Overlapping Windowed 

Samples, Contour let transform 

 

1. Introduction 

Demand for reliable and effective data transmission 

models has significantly increased over the past few 

years, especially in fields like remote sensing, video 

conferencing, and live streaming. The shortcomings 

of current models, such as high loss and subpar 

performance in noisy network environments, are a 

hindrance. We suggest a novel data transmission 

model that makes use of intelligent redundancy 

injection on overlapping windowed samples to get 

around these restrictions [1, 2, 3]. 

The suggested model makes use of the Whale 

Optimization Algorithm (WOA) to intelligently 

incorporate redundancy into the transmitted data, 

enhancing the quality and reliability of the 

transmission. Peak Signal-to-Noise Ratio (PSNR) of 

the model exceeds 40 dB, signifying high levels of 

data quality and integrity. 

An effective and low-loss data transmission model is 

particularly necessary in busy network environments 

where data transmission can be hampered by 

elements like interference, latency, and packet loss. 

By incorporating intelligent data redundancy, which 

lessens the effects of noise and other disruptions, the 

proposed model offers a solution to these issues for 

different scenarios. 

Real-time applications like video conferencing and 

live streaming demand the reliable, effective 

transmission of high-quality image and video data. 

The proposed model is a useful tool for these 

applications due to its performance in busy network 

environments. Furthermore, the model's use of 

overlapping windowed samples ensures the 

effectiveness and efficiency of the transmitted data 

for a variety of use cases. 
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In comparison to current models like Deep Neural 

Network-Based Image Denoising Process (DNN 

IDP) [4, 5, 6], the suggested data transmission model 

has a number of advantages. It improves data 

integrity and quality, which increases its 

effectiveness and dependability in busy network 

environments. Additionally, transmitted data is 

strengthened and more resilient to interruptions 

thanks to the model's use of intelligent redundancy 

injection process. The proposed model as discussed 

in this text have a wide variety of real-time 

applications make it an important tool for many 

industries, including video conferencing, live 

streaming, and remote sensing scenarios. 

In conclusion, by offering an efficient, low-loss, 

dependable, and successful solution in noisy network 

environments, the proposed data transmission model 

offers an effective solution& improvements over 

existing model set. It is a useful tool for real-time 

applications because it uses intelligent redundancy 

injection and overlapping windowed samples to 

ensure the high quality and integrity of transmitted 

datasets and samples.  

 

2. Literature Review 

Existing data transmission models in noisy networks 

can be broadly categorized as either error correction 

codes (ECC) or channel coding techniques. In order 

for the receiver to recognize and fix errors introduced 

during transmission, error correction codes entail the 

addition of redundancy to transmitted data. ECC 

models like Reed-Solomon codes, convolutional 

codes, and Turbo codes have been widely used in a 

variety of applications. ECC models have drawbacks 

like high computational complexity, a finite capacity 

for error correction, and the requirement for prior 

knowledge of the channel sets' statistical 

characteristics via use of Decomposition Model of 

Hybrid Variation-Sparse Representations (DMH 

VSR) [7, 8, 9]. 

To make transmitted data more resistant to channel 

noise and other disturbances, channel-coding 

techniques encrypt the data. Popular channel coding 

methods include Binary Phase Shift Keying (BPSK), 

Quadrature Phase Shift Keying (QPSK), and 

Orthogonal Frequency Division Multiplexing 

(OFDM). Noise's effects on transmitted datasets and 

samples are minimized by channel coding techniques 

that are effective. Existing models, however, have 

limitations, such as high computational complexity 

and low levels of error-correction capacity levels via 

use of Deep Neural Networks (DNNs) [10, 11, 12, 

13]. 

Techniques like ECC and channel coding have been 

successful at minimizing the impact of noise on 

transmitted data, but they have limitations in terms of 

computational complexity, error-correcting power, 

and other aspects [14, 15, 16]. Due to these 

limitations, novel methods have been created, such as 

intelligent redundancy injection on overlapping 

windowed samples using an intelligent optimization 

process [17, 18, 19, 20] 

By incorporating intelligent redundancy injection, 

which enhances the dependability and quality of the 

transmitted data, and the use of overlapping 

windowed samples [21, 22, 23, 24], which minimizes 

the amount of data that must be transmitted, the 

proposed model overcomes the limitations of 

existing models [25, 26, 27]. Additionally, the 

intelligent optimization process guarantees that the 

redundancy is optimally incorporated into the 

transmitted data, increasing the model's effectiveness 

[28, 29, 30]. 

