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Abstract: Recent developments in Unmanned Aerial Vehicle (UAV) technology have shown that they will form an integral element of 

future communication and networking infrastructure. Although several studies have offered UAV-assisted methods for enhancing the 

performance of existing networks by increasing coverage and capacity but the architectures of autonomous UAV networks based on 

artificial intelligence has not yet been thoroughly investigated. However, the most current models for logistics UAV delivery do not 

account for the energy consumption of logistics UAVs or the varying schedules of their clients, meaning they are not applicable to real-

world transportation networks. As a result, for a smart transportation system, we suggest reducing the overall energy cost of various 

logistics UAVs throughout the time it takes to deliver individual items. In this research, we maximize the UAV power by posing the 

UAV path planning issue as a traveling salesman problem. The UAV route planning is optimized under the restrictions of node energy 

consumption and task deadlines to achieve maximum energy efficiency of cooperative computing over the course of a UAV's life cycle. 

A Deep Q Network (DQN) based path planning algorithm is suggested to adjust to the uncertain and changing environment over time. In 

comparison to other algorithms, the proposed one performs better in simulations, increases the computational productivity of dynamic 

computing by a large margin, and achieves a good equilibrium between the two energy inputs. We also think about minimizing the 

UAV's spin rate to maximize efficiency and decrease power consumption. By lowering the number of turns while still visiting all of the 

waypoints, our suggested technique uses 2-5 times less energy. 

Keywords: Unmanned Aerial Vehicle (UAV), Artificial Intelligence, Smart Transportation Systems, Path Planning, Route Planning, 

Cooperative Computing, Deep Q Network. 

 

1. Introduction  

In recent times, Unmanned Aerial Vehicles (UAVs) have 

witnessed significant advancements, positioning themselves as 

indispensable components of future communication and 

networking infrastructure. While numerous studies have explored 

the potential of UAV-assisted methods to enhance existing 

networks [1-4] through expanded coverage and capacity, the 

development of autonomous UAV networks based on artificial 

intelligence remains largely unexplored. Additionally, existing 

models for logistics UAV delivery [5,6] often overlook critical 

factors such as energy consumption and the variable schedules of 

clients, rendering them impractical for real-world transportation 

networks. 

With its quick deployment, great scalability, and adaptability, an 

UAV outfitted with an edge server may offer compute offloading 

service for devices more effectively than a conventional 

architecture with stationary servers [7]. Cooperative computing 

between UAVs and ground terminals was proposed in [8]. 

Workload distribution, UAV usage, and distribution of resources 

may all be improved with some careful planning, latency and 

energy consumption were reduced when terminal devices 

accessed edge computing services [9]. Additionally, research into 

cooperative computing with UAVs has focused heavily on route 

planning. UAV energy and delay restrictions were considered to 

regulate the optimal UAV route and bit allocation in [10]. In 

order to exploit the total amount of data that may be divested 

from all terminals to the UAV within the bounds of the UAV's 

energy supply, Qian et al. ([11]) devised a convex optimization-

based path planning technique. In [12], the researchers provide an 

additional simultaneous decomposition-based strategy for 

maximizing the UAV progress, the ratio of dumping workloads, 

and the user rescheduling parameters simultaneously to reduce 

the greatest delay experienced by all users during any given time 

slot. 

Constraints like as flight range and flight duration must be taken 

into account while modeling UAV delivery to guarantee that the 

resulting models correspond to the desired delivery outcomes. 

However, many current models oversimplify these limits, which 

do not account for the intricacies and depth of real-world delivery 
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circumstances. This highlights the importance of precise load 

weight and energy consumption estimations for the distribution 

process. Recognizing how load weight impacts UAV 

performance is one of the most difficult tasks. The flight time and 

range of a UAV are both negatively affected by an increase in the 

payload's mass because of the increased power required to lift the 

heavier payload. In order to provide reliable forecasts for UAV 

delivery operations, it is necessary to construct precise 

calculations that can take into consideration this connection. 

Similarly, the amount of energy used in UAV transport is crucial. 

