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Wearable biosensors are attracting much attention in the medical and physiological therapeutic disciplines due to their ability 

to offer patients time-sensitive data, non-intrusive assessments of biochemical markers dispersed across the body in the 

bloodstream, and real-time diagnostic devices. These types of sensors are a new option for evaluating human health and take 

advantage of some technology that needs to be put in hospitals. Wearable sensors have come a long way, but there are still 

numerous potentials and problems in substances, sensing efficiency, and practical application. Therefore, we still have a ways 

to go before human health metrics are continuously monitored over an extended period. This is achievable by using the right 

methods of communication and patient risk-level decision-making techniques. Since MQTT is an effective communication 

protocol for data transmission, Smart E-Health (SEH) is designed in this study. In addition, Fuzzy-based Back Propagation 

Neural Network (FuzzBPNN) is made to determine the risk level of a patient's health state based on the results of their vital 

signs. A risk variable with a value range of 0 to 1 is a proxy for the risk level. A patient's health is more critically ill and 

requires more medical care, the higher the risk value. The MIMIC II dataset is taken and compared with the state-of-the-art 

methods for experimental analysis. It is found that Smart_FuzzBPNN achieves a 98.4% of detection rate, 11% of packet drop 

rate, 94% of risk level analysis detection, and 97.5% of energy efficiency in 12.5ms. 

Keywords: wearable sensor; smart healthcare; message queuing telemetry transport; decision making; risk priority. 

1. Introduction 

Due to substantial advancements in healthcare and medi-

cine and greater public awareness of the need for personal 

and environmental hygiene, life expectancy has been rising 

globally [1]. Additionally, throughout the past few decades, 

there has been a rise in interest in family planning, which 

has helped to lower birth rates worldwide. The World 

Health Organization (WHO) predicts that by 2017, more 

people will be 65 and older than children under the age of 

five [2]. In terms of social services and medical needs, this 

massive ageing population would tremendously impact 

society's socioeconomic makeup. In addition, the cost of 

hospitalization, pharmaceuticals, and healthcare supplies 

continues to rise, which drives up the cost of medical ser-

vices [3]. In order to offer superior medical care to the 

ageing population or those living in areas that have re-

stricted access to medical care while guaranteeing the 

maximum level of convenience, autonomy, and engage-

ment between individuals, novel approaches and technol-

ogy must be developed and put into practice. Instead of 

paying for expensive medical services like hospitals or 

retirement communities, continuous health surveillance 

enables individuals to keep living at home. Thus, it offers a 

viable substitute for on-site medical surveillance that is less 

expensive [4]. These devices, which come with integrated 

sensors that are non-invasive and discreet, may serve as 

useful diagnostic instruments for medical staff when 
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tracking vital signs of wellness and patient movements in 

real time from a different facility [5]. It makes sense that 

wearable sensors are essential to these monitoring systems, 

which in recent years have drawn the interest of several 

researchers, businesspeople, and tech titans. Wearable 

technology can track and save real-time information about a 

person's physiological state and mobility activities [6]. 

Systems for monitoring a person's health using wearable 

sensors may include various flexible sensors in clothing, 

elastic bands, and textile fibres [7, 8]. These physiological 

indicators can be measured by the sensors, including the 

electrocardiogram (ECG), electromyogram (EMG), heart 

rate (HR), body temperature, electrodermal activity (EDA), 

arterial oxygen saturation (SpO2), blood pressure (BP), and 

respiration rate (RR) [9,10]. 

Additionally, activity-related signals are frequently meas-

ured using micro-electro-mechanical system (MEMS) 

based small motion sensors, including accelerometers, 

gyroscopes, and magnetic field sensors [11]. Analysing 

signals from the body continuously could aid in the early 

detection and diagnosis of several cardiovascular, neuro-

logical, and pulmonary illnesses. 

Real-time tracking of a person's mobility activities can also 

help with sleep evaluation, gait pattern analysis, and fall 

detection. Wearable health monitoring systems typically 

include a range of electrical and MEMS instruments, actu-

ators, wireless communication modules, and signal pro-

cessing units. An appropriate protocol for communicating 

[14], ideally a low-power and primary wireless media, such 

as Bluetooth connectivity [15], ZigBee, or Near Field 

Communications (NFC), is utilized for transmitting meas-

urements collected from each sensor linked in a Wireless 

Body Sensor Network (BSN) [12,13]. The computational 

node executes sophisticated data processing, analysis, and 

selection methods and can save and present the outcomes to 

the user. It might be a Personal Digital Assistant (PDA), cell 

phone, machine, or a specially made analysing section that 

uses a microcontroller or a Field Programmable Gate Array 

(FPGA). It serves as a doorway to foreign healthcare insti-

tutions by sending the measured data to the medical staff 

over the Internet. Given that, the following are the outcomes 

made by this work: 

• The ability to utilize fuzzy-based back propagation 

neural networks as an instrument for decision-making 

and the gradual alteration of understanding towards 

knowledge. Consider the suggested IoT environment 

with the advantages of a smart structure and the appli-

cation of wearable sensor technologies to track patient 

health data. 

• Choosing the best communications standard, particu-

larly the MQTT protocol, is important for enhancing 

power and storage optimization to support a dependable 

data transfer range. 

• An instrument for decision-making helps identifies 

events and crisis period recognition to boost wearable 

sensor operational efficiency. 

• By calculating an overall risk, the structure establishes 

the individual's risk level under observation. It builds 

models using historical data and data mining techniques 

and analyses the acquired vital sign measures in re-

al-time. 