Despite the fact that ECC and channel coding 

techniques have been effective at reducing the impact 

of noise on transmitted data, they have drawbacks 

like high computational complexity, limited error-

correction capability, and the need for prior 

knowledge of the statistical properties of the channel. 

The proposed model gets around these restrictions by 

incorporating intelligent redundancy injection on 

overlapping windowed samples using an intelligent 

optimization process, creating a more dependable, 

efficient, and effective data transmission model for 

real-time scenarios. 

 

3. Proposed Design Of An Efficient 

Low-Loss Data Transmission Model For 

Noisy Networks Via Intelligent Redundancy 

Injection &Contourlet Transforms On 

Overlapping Windowed Samples 

Based on the review of existing models used for low-

loss data transmission, it can be observed that these 

models are either highly complex, or showcase lower 

efficiency when evaluated on real-time network 

deployments. To overcome these issues, this section 

discusses design of an efficient low-loss data 

transmission model for noisy networks via intelligent 

redundancy injection &contourlet transforms on 

overlapping windowed samples. As per figure 1, it 

can be observed that the proposed model initially 

converts input images into contourlet components. 
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These components are processed via an intelligent 

redundancy injection process, which works on 

overlapping samples. This process encoding 3x3 

overlapping windows into 5x4 overlapping windows, 

which are cascaded to form a larger image that can 

be transmitted over noisy networks. The received 

image is reconstructed via an efficient & augmented 

decoding process, which assists in almost lossless 

regeneration of transmitted images. These images are 

further decoded by inverse contourlet operations, 

which assists in high-fidelity representation of 

received images. 

The Contourlet transform is a multi-resolution and 

directionally selective image representation method 

that combines wavelet and Laplacian pyramids with 

a directional filter bank. It provides an effective way 

to capture both the local texture and global structure 

of an image. To perform contourlet analysis, the 

input image is convolved with a high-pass filter, H, 

to obtain the high-pass residual image (𝐿0) via 

equation 1, 

𝐿0 =  𝐼 ∗  𝐻 … (1) 

The L0 image is down-sampled by a factor of 2 to 

obtain L1, and this process is repeated for a desired 

number of levels. The input image is convolved with 

a low-pass filter, L, to obtain the low-pass residual 

image(W0) via equation 3, 𝑊0 =  𝐼 ∗  𝐿 … (4) 

 

Fig 1. Design of the proposed noisy channel 

transmission process 

This image is down-sampled by a factor of 2 to 

obtain W1, and process is repeated with the low-pass 

filter and down-sampling operations for a desired 

number of levels.For each level of the Laplacian 

pyramid (L0, L1, ..., L), compute the directional filter 

bank response using filters in multiple orientations 

via equation 5, 

𝐿𝐷𝑘 =  𝐼 ∗  𝐻𝑘, 𝑓𝑜𝑟 𝑘 =  0 𝑡𝑜 𝑛 − 1… (5) 

Where, 𝐷𝑘 represents the directional sub-band 

responses for a specific orientation (k), I is the input 

image, and Hkis the corresponding directional filter 

for that set of orientations.  

Similarly, for each level of the wavelet pyramid (W0, 

W1, ..., W), compute the directional filter bank 

response using filters in multiple orientations via 

equation 6, 

𝑊𝐷𝑘 =  𝐼 ∗  𝐻𝑘, 𝑓𝑜𝑟 𝑘 =  0 𝑡𝑜 𝑛 − 1… (6) 

Based on these values, apply a thresholding function 

to the coefficients of each directional subband 

obtained from the directional filter bank, and perform 

a synthesis operation to combine the thresholded 

directional subbands and the low-pass residual 

images obtained from the wavelet pyramid via 

equation 7, 

𝐼𝑟 =  𝑠𝑢𝑚(𝐶𝑘 ∗  𝐺𝑘) +  𝑊0…(7) 

Where, 𝐼𝑟 represents the reconstructed image, Ck 

represents the thresholded directional subband 

coefficients, Gk denotes the corresponding inverse 

directional filters for each orientation, and W0 

represents the low-pass residual image from the 

wavelet pyramids.Thereconstructed image is 

segregated into overlapping windows of size 3x3, 

and passed through an efficient post-processing 

engine, that works via the following process, 

• Let the 3x3 window of the reconstructed image 𝐼𝑟 be 

represented as follows, 

𝑎 =  𝐼𝑟(1,1) 