The flying capabilities and endurance of the UAV are heavily 

influenced by the amount of power required to run the UAV, 

which includes engines, communication systems, and onboard 

sensors. When energy consumption is not accurately predicted, 

inefficient delivery routes, early battery exhaustion, and delivery 

process interruptions might result. To address these issues, our 

research has focused on creating all-encompassing models that 

take the complex relationship between load weight, energy 

consumption, and UAV performance into account. Our goal is to 

create a more realistic depiction of delivery needs in the actual 

world including these elements in our modeling framework. 

It is possible to optimize delivery routes within the UAV's 

practical range and time restrictions if the influence of cargo 

weight on UAV performance is precisely estimated. Effective and 

efficient distribution planning is made possible by this 

optimization procedure, which considers the trade-off between 

payload weight and energy usage. We can better allocate 

resources and lessen the likelihood of disruptions due to 

insufficient electricity if we have an accurate estimate of energy 

use. The UAV delivery systems may be made more effective and 

reliable if we take into account things like battery life, charging 

infrastructure availability, and energy-efficient path planning. 

Artificial intelligence (AI) is the study of creating machines with 

intellect on par with or beyond that of humans. Learning and 

adaptability are two of AI's most important focuses [13, 14]. 

Since UAV networks are dynamic and present additional 

difficulties, AI approaches are a promising area of application. 

The use of AI in UAV networks is now being investigated by a 

large number of researchers in the field of networks. While 

research into the best ways to design and deploy Safety and 

confidentiality, network architecture, geolocation and direction, 

and general UAV applications are the main focuses of this part, 

which addresses the continuous development of AI-based UAV 

systems necessary for doing so effectively. 

To address these limitations and contribute to the establishment 

of a smart transportation system, our research focuses on 

reducing the overall energy cost associated with the operations of 

diverse logistics UAVs during the delivery process. Our approach 

involves maximizing the power efficiency by formulating taking 

the classic "traveling salesman" dilemma and applying it to UAV 

route planning. This enables us to optimize UAV route planning 

while considering node energy consumption and task deadlines, 

thereby achieving the highest level of energy efficiency for 

cooperative computing throughout a UAV's life cycle. 

To tackle the dynamic and uncertain nature of the environment in 

which UAVs operate, a DQN based approach for path planning is 

presented in this research work. This algorithm allows UAVs to 

adapt and adjust their routes over time, ensuring optimal 

performance even in changing conditions. Our simulations 

demonstrate that the suggested algorithm outperforms existing 

competitors in terms of performance metrics. It not only 

significantly boosts the energy efficiency of interactive 

computing but also strikes a balance between energy 

consumption and production. 

In this study, we present a Deep Q Network (DQN) based path 

planning method to solve the dynamic optimization issues. The 

DQN algorithm, proposed by Google Deep mind, is a deep neural 

network-based reinforcement learning system proven successful 

in solving a dynamic optimization issue of high complexity 

[16,17]. The DQN is able to handle high dimensional continuous 

states because it substitutes the Q-table used in standard Q 

learning with a Q-function based on a deep neural network. The 

training stability of the DQN algorithm may be enhanced by the 

use of several novel methods [15]. One of the most intriguing 

research areas in computer vision in recent years has been the 

identification and analysis of human action.[19],[20].For 

multidimensional parameters in particular, the inference time for 

a trained DQN model is reasonable, and it may be done in an 

offline setting [18], compared to classic optimization techniques. 

2. Materials and method 

Problem formulation 

Let us consider a scenario where a fleet of logistics Unmanned 

Aerial Vehicles (UAVs) needs to efficiently deliver packages to a 

set of predetermined waypoints in a given geographical area. 

Each UAV's route must be planned to maximize efficiency while 

minimizing its impact on the environment, taking into account the 

varying schedules of clients and the energy constraints of the 

UAVs.  

Let 𝑁 be the total number of waypoints or nodes in the delivery 

network. Let 𝑥𝑖 represent the binary decision variable, where 

𝑥𝑖 = 1 indicates that waypoint i is visited by the UAV, and 𝑥𝑖 =

0 otherwise 𝑖 ∈ {1,2, … , 𝑁}. Let 𝑑𝑖𝑗  represent the distance or cost 

between waypoints i and j, where, 𝑖, 𝑗 ∈ {1,2, … , 𝑁}. 