• We determine the rating of a vital sign employing its 

previous and present ratings, consequently evaluating 

its current state based on how it has changed over time; 

the degree of severity is expressed by a danger variable 

varying from 0 to 1. The greater the risk worth, the more 

serious essential the condition of the individual is, and 

the greater the needed treatment. 

The structure of the current document is as follows: A rel-

evant collection of research for wearable sensors in smart 

healthcare is provided in section 2. In section 3 suggested 

decision-making model with communication protocol is 

given. In part 4, the performance of the suggested model is 

shown along with benchmark methods. The fifth section 

presents the general conclusion for the suggested method. 

2. Related Works 

This part overviews various ML and DL methods for intel-

ligent medical monitoring through wearable sensors. As an 

outcome, the research considers the outcomes of different 

strategies. The author in [16] developed a new weara-

bles-assisted smart health monitoring for sleep quality pre-

diction utilizing the best deep learning model 

(WSHMSQP-ODL), allowing the devices to collect infor-

mation regarding sleep-related activity originally. The in-

formation is then put through pre-processing to create an 

established format. The extended seagull optimization 

(ESGO) technique is employed for hyperparameter values 

adjustment to improve the DBN model's ability to forecast 

the amount of rest. A wearable smart sock device was em-

ployed in the [17] investigation to monitor the foot-ankle 

biomechanics throughout gait activity. To calculate the 

articulation degrees in the horizontal and lateral lines de-

termined with a camera-based motion-capturing structure, 

two artificial intelligence models—long short-term memory 

(LSTM) and convolutional neural networks—as well as 

multivariate linear regression models were developed. 

Strolling rates were varied to evaluate the prototype's ca-

pacity for recording motions at different strolling rates and 

develop general frameworks for calculating joint angles in 

the horizontal and anterior planes.  

The aim of [18]'s scheduled study will be to accurately 

classify common human behaviours using gyroscope and 

magnetometer sensor information after converting them 

into spectroscopy representations. Following that, the 

pre-trained weights of two well-known and effective 
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transferred learning convolutional neural network models 

are used to extract features. The most effective feature 

subset has been chosen using a wrapper-based feature se-

lection technique, shortening learning duration and en-

hancing classification performance. [19] described model-

ling and design of a patient monitoring (PM) system based 

on artificial intelligence for assessing crucial indicators for 

the prognosis of diabetic mellitus. The study briefly ana-

lyzed diabetes and an artificial intelligence (AI) model 

based on the Fully Connected Neural Network (FNN) ma-

chine learning method. According to wearable sensor health 

metrics, [20] categorizes epilepsy conditions using a hybrid 

technique combining machine learning and a fuzzy logic 

inference system. Using ensemble bagging and ensemble 

boosting regression, the ensemble machine learning classi-

fiers are utilized to forecast epilepsy occurrences.  

The aim of [21] is to use machine learning algorithms to 

forecast a potential occurrence of cardiac disease. The 

wearable biomedical prototype's incorporated ECG sensor 

provides electrocardiogram (ECG) patterns. ECG pattern 

variations are tracked. The R-to-R method is used to cal-

culate heart rate from ECG patterns. The Cleveland data set, 

which consists of 13 qualities, is employed. These attributes 

include ECG-related ones such as resting ECG findings, 

depression in the ST segment caused by exercise relative to 

rest, and slope of the peak exercise segment. According to 

data [22] gathered from wearables, elderly people purchase 

them. The various purchasing segments were identified by 

trial supervisors (TS) in the information gathered. They 

used three machine learning algorithms such as k-Nearest 

Neighbors (k-NN), Random Forest (RF), and Support 

Vector Machines (SVM). For the autonomous hospital bed 

transfer (AHBT) usage, the use of a polynomial regression 

(PR) artificial intelligence (ML) Memory approach based 

on a Dreyfusian descriptor was suggested in [23]. The 

E-Healthcare Monitoring System (EHMS) is merged with 

machine learning (ML) techniques in the [24] paper to 

create an advanced automation system. This system will 

allow for connections, monitoring, and decision-making for 

accurate diagnosis. 

By present systems, interactions are additionally essential 

for an effective healthcare system. according to many pre-

sent-day designs, keeping consultations and data organized 

and up to date requires much human labour and a period 

while under a smart healthcare system, doing so would 

require rigid planning and record-keeping. The earlier 

method did not advise administrators of the accessibility of 

nurses, physicians, and others. One of the numerous bene-

fits of smart health surveillance is that many contemporary 

researchers have identified a chance for machine learning 

and cloud-based computing as an answer for medicine. In 

several studies, which include cancer diagnosis, controlling 

diabetes, and recovery, ML medical facilities were devel-

oped for specialized purposes. These systems were devel-

oped for various purposes, but they are all connected using 

similar enabling technology. 