𝑏 =  𝐼𝑟(1,2) 

𝑐 =  𝐼𝑟(1,3) 

𝑑 =  𝐼𝑟(2,1) 

𝑒 =  𝐼𝑟(2,2) 

𝑓 =  𝐼𝑟(2,3) 

𝑔 =  𝐼𝑟(3,1) 

ℎ =  𝐼𝑟(3,2) 
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𝑖 =  𝐼𝑟(3,3)… (8) 

• Then the output window is calculated via equation 9, 

𝐼𝑜𝑢𝑡 =  [0, 𝑎 + 𝑏 + 𝑐, 𝑑 + 𝑒 + 𝑓, 𝑔 + ℎ + 𝑖, 0;  

    𝑎, 𝑏 + 𝑑, 𝑐 + 𝑒 + 𝑔, 𝑓 + ℎ, 𝑖; 

    0, 𝑎 + 𝑑 + 𝑔, 𝑏 + 𝑒 + ℎ, 𝑐 + 𝑓 + 𝑖, 0; 

    𝑔, 𝑑 + ℎ, 𝑎 + 𝑒 + 𝑖, 𝑏 + 𝑓, 𝑐]… (9) 

• In Equation 9, all pixels of the 3x3 window are used 

at-least 3 times, which adds a level of redundancy in 

each of the windows, for efficient reconstruction 

operations. 

• This process is repeated for all overlapping windows, 

and an output image is generated, which is used for 

transmission purposes. 

Let this image be passed through a noisy channel, 

and 𝑛 be the level of noise which can include 

Additive White Gaussian Noise (AWGN), Rayleigh, 

Rician, Nakagami M, and other noise types. Upon 

reception of the signal, it is again segregated into 

non-overlapping windows of 5x4 sizes, and for each 

of the windows, a 3x3 matrix is formed via equations 

10, 11, 12, 13, 14, 15, 16, 17, 18 & 19 as follows, 

𝑔 =  𝐼𝑛𝑜𝑖𝑠𝑒(4, 1)… (10) 

𝑎 =  𝐼𝑛𝑜𝑖𝑠𝑒(2, 1)… (11) 

𝑖 =  𝐼𝑛𝑜𝑖𝑠𝑒(2, 5)… (12) 

𝑐 =  𝐼𝑛𝑜𝑖𝑠𝑒(4, 5)… (13) 

𝑏 =  𝐼𝑛𝑜𝑖𝑠𝑒(1,2) − 𝑎 − 𝑐 … (14) 

𝑒 =  𝐼𝑛𝑜𝑖𝑠𝑒(4,3) − 𝑎 − 𝑖 … (15) 

ℎ =  𝐼𝑛𝑜𝑖𝑠𝑒(3,3) − 𝑏 − 𝑒… (16) 

𝑑 =  𝐼𝑛𝑜𝑖𝑠𝑒(4,2) − ℎ… (17) 

𝑓 =  𝐼𝑛𝑜𝑖𝑠𝑒(2,4) − ℎ… (18) 

𝐼𝑟𝑒𝑐𝑜𝑛 =  [𝑎, 𝑏, 𝑐; 

 𝑑, 𝑒, 𝑓;  

𝑔, ℎ, 𝑖] … (19) 

Where, 𝐼𝑛𝑜𝑖𝑠𝑒 represents the noisy window, while 

𝐼𝑟𝑒𝑐𝑜𝑛 represents the reconstructed window 

samples. Based on this evaluation, pixels are 

regenerated, and a set of overlapping pixels are 

obtained for individual image positions. For instance, 

due to an overlap of 3x3 window, there are 3 

different values available for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ & 𝑖, 

which are processed via equation 20, if at-least 2 

pixels are same, or via equation 21 if all pixels are 

different, as follows, 

𝑝(𝑜𝑢𝑡) = 𝑀𝑜𝑑𝑒(𝑝(𝑜𝑣𝑒𝑟𝑙𝑎𝑝))… (20) 

𝑝(𝑜𝑢𝑡) =∑
𝑝(𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 𝑖)

𝑁

𝑁

𝑖=1

… (21) 

Where, 𝑁 represents total number of overlap pixels. 

