

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 85

Dynamic Fault Tolerance Management Algorithm for VM Migration in

Cloud Data Centers

Bikash Chandra Pattanaik1*, Bidush Kumar Sahoo2, Bibudhendu Pati3, Suprava Ranjan Laha4

Submitted: 22/04/2023 Revised: 24/06/2023 Accepted: 03/07/2023

Abstract: Fault tolerance is critical in constructing robust cloud computing systems to ensure uninterrupted service delivery and

maintain economic benefits despite potential faults. This paper presents a novel layered modeling architecture that combines reactive and

proactive fault modeling theories to enable reliable, survivable cloud-based applications by addressing fault tolerance concerns. This

paper examines the issues of dynamic fault tolerance management and virtual machine (VM) migration in cloud data centers. We

introduce a comprehensive algorithm that efficiently manages fault tolerance through proactive measures by leveraging a layered

modeling architecture. The algorithm considers defect prediction and resource allocation techniques to minimize service interruptions

and maximize resource utilization. It incorporates reactive and proactive fault modeling to identify and respond to faults, anticipates

potential faults, and takes preventative measures. This integration makes the cloud computing environment more robust and reliable.

However, extensive simulations and evaluations demonstrate the proposed algorithm's effectiveness in reducing service downtime,

ensuring application reliability, and sustaining optimal performance. The algorithm's ability to dynamically migrate virtual machines

(VMs) based on defect prediction contributes to efficient resource allocation and load balancing, mitigating potential bottlenecks and

enhancing system resilience. The results demonstrate the applicability and effectiveness of the proposed framework for maintaining

cloud-based applications' dependability. Combining reactive and proactive fault modeling theories, the proposed algorithm provides a

comprehensive method for keeping cloud-based applications reliable and fault-tolerant.

Keywords: fault tolerance, load balancing, reactive fault tolerance, proactive fault tolerance, resource utilization, cloud computing,

dynamic VM migration, resource allocation.

1. Introduction

Cloud computing enables the sharing of resources on a

pay-per-use basis [1]. Cloud services must ensure that

resources are available when they are needed [2]. In-

cloud resources are often insufficient to support complex

jobs [3]. This problem becomes acute when the work

load grows and submissions increase. In cloud

computing, strategies are devised to address the problem

of insufficient resources. Recent strategies have included

reserving. When resources become available, reservation

guarantees that jobs are added to the system as soon as

possible [4]. This prevents as sudden increase in load on

the server and virtual machine, which can cause failures

when more jobs are added. A broker is responsible for

managing the nodes in the cloud architecture&

determining the needs of each cloudlet [5]. Cloudlets that

match the desired requirements are added to the list,

while those that do not are discarded. This method

reduces throughput by reducing the number of cloudlets

that match the desired configuration. Cloud computing is

a recent development that allows a client to access any

resources needed at any time. Cloud services allow users

to perform a lot of tasks at the same time. However,

these services should be highly reliable and stable so that

they can satisfy the requirements of users. Below are

these layers: At the top of the structure are cloud

applications where clients send their applications.

Operating systems and application frameworks reduce

VM burden in the platform layer below the application

layer. Infrastructure components like storage &

networking are in the virtualization layer. Cloud

computing services allow companies to reduce the cost

of building and maintaining a computing environment by

using a cloud provider's services. The benefits of using

clouds, such as unlimited data storage and object

computation, also make them popular among businesses.

For data- and compute-intensive applications like those

used in scientific research, cloud computing can be a

cost-effective alternative since it allows users to

complete computation activities on a pay-as-they-go

basis without the hassle of creating and handling its

cloud strategies. Large-scale cloud computing systems

are especially prone to malfunction. Both Daniel B.