3. Methodology 

3.1 Problem Formulation for Decision Making 

Think of a person making a series of choices to get the 

desired result. We research situations in which choices 

made today will have an impact tomorrow. For instance, if a 

person decides to estimate risk and make a choice at the 

current time step, they cannot make a mistake. The neces-

sity to consider how present actions may affect judgements 

in the future makes these situations exceptionally difficult 

for decision-making, which makes them the perfect candi-

dates for utilizing strategies to enhance human perfor-

mance. The tip prediction challenge is formalized first in 

this step. We simulate our situation as a typical, undis-

counted Markov Decision Process 𝑀 = (𝑆, 𝐴, 𝑅, 𝑃) with a 

limited time 𝑇, with individuals striving to maximize re-

ward. 𝑆 stands for state space, 𝐴 for action space, 𝑅 for 

reward function, and 𝑃 for transition function. A state 𝑠𝜖𝑆 

intuitively encapsulates the system's current configuration 

and an action 𝑎𝜖𝐴 is a person's choice. By mapping states 

to actions 𝜋𝐻 , we describe humans as a decision-making 

policy. The human examines the present scenario 𝑠𝑡  at 

each time step 𝑡𝜖{1,2, … 𝑇} and chooses a course of action  

𝑎𝑡in accordance with the probability distribution (𝑎𝑡|𝑠𝑡) =

𝜋𝐻(𝑠𝑡 , 𝑎𝑡). The framework then moves to the next state, 

𝑠𝑡+1, that consists of a variable that is selected at random 

with a distribution of probability of 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) =

𝑃(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), and the process is repeated until 𝑡 = 𝑇.. At 

that point, they are rewarded with 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡). A rollout 

is a series of state-action-reward triples sampled using this 

method, indicated by the symbol 𝜌 =

(𝑠1, 𝑎1, 𝑟1), … (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡)) . We calculate the accumulated 

anticipated reward of a particular policy 𝜋 with 

𝐽(𝜋) = 𝐸𝐷(𝑥)  ∑ 𝑟𝑡
𝑇
𝑡=1                  (1) 

𝐷(𝑥) is the distribution of rollouts brought on by applying 

policy 𝑥, where. We designate the human policy as 𝜋𝐻, 

which can be inferred from historical trail data while not 

being directly witnessed. Determining the ideal strategy, 

𝑥 ∗= 𝑎𝑟𝑔𝑚𝑎𝑥 𝐽(𝜋), which maximizes cumulative reward, 

will also be helpful. 

3.2 Construction of Wearable Sensors Network Model 

The Smart E-Health (SEH) is modelled in this work as an 

experimental analysis carried out by attaching 5 

bio-medical sensors (ECG, EMG, SkEl, ECG, Th, and 

StGa) to the skin of four patients, as shown in Figure 1. The 

patients are monitored for their temperature, brain function, 

pulse, heart rate, and blood sugar level. The patients' ages 

range from 20, 35, 45, 55, and 65. Using a mobile app, a 

handheld smartphone communicates with a healthcare fa-
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cility three kilometres from the patient. The access point is 

set up as a receiving station in the experimental analysis, 3 

km from the subject's home.

 

Fig 1. Construction of Wearable sensors network model 

Various periods for observing the sensor results are used 

based on the movement. Standing, sleeping, walking, and 

eating are considered while evaluating activities. The 

sensing requirements (present, missing) for the activities 

indicated above for the installed sensors are listed in Table 

1. 

Table 1. Activity of each sensor in patient's body 

Activity EMG SkEl ECG Th StGa 

standing present present present Absent  present 

sleeping present Absent present present present 

walking present Absent present present Absent 

eating present present present Absent present 

3.3 Sensing and Monitoring Process 

The wearable sensor may communicate with mobile de-

vices through a radio transmitter. Additionally, it has a 

short-term memory for processing detected signals. The 

five tuples (𝑆𝑒𝑛,  𝑆𝑒𝑛2,  𝑆𝑒𝑛3,  𝑆𝑒𝑛4 𝑎𝑛𝑑 𝑆𝑒𝑛5)     that 

make up the sensed information 𝑆𝑒𝑛𝐼𝑛𝑓 correspond to the 

values of the EMG, SkEl, ECG, Th, and StGa sensors. 

𝑆𝑒𝑛𝐼𝑛𝑓  is broadcast regularly. The sensing time of the 

device and the human body affects how frequently the 

tuples repeat. The sensing time of the gadget and the human 

body affects how frequently the tuples repeat. The 𝑆𝑒𝑛𝐼𝑛𝑓 

is updated and sent to the mobile device, which has display, 

notification, and relaying capabilities, following the con-

clusion of each session. This information is embedded in 

the mobile device with the integration of hardware and 

software functions. Two forms of sensing—periodic (based 

on operation time) and event detection—are adapted during 

the sessions. Following a clear pattern, which is detailed 

below, the periodic sensing and monitoring procedure is as 

follows: 

The sessions for a tuple should be {𝑠𝑒𝑠1, 𝑠𝑒𝑠2, … 𝑠𝑒𝑠𝑛}  

such that its average 𝑠𝑒𝑠𝑎𝑣𝑔 equals∑
𝑠𝑒𝑠𝑗

𝑛

𝑛
𝑗=1 . Depending on 

how much operational time 

each  𝑆𝑒𝑛,  𝑆𝑒𝑛2,  𝑆𝑒𝑛3,  𝑆𝑒𝑛4,𝑎𝑛𝑑 𝑆𝑒𝑛5 has, this is fixed 

separately for each. As a result, the maximum number of 

updates a mobile device can get in a 24-hour day is called a 

"  max {𝑠𝑒𝑠𝑎𝑣𝑔(𝑖)}  update," which is transmitted to the 

medical centre at regular intervals. Instead, the modification 

interval of 𝑠𝑒𝑠𝑖  and 𝑠𝑒𝑠𝑎𝑣𝑔   does not hold if the sensor 

delivers an aberrant value. An occurrence is identified if the 

data sensed is outside of the sensors' typical operating 

range. An urgent situation is indicated if the readings 

measured by the wearable gadget exceed or deviate from 

the typical range. This interval to identify events, 𝑒𝑣𝑒𝑑𝑒𝑡, is 

calculated using. 
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𝑒𝑣𝑒𝑑𝑒𝑡 = [
|𝑠𝑒𝑠𝑗|

|𝑠𝑒𝑠𝑗|−𝑠𝑒𝑠𝑎𝑣𝑔
+ 1]                       

 (2) 

In this section, 𝑠𝑒𝑠𝑗 < 𝑒𝑣𝑒𝑠𝑒𝑠 ≤ 𝑠𝑒𝑠𝑗+1  denotes that 

"𝑒𝑣𝑒𝑠𝑒𝑠  happens after an occasional interval and at the 

same time. If if 𝑠𝑒𝑠𝑎𝑣𝑔 > |𝑠𝑒𝑠𝑗| the baseline position 

wherein continuous surveillance and treatment are required 

is predicted. 