This process is repeated for each of the pixels, and 

contourlet image is obtained under different noise 

types. This image is processed via an Inverse 

Contourlet Transform, where, an inverse 

thresholding function to the directional subband 

coefficients obtained from the Contourlet transforms. 

This operation aims to remove the effects of 

thresholding and restore the original coefficients.For 

each orientation k, convolve the inverse thresholded 

coefficients (Ck), with the corresponding inverse 

directional filter (Gk), to obtain the inverse 

directional subband response (Dk) via equation 22, 

𝐷𝑘 =  𝐶𝑘 ∗  𝐺𝑘 … (22) 

Up-sample the low-pass residual image, W0, by a 

factor of 2 to obtain W1, and for each level of the 

wavelet pyramid (W1, W2, ..., W), convolve the 

corresponding inverse wavelet filter, L, with the up-

sampled low-pass residual image to obtain the 

inverse low-pass residual image(𝐼(𝑤𝑎𝑣𝑒𝑙𝑒𝑡)) via 

equation 23, 

𝐼(𝑤𝑎𝑣𝑒𝑙𝑒𝑡) =  𝑊 ∗  𝐿 … (23) 

For each level of the Laplacian pyramid (L1, L2, ..., 

L), up-sample the inverse directional subband 

response, Dk, by a factor of 2, and convolve the up-

sampled Dk with the corresponding inverse high-

pass filter, H, to obtain the inverse high-pass residual 

image, 𝐼(𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛) via equation 24, 

𝐼(𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛) =  𝐷𝑘 ∗  𝐻 … (24) 

Based on this, add the inverse low-pass residual 

image, to the inverse high-pass residual image, at 

each level of the Laplacian pyramids to obtain the 

output image via equation 25, 

𝐼(𝑜𝑢𝑡) = 𝐼(𝑤𝑎𝑣𝑒𝑙𝑒𝑡) + 𝐼(𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛) … (25) 

Due to these operations, the proposed model is 

capable of mitigating noise effects and reconstruct 

images even under noisy channels. Performance of 

this model was evaluated on different datasets under 

multiple noise types, and compared with existing 

models in the next section of this text. 

4. Result Analysis and Experimentation 

The proposed model initially represents input images 

into contours via contourlet transforms, which are 
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converted into patch-based features via use of an 

efficient overlapping window-based calculation 

process. This process converts 3x3 overlapping 

pixels into 5x4 non-overlapping pixelswhichare 

passed through different noise channels. To validate 

performance of this model, it was evaluatedon 

AWGN, Rayleigh, Rician, and Nakagami M noise 

sources. A total of 150k images were collected from 

ImageNet Database, and noise levels were linearly 

varied between 1% to 20% via stochastic selection of 

noise types. Results of the denoising process can be 

observed from figure 2 (a), 2 (b) &2 (c) where 

different noise typesare applied and their results were 

obtained in terms of reconstructed image sets. 

 

Fig 2 (a). Results with zero noise levels 

 

Fig 2 (b). Results with low noise levels 

 

Fig 2 (c). Results with high noise levels 

Based on this visual analysis, it can be observed that 

the proposed model is able to denoise input images 

with high efficiency levels. These levels were also 

estimated in terms of Peak Signal to Noise Ratio 

(PSNR) via equation 26, and compared with DNN 

IDP [6], DMH VSR [8], and DNN [12] on the same 

image sets.  

𝑃𝑆𝑁𝑅

= 20

∗ log10

(

 
 
 
 
 
 
 

255

√

1

𝑅∗𝐶∗𝑐𝑜𝑙
∗

∑ ∑ ∑ [
𝐼(𝑠𝑟)(𝑟, 𝑐, 𝑐𝑜𝑙)

−𝐼(𝑝)(𝑟, 𝑐, 𝑐𝑜𝑙)
]
2

𝑐𝑜𝑙
𝑐𝑜𝑙=1

𝐶
𝑐=1

𝑅
𝑟=1

)

 
 
 
 
 
 
 

…(26)

 

Where, 𝑅, 𝐶, 𝑐𝑜𝑙 are the number of rows, columns 

and colors, while 𝐼(𝑠𝑟) & 𝐼(𝑝) are the reconstructed 

& original Images. The estimated PSNR levels (on Y 

Axis) under different noise levels (on X Axis) can be 

observed from figure 3 as follows, 

 