Stewart [6] and Michael J. Howard [7] detail the

unwanted cloud strategies of 2013 and 2014,

correspondingly. Some users experienced difficulties

1 Gandhi Institute for Education and Technology, Affiliated to Biju

Patnaik University of Technology Rourkela, Odisha, India

ORCID ID: 0009-0000-6713-1492
2 GIET University, Gunupur, Odisha, India

ORCID ID: 0000-0002-5044-0819
3 Ramadevi Women’s University, Bhubaneswar, Odisha, India

ORCID ID: 0000-0002-2544-5343

 4 Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India

ORCID ID: 0000-0003-1847-8419

Corresponding Author Email: bikashpatnaik73@gmail.com

https://orcid.org/0000-0002-5044-0819

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 86

accessing popular cloud services including Facebook,

Amazon, and Google Drive. As roughly services of

customers are absent entirely or in part for some time

due to these outages, clouds lost data, money, and

customer trust. Cloud applications must be implemented

in a way that allows them to recover automatically out of

the malfunctions without compromising the required

Quality of Service (QoS) or the projected return.

Fault Tolerance within Cloud Computing

Cloud computing systems use a variety of fault tolerance

techniques, including proactive, reactive, and task

resubmission. Cloud-based applications are designed to

manage failures in cloud infrastructure automatically. In

order to prevent failure and increase capacity and

throughput, they replace suspect components with other

effective components. Reactive fault tolerance

techniques can be used to increase the outcome of

success on application execution, allowing applications

to continue running in the event of a failure. Numerous

reactive defect tolerance techniques are deployable in

cloud computing systems. Checkpoints allow cloud-

based systems to recover from failure and continue

application execution near the point of failure. To ensure

that the application state is preserved in the event of a

crash, it can be saved to stable storage periodically. The

application can restart at the latest checkpoint if a fault

occurs in a saved state. The ability to resume execution

after a fault enables the application to tolerate faults and

reduces the time spent by the application in recovering

from such faults.

The execution may be resumed on the similar VM or on

another available VM. This approach wastes additional

time. Recovery of a failing VM is required if there is

only one VM available for application execution or if

multiple VMs are available and can be rescheduled.

However, this method is appropriate if it has single

instance from the desired VM.

The replication method presupposes that the possibility

of a single VM failing is substantially larger than the

possibility of numerous VMs failing simultaneously. By

launching multiple instances of an application on

separate virtual machines (VMs), application

virtualization prevents the need for recompilation. The

cloud may remain delivering the services even if some

instances fail because of the redundant copies. Multi-

version and parallel approaches are two methods for

duplicating data. In the multiversity, the application is

duplicated and run on several virtual machines

simultaneously. Time to results is more crucial than

correctness of outcomes for parallel mechanisms [11].

The reaction time of parallel methods is significantly

better than that of check-pointing and multiple version

schemes. Therefore, it is a viable option for mission-

critical software. When verification of findings is

essential, the multiverse approach is recommended.

Resubmitting tasks is the standard method of error

recovery in modern scientific workflow systems. A

resubmission for the resource occurs at runtime if a

failed task is identified.

Background Study Cloud Architecture

Figure 1depicts a high-level overview of cloud

computing architecture. The three prime objects are the

Allocator, the Virtual Machines (VMs) and the

Resources. The Allocator is a software component which

guides the cloud services provider and customers

interact. It needs the below modules to be included:

1. QoS Controller: Key role of this unit is checking

the cloud computing that can satisfy the needs of

customers inside a maintained QoS environment. A

quality of service (QoS) controller accepts a demand

from a customer accompanied by his QoS needs. This

launches a query demand for appropriate virtual

machines for VM database, and gets there spouse. The

QoS controller will accept or reject requests according to

the requirements of the request. If there are no VMs in a

required QoS level, the request will be rejected. If there

are VMs in a required QoS level, but not enough for all

requests to be satisfied, the request will be accepted and

sent to anal location process.

2. VMs Database:

Cloud virtual machines' (VMs') speed, memory size,

number of CPUs, and bandwidth are only some of the

performance characteristics and usage history detailed in

the VM information report. The failure rate of each VM

is also included. Our software engineers use a

programme called VMs Monitor to keep tabs on and

manage all of our virtual machines, and that programme

sends regular updates to this database.

3. Broker:

The QoS Controller delivers consumer requests and QoS

requirements to the broker. It determines which virtual

machines can fulfil these requirements based on the

current resource availability of each. So as to achieve

binding processes between needs and VMs, the cloud

broker must be aware of the availability and

dependability of virtual machines.