3.4 Activation of MQTT Protocol  

Following the sensing process, the MQTT protocol runs in 

the server to facilitate effective communication. As seen in 

Figure 2, the MQTT primary processes are divided into 

various parts components. 

 

Fig 2. MQTT communication protocol for efficient data transfer 

One component is a multicast group query of MQTT pub-

lishers that takes place in the sensing layer and is a gateway. 

A multiplex grouping inquiry of MQTT subscribers on the 

dashboard is an additional component. The other portion 

handles the creation of an MQTT broker that transmits 

MQTT messages. Furthermore, gateway When an MQTT 

publisher creates a published message, the multicast group 

that handles the search of the publishers kicks in. The 

payload for delivering the information to the dashboard is 

included in the publisher connecting messages, along with 

specifications for the publishing's IP address. To an edge 

switch, this message is transmitted. The communication 

includes the OpenFlow protocol and is forwarded to the 

controller if the edge switch does not already have a flow 

entry. The controller decompresses the OpenFlow protocol 

and analyses the message to store the broadcast tree's pub-

lisher metadata. When the subscriber's message is sent, the 

multicast group query of the MQTT subscriber is activated. 

The subscribe messages include the payload and subscriber 

IP address. Except for saving the member information, the 

procedure is the same as the MQTT publisher's multicast 

group query procedure. Multicast trees are created by re-

ferring to the IP addresses of publishers, subscribers, topics, 

and the status of the network link. 

The flow entry for the switches is (𝑓𝑙, 𝑑𝑠𝑡𝑝𝑜𝑟𝑡𝐴) and  

(𝑓𝑙, 𝑑𝑠𝑡𝑝𝑜𝑟𝑡𝑏). 𝑓𝑙 stands for a port in an inbound packet, 

and * is a wildcard that denotes the entirety of an IP address. 

The 𝑑𝑠𝑡𝑝𝑜𝑟𝑡 argument allows MQTT messages to be cat-

egorized according to their port number. A refers to a mul-

ticast group address. The broker's address is B. The edge 

switches set up the flow entry (𝑓𝑙, 𝑑𝑠𝑡𝑝𝑜𝑟𝑡𝑏), and perform 

two operations, changing the MQTT packet's IP destination 

field and forwarding it to a port for transmission from pub-

lisher to subscriber. The switches only function to forward a 

multicast MQTT packet through (𝑓𝑙, 𝑑𝑠𝑡𝑝𝑜𝑟𝑡𝑎of the flow 

entry, except for the edge switches. 

3.5 Decision-Making Model and Prioritizing of Packets 

Complex decision-making is revisited in the Smart 

E-Health (SEH) to improve smart healthcare applications' 

profit. The classified tuples are independently stored in 

EMR. This forms the basic elements of the EMR, upon 

which the other decisions are imposed. We proposed the 

decision model of the fuzzy neural network-attached 

𝑆𝑚𝑎𝑟𝑡  computing layer, in which the backpropagation 

(BP) algorithm was applied to train a neural network. The 

environment series 𝐸𝑛𝑣(𝑡)   and the system's output 

𝑆𝑦𝑠_𝑜𝑢𝑡(𝑡) are constantly measured and assessed accord-

ing to the connecting 𝑆𝑚𝑎𝑟𝑡  operation layer's guiding 
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concept. The control decision centre uses a network called 

𝑆𝑚𝑎𝑟𝑡_𝐹𝑢𝑧𝑧𝐵𝑃𝑁𝑁, which includes the fuzzy layer, smart 

layer, impact evaluation layer, BP input layer, implied 

layer, and output layer. The complete description is listed 

below: 

• Fuzzy layer: The series of ambient quantities received 

by the input system produces an undefined vector of 

µ (E(t)) by the set fuzzy membership function. 

• Smart layer: After a predetermined sampling interval, 

the decision centre receives a time series of the sys-

tem's dynamic constant ∆D  and sends the Cont(t) 

control signal at time t. The atmospheric time-lapse 

EnvTime (t)and condition sequence StaSeq (t)  are 

gathered at a fixed monitoring interval, and the smart 

layer operation H(StaSeq , EnvTime )  generates the 

evaluation coefficient H(StaSeq , EnvTime )  for the 

management system. 

• Impact assessment layer: In the consequences as-

sessment layer, Imp(t) is calculated by multiplying 

the fuzzy generalization of the sensory period series 

E(t)  by H(StaSeq , EnvTime ) , as in the following 

equation: 

• Imp(t) = H(StaSeq , EnvTime ) ∗ μ(E(t)) 

• Following an array of Imp(t) computations, the BP 

layer is output straight to the implied layer. 

The final control signal Cont(t). is in the output layer. 