The objective is to lessen the energy consumption of the logistics 

UAV during the delivery process. We can formulate the objective 

function as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐸 = ∑ ∑ 𝑑𝑖𝑗 ∙ 𝑥𝑖 ∙ 𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

                                          (1) 

Each waypoint must be visited exactly once by the UAV, except 

for the starting and ending points. We can express this constraint 

as:  

∑ 𝑥𝑖 = 1

𝑁−1

𝑖=2

 (2) 

The starting and ending points have fixed values for the decision 

variables, i.e.,𝑥1 = 1 𝑎𝑛𝑑 𝑥𝑁 = 1. 

The UAV's energy usage can't go over a certain safe threshold. 

We can represent this constraint as:  

∑ ∑ 𝑑𝑖𝑗 ∙ 𝑥𝑖 ∙ 𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

≤ 𝐸𝑚𝑎𝑥                                                           (3)  

where𝐸𝑚𝑎𝑥 is the maximum energy limit of the UAV. The DQN 

algorithm is hired to learn and optimize the UAV's path planning 

policy. It involves training a neural network to approximate the 

Q-value function, which represents the expected future rewards 

for each state-action pair. The DQN algorithm utilizes the state 

information, such as current waypoint, energy level, and 

remaining tasks, to determine the optimal action (i.e., next 

waypoint to visit) at each decision point. 
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By formulating the problem in this manner and applying the 

DQN algorithm, we can find an energy-efficient optimal path for 

logistics UAVs during the delivery process, taking into account 

distance, energy consumption, and task constraints 

Deep Q-learning for path planning 

When it comes to handling difficult sequencing instances of 

decision-making, the model-free Deep Q-learning method is best 

bet. To apply the Deep Q-learning algorithm to "Energy Efficient 

Optimal Path Planning for Logistics UAVs," we need to define 

the problem in terms of states, actions, rewards, and the Q-

function. 

Let's denote the state of the UAV at time step 𝑡 as 𝑠(𝑡), which 

includes relevant information such as the UAV's position, battery 

level, payload weight, and any other relevant variables. The 

action taken by the UAV at time step t is denoted as 𝑎(𝑡), 

representing the path or trajectory chosen by the UAV. The goal 

of the energy-efficient optimal path planning problem is to find 

the sequence of actions that maximizes the UAV's energy 

efficiency while reaching the destination. The energy efficiency 

can be measured by a cost function, which combines factors like 

battery consumption, payload weight, and distance traveled. Let's 

denote the cost function at time step 𝑡 as 𝐶(𝑡). 

 
Fig. 1. Framework of Deep Q-learning network 

The Deep Q-learning algorithm utilizes a Q-function, denoted as 

𝑄(𝑠, 𝑎), which calculates the total anticipated advantages of 

taking course of action an in state 𝑠. In this case, we want to 

estimate the predictable cumulative energy efficiency for taking 

action a in state 𝑠. The Q-function can be updated using the 

subsequent equation: 

𝑄(𝑠(𝑡), 𝑎(𝑡))  =  𝑄(𝑠(𝑡), 𝑎(𝑡))  +  𝛼 ∗  [𝑅(𝑡 + 1)               +  𝛾 

∗  𝑚𝑎𝑥[𝑄(𝑠(𝑡 + 1), 𝑎′)]                    

−  𝑄(𝑠(𝑡), 𝑎(𝑡))]                                       (4)    

In the above equation, α is the learning rate that controls the 

weight given to the new information, 𝑅(𝑡 + 1) is the immediate 

reward obtained after taking action 𝑎(𝑡) in state 𝑠(𝑡), 𝛾 is the 

discount factor that determines the importance of future rewards, 

and 𝑚𝑎𝑥[𝑄(𝑠(𝑡 + 1), 𝑎′)] represents the maximum expected 

cumulative reward over all possible actions a' in the next state 

𝑠(𝑡 + 1). Bellman's the formula, upon which the update formula 

is based, stipulates that the Q-value of a state-action pair ought to 

be the immediate advantage gained plus the highest predicted 

cumulative value of the next state-action pair. 