Fig 3. PSNR for different noise levels 
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On the basis of this evaluation and figure 3, it can be 

seen that the proposed model exhibited 4.5% better 

PSNR than DNN IDP [6], 8.3% better PSNR than 

DMH VSR [8, and 5.9% better PSNR than DNN [12] 

across various image types. This performance 

enhancement is a result of the incorporation of 

contourlet and the proposed overlapping process, 

which aids in the continuous improvement of the 

model's performance across a variety of datasets and 

samples. Similarly, the delay required for denoising 

analysis can be seen in Figure 4, 

 

Fig 4. Delay required for different noise levels 

Based on this assessment and figure 4, it is clear that 

the proposed model performed 8.3% faster than 

DNN IDP [6], 5.5% faster than DMH VSR [8], and 

4.9% faster than DNN [12] under various image 

types. The proposed overlapping process and 

incorporation of the contourlet-based representation, 

which help to continuously improve model 

performance under various datasets and samples, are 

responsible for the performance improvement. 

Consequently, the model is very helpful in high-

speed denoising scenarios. Similar to that, figure 5 

illustrates precision during denoising analysis as 

follows, 

 

Fig 5. Precision obtained during the denoising 

process 

On the basis of this evaluation, it can be seen that the 

proposed model exhibited 5.4% better denoising 

analysis precision than DNN IDP [6], 8.5% better 

denoising analysis precision than DMH VSR [8, and 

6.5% better denoising analysis precision than DNN 

[12] for various image types. This performance 

enhancement is a result of the incorporation of 

Contourlet-based representation with the proposed 

overlapping process, which aids in the continuous 

improvement of model performance across various 

datasets and samples. Consequently, the model is 

extremely useful for scenarios involving high-

precision denoising analysis. Similarly, the accuracy 

of denoising analysis can be observed in the 

following figure 6, 

 

Fig 6. Accuracy obtained during the denoising 

process 

According to this assessment and figure 6, it can be 

seen that the proposed model demonstrated denoising 

analysis accuracy that was 9.5% better than DNN 

IDP [6], 4.5% better than DMH VSR [8], and 8.3% 

better than DNN [12] for various image types. The 

proposed overlapping process and contourlet 

integration, which help to continuously improve 

model performance under various datasets and 

images under real-time samples, are to blame for this 

performance improvement. Consequently, the model 

is very helpful in scenarios involving high-accuracy 

denoising analysis. Similar to this, figure 7's SSIM 

(Structural Similarity) of the denoising analysis can 

be seen as follows, 
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Fig 7. SSIM obtained during the Denoising process 

On the basis of this evaluation, the proposed model 

demonstrated 4.9% better SSIM of Denoising 

analysis than DNN IDP [6], 9.5% better SSIM of 

Denoising analysis than DMH VSR [8, and 10.4% 

better SSIM of Denoising analysis than DNN [12] 

across various image types. This performance 

improvement is a result of the incorporation of 

contour let and the proposed overlapping process, 

which aids in the continuous improvement of model 

performance across various datasets and images. 

Thus, the model is exceptionally useful for high-

SSIM denoising analysis scenarios. As a result of 

these enhancements, the proposed model is 

applicable to a wide range of real-time image 

denoising scenarios. 

5. Conclusion and Future Work 

This paper presents a novel model for data 

transmission in noisy networks. Intelligent 

redundancy injection and contourlet transforms on 

overlapping windowed samples are incorporated into 

the proposed model, resulting in significant 

performance enhancements over existing methods. 

The experimental outcomes demonstrate the 

effectiveness of the proposed model based on a 

variety of evaluation metrics. The model achieves a 

peak signal-to-noise ratio (PSNR) that is 4.5% better 

than DNN IDP [6], 8.3% better than DMH VSR [8, 

and 5.9% better than DNN [12] across various image 

types. This increase in PSNR demonstrates the 

model's capacity to maintain image quality and 

reduce noise distortion. 

Moreover, the proposed model exhibits improved 

delay, precision, accuracy, and structural similarity 

(SSIM) performance during the Denoising 

procedure. The model outperforms DNN IDP [6], 

DMH VSR [8], and DNN [12] by 8.3% regarding 

delay, 5.4% regarding precision, 9.5% regarding 

accuracy, and 4.7% regarding SSIM. These 

enhancements demonstrate the model's capacity to 

perform Denoising analysis with greater precision, 

accuracy, and preservation of structural similarity 

than existing methods. 