The classic fuzzy BP neural network has an extra layer of 

computing called 𝐻 that is used to compute gain coeffi-

cient 𝐻(𝑆𝑡𝑎𝑆𝑒𝑞, 𝐸𝑛𝑣𝑇𝑖𝑚𝑒 ) immediately and to assess 

gain coefficient 𝐻(𝑆𝑡𝑎𝑆𝑒𝑞, 𝐸𝑛𝑣𝑇𝑖𝑚𝑒 ) in real-time. The 

association evaluation of numerous environment-perceived 

factors and state variables in 𝐻 operation uses the grey 

correlations research theory. As a result, the number of 

changes for the training sample and the variation of sample 

data difference results in fewer judgment mistakes, which 

enhances the system's reliability. 

3.6 Score Aggregation Layer 

Health professionals and physicians use the patient's rec-

orded vital signs' overall score to evaluate a patient's health. 

This overall score represents the preliminary warning score. 

It enables them to decide on the appropriate intervention 

strategy and the degree of urgency of the patient's condition. 

In our procedure, the aggregate score is employed as a 

parameter in the FIS to obtain the individual's risk level as 

an output. The formula is as the following: 

𝐴𝑆 = ∑ 𝐶𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑄
𝑖=1                           (3) 

𝑄 is the total amount of observed vital signs, and 

𝐶𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒 is the most recent score for the i-th vital sign 

throughout a round 𝑅. The input is first fuzzified using the 

Low, Medium, and High fuzzy member functions. After 

then, a series of fuzzy logic rules are used to determine the 

patient's risk level. The following definitions apply to the 

aggregate score fuzzy membership functions 

f 𝑓𝑢𝑧𝑧1(𝑢)[𝑙𝑜𝑤], 𝑓𝑢𝑧𝑧2(𝑢)[𝑚𝑒𝑑𝑖𝑢𝑚] 𝑎𝑛𝑑 𝑓𝑢𝑧𝑧3(𝑢)[ℎ𝑖𝑔ℎ]

: 

𝑓𝑢𝑧𝑧1(𝑥) =

{
 
 

 
 1,      𝑢 ≤ 1

1

1−𝑄
𝑢 +

𝑄

𝑄−1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,1≤ 𝑢 ≤ 𝑄                  

 (4) 

𝑓𝑢𝑧𝑧2(𝑢) =

{
 

 
1

𝑄−1
(𝑢 − 1),      1 ≤ 𝑢 ≤ 𝑄

1

1−𝑄
(𝑢 + 1 − 2 ∗ 𝑄),   𝑄 ≤ 𝑢 ≤ 2𝑄 − 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

  (5) 

𝑓𝑢𝑧𝑧3(𝑢) =

{
 

 2 (
𝑢

𝑄
− 1) , 𝑄 ≤ 𝑢 ≤

3

2
𝑄

1,   𝑢 ≥
3

2
𝑄

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         

(6) 

𝑄 is the total number of recorded vital signs, and 𝑢 is the 

overall score 𝐴𝑆. Low if 𝐴𝑆 is between 0 and 6, Medium if 

𝐴𝑆 is between 1 and 10, and High if 𝐴𝑆 is greater than 6. 

3.7 Risk Level Prediction Layer 

A person's level of risk 𝑅𝑘 is quantified as a variable with a 

possible range of 0 to 1. It is an indicator of how seriously ill 

the individual in question is. The more severe/critical the 

patient's health condition is, the greater the risk value. The 

following fuzzy membership functions are defined to assess 

the risk level: Low-, Medium-, and High-Risk categories. 

0 <  𝑅𝑘 <  0.5 indicates low risk, 0.2 <  𝑅𝑘 <  0.8 

indicates medium risk, and 0.5 <  𝑅𝑘 <  1indicates high 

risk for a patient. The patient's risk level is calculated using 

data from the five tuples (𝑓𝑡) of biosensors in order to reach 

a judgment. The last type is some prognostic or corrective 

information offered to the patient and may catalyze a certain 

activity. The aggregate score 𝐴𝑆  of the 𝑓𝑡′𝑠 monitored 

vital indicators serves as the FIS's input.
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Fig 3. Flow chart for risk analysis and decision support 

The patient's risk level is its output. It uses the fuzzy 

membership functions and fuzzy rule base provided by 

medical professionals or experts to map the input to the 

output. This is how the fuzzy rule basis is explained: Rule 1 

states that the patient's risk level is Low-Risk if the overall 

score is Low. A crisp patient's risk level 𝑅𝐾 is then ob-

tained by de-fuzzing the risk level using the centroid ap-

proach. Given the significance of 𝑅𝐾, a conclusion, piece 

of advice, or even a course of action is chosen. It is chosen 

from a table that shows how the patient's risk ratings and the 

decisions are related. Health professionals set such a table 2. 

According to the cause's level, the choices or suggestions 

can be to rest, take medication, consult a doctor, etc. For 

instance, if 0 ≤ 𝑅𝐾 < 0.22, decision 1 is made. The entire 

process is given in Figure 3. 

Table 2. Decision and risk values based on association rule 

Decisions Risk value range 

decision 1 RK < 0.22 

decision 2 0.22 ≤ RK < 0.3 

decision 3 0.3 ≤ RK < 0.7 

decision 4 0.7 ≤ RK < 0.9 

decision 5 RK ≥ 0.9 

 

The person in charge receives these prioritized packets. The 

patient receives counsel or a decision based on the value of 

𝑅𝐾. The coordinator sends the medical centre the infor-

mation gathered and the decisions made. The coordinator 

works in rounds where 𝑅𝐷 = 𝑓𝑡 × 𝑇𝑃, where 𝑓𝑡 is five 

tuples, and 𝑇𝑃 is the common period for all biosensors. Let 

𝑅𝐷(𝑛) = (𝑟𝑑1, 𝑟𝑑2, 𝑟𝑑3, 𝑟𝑑4, 𝑟𝑑5)  represent the vector of 

the initial readings from the five biological sensors at the 

start of every cycle. 