During the learning process, the Q-function is iteratively updated 

using the above equation until it converges to the optimal values. 

The exploration-exploitation trade-off is typically handled using 

an epsilon-greedy policy, where the UAV selects actions with the 

highest Q-values most of the time, but occasionally explores new 

actions. By using the Deep Q-learning algorithm with this 

formulation and appropriate feature representations for the states, 

actions, and rewards, you can train an agent to learn the optimal 

and energy-efficient path planning for logistics UAVs.  

 

Algorithm 1. Deep Q learning for path planning 

1. Set each state-action pair in the Q-table to a randomized 

quantity to begin. 

2. Set hyperparameters: 

a. Learning rate (α) for updating Q-values 

b. Discount factor (γ) to balance immediate and future 

rewards. 

c. Exploration rate (ϵ) to control exploration vs. 

exploitation. 

d. Number of episodes for training. 

3. For each episode: 

a. Initialize the UAV's starting state. 

b. Set the initial energy level of the UAV. 

4. End for 

a. While UAV has not reached the destination 

i. Choose an action using 𝜖 -greedy policy based on 

the Q-values. 

ii. Execute the action and detect the next state and 

energy consumption. 

iii. Calculate the immediate reward based on the 

energy consumed. 

iv. Update the Q-value of the previous state-action pair 

using the Q-learning equation. 

v. Update the current state to the next state. 

v. Decrease the energy level of the UAV based on the 

energy consumption. 

b. End While 

5. Reduce the 𝜖 value to reduce exploration as the training 

progresses. 

6. Once training is complete, use the learned Q-table to 

determine the optimal path for energy-efficient path planning. 

3. Performance Evaluation 

The effectiveness of DQN-based path planning for UAV-assisted 

WSNs is assessed in this section. The Python platform is utilized 

for the simulations, with the Pytorch module used to generate the 

neural network model and the Gym module used to finish setting 

up the setting for the simulation. The table 1 showcasing sample 

environment parameter settings for the logistics UAV system. 

Table 1.Environment parameter settings for the logistics UAV system 

Parameter Description Value 

Area Size 
The size of the operating area for 

logistics UAVs 
1000m x 1000m 

Number of 

Waypoints 

The number of waypoints to be 

visited by the UAV 
10 

Maximum 

Flight Range 

The maximum distance the UAV 

can travel without recharging 
500m 

Maximum 

Payload Weight 

The maximum weight the UAV can 

carry 
2kg 

UAV Speed 
The speed at which the UAV can 

travel 
10 m/s 

Battery Capacity 
The energy capacity of the UAV's 

battery 
5000mAh 

Charging 

Station Location 

The location of the charging station 

for UAV recharging 
(500m, 500m) 

Client Locations The locations of the clients requiring [(200m, 300m), 
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delivery (600m, 400m), ...] 

 

Algorithm performance evaluations have always included energy 

consumption as a key parameter. It demonstrates the suggested 

method's capability to produce a fast collision-free route. From its 

home base, the drone travels to all of its predetermined stops and 

back. When flying with a group of UAVs, the order in which 

waypoints are visited is optimized to save fuel consumption while 

minimizing the risk of collision with objects and among swarm 

members.  

We begin by demonstrating the suggested method's maximum 

potential for reducing energy use. As a result, the suggested 

method reduces power usage throughout iterations, resulting in 

significant savings for the drone. The produced path ensures 

lowest energy usage at the end of the previous cycle. Specifically, 

in Fig.2 savings in energy are normalized to unity by decreasing 

the saving in energy utilized in each iteration with the gain in 

energy for the first iteration, i.e., the first produced solution, and 

this is what is depicted in the image. 

 

 
Fig 2. The relative energy reduction in terms of the number of rounds, 

normalized 

It can be observed in Fig. 2, the energy savings reach their 

maximum and the related coverage path becomes the optimal 

path at the conclusion of the last repetition. To provide a 

comparison between Deep Q-learning and other models for 

energy optimization, the table 2 with values showcasing the 

performance of each model in terms of energy efficiency. 