The incorporation of contour let-based representation 

and the proposed overlapping process significantly 

contribute to the model's performance improvement 

across multiple datasets and samples. These 

enhancements render the proposed model highly 

applicable to high-speed Denoising scenarios, high-

precision Denoising analyses, accurate Denoising 

analyses, and Denoising analyses with a high SSIM 

levels. 

Overall, the presented paper addresses the challenges 

of Denoising in noisy networks by developing an 

efficient low-loss data transmission model. The 

experimental evaluations demonstrate that the 

proposed model is superior to existing techniques in 

terms of PSNR, delay, precision, accuracy, and 

SSIM. The model's ability to consistently improve 

performance across a variety of image types and real-

time samples bolsters its applicability and potential 

for deployment in a wide variety of real-time image 

Denoising scenarios. 

Future Scope 

This paper opens up multiple avenues for future 

research and development in the fields of image 

noise reduction and data transmission. Based on the 

findings and ramifications of the paper, the following 

are some possible future research areas, 

Optimization techniques: Although the proposed 

model's performance has already been enhanced, 

there is room for further improvement. Future 

research can concentrate on exploring advanced 

optimization techniques, such as evolutionary 

algorithms and met heuristic algorithms, to improve 

the efficacy and efficiency of the proposed model. 

These optimization techniques can be used to fine-

tune the parameters and architecture of a model for 

improved Denoising performance. 

Adaptability to various noise types: This paper 

evaluates the performance of the proposed model 

across various image types, but future research can 

investigate its adaptability to different noise types. 

The robustness and generalizability of the model can 

be evaluated using datasets with specific noise 
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characteristics, such as Gaussian noise, salt-and-

pepper noise, or Poisson noise. In addition, the model 

can be expanded to handle mixed-noise scenarios in 

which multiple noise types coexist in real-time use 

cases. 

Parallel processing and hardware acceleration: As the 

demand for real-time denoising applications 

increases, future research can investigate parallel 

processing techniques and hardware acceleration to 

further improve the speed and efficiency of the 

proposed model. Using parallel computing 

architectures, such as GPUs or FPGAs, can 

significantly accelerate the Denoising process and 

enable the model to process larger datasets and 

images with higher resolutions. 

Transfer learning and fine-tuning: Transfer learning 

is a promising deep learning technique that employs 

pre-trained models on large datasets to improve the 

performance on smaller, specialized datasets. In the 

context of the proposed model, future research can 

investigate the potential of transfer learning 

techniques. By pre-training the model on a large 

dataset of Denoising examples, it can be fine-tuned 

for specific noise types or image domains, allowing 

for enhanced performance and faster convergence 

levels. 

Implementation in the real world and practical 

applications: In controlled experimental settings, the 

paper demonstrates the efficacy of the proposed 

model. Future research can concentrate on evaluating 

the performance of the model in real-world scenarios 

and practical applications. Insights into the model's 

performance, limitations, and potential for 

integration with existing Denoising systems or 

network infrastructure can be gained by collaborating 

with industry partners or conducting field trials. 

Exploration of additional evaluation metrics: While 

this paper evaluates the proposed model using 

metrics such as PSNR, delay, precision, accuracy, 

and SSIM, future research can investigate additional 

evaluation metrics to provide a more comprehensive 

evaluation of the model's performance. Metrics such 

as visual quality assessment indices, perceptual 

similarity metrics, and task-specific evaluation 

metrics can offer a more comprehensive 

understanding of the model's Denoising capabilities. 

Although this paper focuses on image denoising, the 

concepts and techniques employed in the proposed 

model can potentially be applied to other data types, 

such as audio or video signals. Future research can 

investigate the adaptability of the model to denoise 

and transmit other types of data, thereby creating 

new noise reduction opportunities in a variety of 

domains. 

Explainability and interpretability are frequently 

lacking in deep learning models, making it difficult 

to comprehend the decision-making process. Future 

research may investigate methods for enhancing the 

interpretability and explanability of the proposed 

model. By incorporating interpretability methods, 

researchers can gain insight into the model's internal 

representations, feature importance, and decision 

boundaries, thereby enhancing the model's credibility 

and easing its deployment in sensitive applications. 

By pursuing these future research avenues, the 

proposed model's capabilities can be expanded, 

resulting in advancements in image denoising, data 

transmission, and related fields. 
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