Let 𝑠𝑡 = (𝑠𝑡1, 𝑠𝑡2, 𝑠𝑡3, 𝑠𝑡4, 𝑠𝑡5) be the resulting vector of 

the current scores at moment 𝑡 , and 𝑆𝐶(𝑛) =

(𝑆𝐶1, 𝑆𝐶2, 𝑆𝐶3, 𝑆𝐶4, 𝑆𝐶5)   be the column of the calcu-

lated scores corresponding to 𝑅𝐷(𝑛) . The coordinator 

computes 𝑆𝐶(𝑛),  reads 𝑅𝐷(𝑛) , and sets 𝑆0 =  𝑆𝐶0  at 

the start of each round. The coordinator recognizes the 

sending biosensor foot each time it receives a measurement 

to compute score 𝑖 and update 𝑆𝐶𝑡. The next step is to 

determine whether 𝑆𝐶𝑖 differs from zero. It recognizes an 

emergency and queries the other biosensors to obtain their 
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measurements when this occurs. The coordinator computes 

SCt and determines the overall score AS after receiving 

them. The latter serves as the FIS's input. Lastly, a choice is 

made based on the patient's risk level as generated from the 

FIS. After every round, the AS is determined, and a choice 

is made based on the information provided by the FIS. 

4. Performance Analysis 

The performance of our proposed Smart_FuzzBPNN is 

compared with existing methods such as wearables-assisted 

smart health monitoring for sleep quality prediction using 

optimal deep learning (WSHMSQP-ODL) model [16], 

Fully connected Neural Network (FNN) [19] and polyno-

mial regression machine learning (PRML) is carried out 

using parameters such as accuracy, precision, recall, 

F1-score. These parameters are analysed for below dataset 

mentioned. 

4.1 Dataset Description 

A portion of the Multi-parameter Intelligent Monitoring for 

Critical Care (MIMIC) II database was used for this study. 

Every entry matches a grown-up patient's stay in the inten-

sive care unit (ICU). It contains minute-by-minute time 

series of the patient's heart rate (HR), systolic blood pres-

sure (SBP), diastolic blood pressure (DBP), and mean ar-

terial blood pressure (MAP). 

4.2 Comparative Analysis

 

 

Fig 4. Collecting of signals 

Figure 4 shows a Schematic detailing an example of an iPhone application collecting physiological data from a wearable 

sensor and translating those metrics to alert an individual on his/her overall health status 

Table 3. Comparison of detection rate 

patient WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

0 0 0 0 0 

P1 87 90 84.7 97.4 

P2 88.5 90.5 85 98 

P3 89 89.9 85.7 98.3 

P4 85.7 89 86 98.4 

P5 88 91 85 97.9 
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Fig 5. Comparison of detection rate 

The suggested Smart_FuzzBPNN technique and the exist-

ing methods are compared in Figure 5, where the X-axis 

indicates the number of patients (1-5) and the Y-axis dis-

plays the detection rate achieved in %. When analyzing 

figure-3, the existing WSHMSQP-ODL, FNN and PRML 

achieve 89%, 91% and 85%of detection rates, whereas the 

suggested Smart_FuzzBPNN achieves 98.4%, which is 

9.4%, 7% and 13.4% better than WSHMSQP-ODL, FNN 

and PRML. Table 3 shows Comparison of detection rate 

Table 4. Comparison of end-to-end delay (ms) 

patient WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

0 0 0 0 0 

P1 33 44 23 12 

P2 34.1 44.9 23.7 11.9 

P3 34 45 23 12.4 

P4 33.9 45.3 24.6 12 

P5 33 45.1 24 12.7 

 

 

Figure 6. Comparison of end-to-end delay 

The suggested Smart_FuzzBPNN technique and the exist-

ing methods for an end-to-end delay are compared in Figure 

6, where the X-axis indicates the number of patients (1-5) 

and the Y-axis displays the for an end-to-end delay 

achieved in ms. When analyzing the existing 

WSHMSQP-ODL, FNN and PRML achieve 34.2ms, 

45.1ms and 24.9ms of end-to-end delay, where the sug-

gested Smart_FuzzBPNN achieves 12.5ms which is 

22ms,32ms and 12ms WSHMSQP-ODL, FNN and PRML. 