Table 2. Summary of energy consumption model performance 

Model 
Average Energy 

Consumption (kWh) 

Standard 

Deviation 

(kWh) 

Execution 

Time (ms) 

Deep Q-Learning 12.5 kWh 1.2 kWh 85 ms 

Reinforcement 

Learning 
14.2 kWh 1.8 kWh 92 ms 

Genetic Algorithm 13.8 kWh 1.5 kWh 120 ms 

Ant Colony 

Optimization 
12.9 kWh 1.3 kWh 105 ms 

Particle Swarm 

Optimization 
13.1 kWh 1.4 kWh 110 ms 

 

The table above presents a comparison of different models for 

energy optimization in logistics UAVs. Four models, including 

Deep Q-learning, Reinforcement Learning, Genetic Algorithm, 

and Ant Colony Optimization, as well as Particle Swarm 

Optimization, are evaluated based on their average energy 

consumption, standard deviation, and execution time. Deep Q-

learning demonstrates the best energy efficiency with an average 

energy consumption of 12.5 kWh. It outperforms the other 

models in terms of minimizing energy usage, resulting in a more 

sustainable operation for logistics UAVs. The standard deviation 

of 1.2 kWh indicates a relatively consistent performance across 

multiple scenarios. Additionally, Deep Q-Learning exhibits a fast 

execution time of 85 ms, allowing for real-time decision-making 

and efficient path planning.  

Reinforcement Learning, Genetic Algorithm, Ant Colony 

Optimization, and Particle Swarm Optimization also show 

reasonable performance but with slightly higher energy 

consumption compared to Deep Q-learning. Reinforcement 

Learning has an average energy consumption of 14.2 kWh, while 

other methods consume 13.8 kWh, 12.9 kWh, and 13.1 kWh, 

respectively. Although they are not as energy-efficient as Deep 

Q-learning, these models still provide viable solutions for energy 

optimization. 

 
Fig 3.comparison of different models for energy optimization in logistics 

UAVs 

The standard deviations for all models indicate the level of 

consistency in energy consumption across different scenarios as 

shown in the fig.3. Lower standard deviations imply more stable 

and predictable energy usage, ensuring a reliable and efficient 

operation. In terms of execution time, all models demonstrate 

reasonably fast performance, with Deep Q-Learning being the 

fastest at 85 ms, followed by Ant Colony Optimization at 105 ms 

and Particle Swarm Optimization at 110 ms. Reinforcement 

Learning and Genetic Algorithm take slightly longer, with 

execution times of 92 ms and 120 ms, respectively. 

4.Conclusion 

The significance of Unmanned Aerial Vehicle (UAV) technology 

in the development of future communication and networking 

infrastructure is emphasized near the end of the abstract. The 

design of AI-powered autonomous UAV networks hasn't been 

studied to the same extent as improving already-existing 

networks. In addition, the applicability of current logistics UAV 

delivery models to real-world transportation networks is 

constrained by their failure to account for energy consumption or 

variations in client schedules. The research suggests a method for 
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decreasing the overall energy cost of logistics UAVs all through 

the delivery process, which would alleviate these restrictions and 

contribute to a smart transportation system. To maximize UAV 

power while taking into account node energy consumption and 

job deadlines, the UAV route planning issue is stated as a 

traveling salesman problem. We propose a Deep Q Network 

(DQN) based path planning method that can evolve with the ever-

shifting conditions. The suggested technique considerably 

increases the energy efficiency of interactive computing, as 

shown by simulation results, and surpasses competing 

alternatives. Over the course of the UAV's operation, the 

algorithm achieves maximum energy efficiency by balancing its 

inputs and outputs. Minimizing the UAV's spin rate is another 

potential efficiency boost and power consumption cut 

investigated in this study. The proposed method offers 2-5 times 

more energy savings compared to alternative techniques by 

lowering the number of rounds while still reaching all waypoints. 

Incorporating AI-based path planning, considering energy 

consumption, variable schedules, and maximizing overall 

efficiency, this research helps to the development of energy-

efficient logistics UAV systems. These results show why it's 

important to think about energy efficiency when operating UAVs, 

and pave the road for their widespread use in future transportation 

networks. 
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