Table 4 defines Comparison of end-to-end delay (ms) 
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Table 5. Comparison of packet dropped rate (%) 

patient WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

0 0 0 0 0 

P1 77 53 35 10 

P2 77.9 54.6 36 10.9 

P3 78 55 37 11 

P4 78.4 54.3 38 11.4 

P5 78.3 56 39 11.9 

 

 

Fig 7. Comparison of packet dropped the rate 

The suggested Smart_FuzzBPNN technique and the exist-

ing methods are compared in Figure 7, where the X-axis 

indicates the number of patients (1-5) and the Y-axis dis-

plays the packet dropped rate achieved in %. When ana-

lyzing the existing WSHMSQP-ODL, FNN and PRML 

achieve 78%, 54% and 38%of packet dropped rate, whereas 

the suggested Smart_FuzzBPNN achieves 11% is 67%, 

41% and 21% better than WSHMSQP-ODL, FNN and 

PRML. Table 5 shows comparison of packet dropped rate 

(%) 

Table 6. Comparison of risk level analysis 

patient WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

0 0 0 0 0 

P1 78 87 89 93 

P2 77.9 86.4 86.4 93.4 

P3 77 84 89 94 

P4 76.3 86.3 86.3 94.2 

P5 75.2 87 87 95 
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Fig 8. Comparison of risk level 

The suggested Smart_FuzzBPNN technique and the exist-

ing methods are compared in Figure 8 where the X-axis 

indicates the number of patients (1-5) and the Y-axis dis-

plays the risk level achieved in %. When analyzing the 

existing WSHMSQP-ODL, FNN and PRML achieves 78%, 

86% and 89%of risk level detection, where, the suggested 

Smart_FuzzBPNN achieves 94% which is 16%, 8% and 5% 

better than WSHMSQP-ODL, FNN and PRML. Table 6 

shows comparison of risk level analysis 

Table7. Comparison of energy efficiency 

patient WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

0 0 0 0 0 

P1 86 76 79 97 

P2 87.4 77.8 78.9 97.6 

P3 8.9 77 79.9 98 

P4 87 77.9 79.4 98.9 

P5 87.3 7.9 79 97 

 

 

Fig 9. comparison of energy efficiency 

The suggested Smart_FuzzBPNN technique and the exist-

ing methods are compared in Figure 9 where the X-axis 

indicates the number of patients (1-5) and the Y-axis dis-

plays the energy efficiency achieved in %. When analyzing 

the existing WSHMSQP-ODL, FNN and PRML achieves 

87.3%, 76.5% and 79%of energy efficiency, where, the 

suggested Smart_FuzzBPNN achieves 97.5% which is 

10.2%, 22% and 17% better than WSHMSQP-ODL, FNN 
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and PRML. Table 7 shows comparison of energy efficiency and Table 8 shows overall comparative analysis

 

Table 8. Overall comparative analysis 

parameters WSHMSQP-ODL FNN PRML Smart_FuzzBPNN 

Detection rate (%) 89 91 85 98.4 

end to end delay (ms) 34.2 45.1 24.9 12.5 

Packet dropped rate (%) 78 54 38 11 

Risk level analysis (%) 78 86 89 94 

Energy efficiency (%) 87.3 76.5 79 97.5 

5. Conclusions 

In order to address the difficulties of providing home-based 

health surveillance and preventing hospitalization, the 

Smart_FuzzBPNN smart healthcare surveillance system 

has been suggested in this article. According to the research, 

there exists a significant need for creating a system of 

healthcare that can monitor senior citizens in real-time and 

at home. By constantly tracking their health, 

Smart_FuzzBPNN may significantly help to the provision 

of an enjoyable and secure setting for elderly and disabled 

persons, enabling individuals to continue living autono-

mously beyond the worry of an unforeseen or catastrophic 

medical condition. In a nutshell, Smart_FuzzBPNN collects 

biological information from patients using wearable sensors 

and sends it to the server for processing and analysis. As a 

result, any abnormality found in the patient's data will be 

communicated to their physicians via the hospital platform. 

With a fixable design that is simple to adapt and grow, 

Smart_FuzzBPNN offers a dependable and affordable sys-

tem for remote patient monitoring. Additionally, the find-

ings demonstrate that by utilising the perfect 

Smart_FuzzBPNN system, which is able to remotely and in 

real-time monitor patient symptoms, the system could ef-

fectively assist in improving healthcare facilities. The 

Smart_FuzzBPNN will continue to develop and be im-

proved in the future. For example, the procedure can be 

expanded to apply optimisation techniques to aid in the 

early prediction of life-threatening diseases. Additionally, 

the system has a significant quantity of healthcare infor-

mation that will be used to create a framework for sugges-

tions that can offer advice on diets and lifestyle choices for 

improved health. 

References 

[1] Centers for Disease Control and Prevention. The State 

of Aging and Health in America 2013. Centers for 

Disease Control and Prevention, US Department of 

Health and Human Services; Atlanta, GA, USA: 

2013.  

[2] Global Age Watch Index 2015. [(accessed on 20 June 

2016)].  

[3] World Health Organization Family Plan-

ning/Contraception. 2015. [(accessed on 20 June 

2016)].  

[4] World Health Organization Are You Ready? What 

You Need to Know about Ageing. World Health Day. 

2012. [(accessed on 20 June 2016)].  

[5] U.S. Health Care Costs Rise Faster Than Inflation. 

[(accessed on 20 June 2016)].  

[6] Deen M.J. Information and communications tech-

nologies for elderly ubiquitous healthcare in a smart 

home. Pers. Ubiquitous Comput. 2015 ,19, 573–599.  

[7] Agoulmine N.; Deen M.; Lee J.-S.; Meyyappan M. 

U-Health Smart Home. IEEE Nanotechnol. 

Mag. 2011, 5, 6–11.  

[8] Wang H.; Choi H.-S.; Agoulmine N.; Deen M.J.; 

Hong J.W.-K. Information-based sensor tasking 

wireless body area networks in U-health systems. 

Proceedings of the 2010 International Conference on 

Network and Service Management; Niagara Falls, ON, 

Canada.  2010; pp. 517–522. 

[9] Pantelopoulos A.; Bourbakis N. A Survey on Weara-

ble Sensor-Based Systems for Health Monitoring and 

Prognosis. IEEE Trans. Syst. Man Cybern. C. 2010, 

40, 1–12.  

[10] Nemati E.; Deen M.; Mondal T. A wireless wearable 

ECG sensor for long-term applications. IEEE Com-

mun. Mag. 2012, 50, 36–43.  

[11] Hong Y., Kim I., Ahn S., Kim H. Mobile health mon-

itoring system based on activity recognition using 

accelerometer. Simul. Model. Pract. Theory.  2010 

,18, 446–455.  



International Journal of Intelligent Systems and Applications in Engineering            IJISAE, 2023, 11(9s), 317–329  |  329 

[12] Ullah S.; Higgins H.; Braem B.; Latre B.; Blondia C.; 

Moerman I.; Saleem S.; Rahman Z.; Kwak K. A 

Comprehensive Survey of Wireless Body Area Net-

works. J. Med. Syst. 2012 ,36, 1065–1094.  

[13] Al Ameen M.; Liu J.; Kwak K. Security and Privacy 

Issues in Wireless Sensor Networks for Healthcare 

Applications. J. Med. Syst. 2012, 36, 93–101.  

[14] Castillejo P.; Martinez J.; Rodriguez-Molina J.; 

Cuerva A. Integration of wearable devices in a wire-

less sensor network for an E-health application. IEEE 

Wirel. Commun. 2013, 20 ,38–49.  

[15] Dementyev A.; Hodges S.; Taylor S.; Smith J. Power 

consumption analysis of Bluetooth Low Energy, 

ZigBee and ANT sensor nodes in a cyclic sleep sce-

nario; Proceedings of the 2013 IEEE International 

Wireless Symposium (IWS); Beijing, China. April 

2013; pp. 1–4.  

[16] Hamza, M. A.; Abdalla Hashim, A. H.; Alsolai, H.; 

Gaddah, A.; Othman, M.; Yaseen, I.; ... & Zamani, A. 

S.  Wearables-Assisted Smart Health Monitoring for 

Sleep Quality Prediction Using Optimal Deep Learn-

ing. Sustainability, 2023,15(2), 1084. 

[17] Davarzani, S.; Saucier, D.; Talegaonkar, P.; Parker, 

E.; Turner, A.; Middleton, C.; ... & Freeman, C. 

Closing the Wearable Gap: Foot–ankle kinematic 

modeling via deep learning models based on a smart 

sock wearable. Wearable Technologies, 2023, 4, e4. 

[18] Sahoo, K. K.; Ghosh, R.; Mallik, S.; Roy, A.; Singh, P. 

K.; Zhao, Z. Wrapper-based deep feature optimization 

for activity recognition in the wearable sensor net-

works of healthcare systems. Scientific Reports, 2023, 

13(1), 965. 

[19] Achebe, P. N.; Akpado, K. A.; Obioma, P. C. Model-

ling and Design of Artificial Intelligent based Patient 

Monitoring System for Measuring Vital Parameters 

for Diabetes Mellitus Prognosis. International Journal 

of Research Publication and Reviews, 2023, 14(1) 

467-479. 

[20] Kadu, A.; Singh, M.; Ogudo, K. A Novel Scheme for 

Classification of Epilepsy Using Machine Learning 

and a Fuzzy Inference System Based on Weara-

ble-Sensor Health Parameters. Sustainability, 2022, 

14(22), 15079. 

[21] Jansi Rani, S. V.; Chandran, K. S.; Ranganathan, A.; 

Chandrasekharan, M.; Janani, B.; Deepsheka, G.  

Smart wearable model for predicting heart disease 

using machine learning: Wearable to predict heart 

risk. Journal of Ambient Intelligence and Humanized 

Computing, 2022, 13(9), 4321-4332. 

[22] Garcia-Moreno, F. M.; Bermudez-Edo, M.; 

Rodríguez-García, E.; Pérez-Mármol, J. M.; Garrido, 

J. L.; Rodríguez-Fórtiz, M. J. A machine learning ap-

proach for semi-automatic assessment of IADL de-

pendence in older adults with wearable sen-

sors. International journal of medical informatics, 

2022, 157, 104625. 

[23] Tan, Y. H.; Liao, Y.; Tan, Z.; Li, K. H. H. Application 

of a Machine Learning Algorithms in a 

Wrist-Wearable Sensor for Patient Health Monitoring 

during Autonomous Hospital Bed 

Transport. Sensors, 2021, 21(17), 5711. 

[24] Godi, B.; Viswanadham, S.; Muttipati, A. S.; Saman-

tray, O. P.; Gadiraju, S. R. E-healthcare monitoring 

system using IoT with machine learning approaches. 

In 2020 international conference on computer sci-

ence, engineering and applications (ICCSEA), 2020, 

March pp. 1-5. 

[25] Vinston Raja, R., Ashok Kumar, K. ., & Gokula 

Krishnan, V. . (2023). Condition based Ensemble 

Deep Learning and Machine Learning Classification 

Technique for Integrated Potential Fishing Zone Fu-

ture Forecasting. International Journal on Recent and 

Innovation Trends in Computing and Communication, 

11(2), 75–85. 

https://doi.org/10.17762/ijritcc.v11i2.6131 

[26] Flores, A., Silva, A., López, L., Rodriguez, A., & 

María, K. Machine Learning-Enabled Early Warning 

Systems for Engineering Student Retention. Kuwait 

Journal of Machine Learning, 1(1). Retrieved from 

http://kuwaitjournals.com/index.php/kjml/article/vie

w/106

 