This information can be obtained from the virtual

machines database. In addition, the cloud broker plays a

crucial role in determining prices for required services

based on the cloud's pricing mechanisms. The budget

issue checks the cost-of-service requests. For example,

needs may increase fees based on supply convenience.

Assessing is the base for checking the providing and

need of cloud computing supplies the source allotment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 87

Figure 2 depicts the Broker's internal structure and

interactions. Included are:

➢ VMFT Selection: This module's primary

objective is to choose the appropriate fault tolerance

technique for customer applications .The QoS Controller

transmits an application and its QoS requirements to the

VM agent, which is a software agent.

➢ VMs Classifier: This module identifies the

virtual machines (VMs) that will execute applications

for clients. The module comprises the VMC agent, a

software agent. The VMFT selection module transmits

the application's QoS requirements to this agent. Then,

it communicates a query need to the database of virtual

machines (VMs) to get the most current information for

VMs which can attain the QoS needs. The

categorization of virtual machines is based on both the

duration of time the VM has been in use and its rate of

failure.

Dispatcher: Once a customer application has been

determined, the Dispatcher delivers it to one or more

VMs for execution.

Fig 1: Overview of High level Cloud Computing Architecture

Fig 2: Broker and their interactions components

2. Related Work

Cloud computing Cloud computing workloads can be

managed with the help of a fuzzy economic energy

mechanism proposed by Om Kumar et al. [7]. A three-

step schedule maintains cloud resources while reducing

migration time and instance execution time. By

deploying fuzzy decision-makers, this framework

achieves workload consolidation and assesses resources

with utilization concerns. Additionally, the framework

supplies workload categories to monitor virtual machine

failures and start fuzzy migrations. According to Amoon

et al. [9], the checkpointing technique can improve cloud

fault tolerance when a failure occurs. Checkpointing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 88

length is flexible in this approach. A virtual machine's

failure rate can influence the length of checkpointing for

an application. In order to control data center

infrastructure reliability, Easwara kumar [10] introduced

a new strategy called dynamic fault-tolerant VM

migration (DFTM). A VN (Virtual Network) demand

can be recovered using DFTM using an advanced

recovery mechanism. Monitoring network traffic and

load limits through VM is necessary to submit jobs to

resources. Hybrid Fault-Tolerant Scheduling Algorithm

Program (HFTSA) is the algorithm proposed by Yao et

al. [11]. Each job is assigned a fault-tolerant cloud

method from resubmissions and replications by the

HFTSA scheduling algorithm. They support task

characteristics and adapt cloud resources accordingly. A

flexible cloud fault tolerance model (FFTF) was

proposed by Hasan and Goraya [12]. An FFTF

framework delivers users with a key to start fault

tolerance (FT) according to their jobs. To implement FT,

user jobs are done on a shared cluster in the cloud. Using

support vector machines (SVMs), Beheshti and Esfahani

[13] proposed a BFPF-Cloud framework to predict

Byzantine failures.

There are reactive and proactive policies in the BFPF-

Cloud framework for handling failures and maintaining

system availability and reliability. Adaptive models

developed by Alaei et al. [14] aim to reduce the total

cost, energy consumption, and makespan of a system,

and to tolerate faults. A reinforcement learning-based

multi-work load scheduling algorithm was proposed by

Zong et al [15]. A dynamic priority algorithm was

utilized to check the type of progress in it. For checking

the cluster nodes in cloud computing, a fine-grained

cloud computing model was created using reinforcement

learning. For task arrangement in virtual hosts in a cloud,

Ragmani et al. [16] have proposed Fuzzy Ant Colony

Improvement Algorithm Rule (FACO). For calculating

the pheromone value, the fuzzy module evaluates

historical data. In order to achieve the minimal

computation time, a suitable server is selected. Deep Q-

learning task scheduling (DQTS) is a novel

computational algorithm developed by Tong et al. [17],

that associates the characters of deep neural networks

and Q- learning algorithms. This method is formulated

for managing tasks with directed acyclic graphs (DAGs)

in a cloud environment. To schedule tasks, this method

uses the Deep Q-learning (DQL) technique, which

primarily promotes elementary model learning to support

workflow advancements. In Sahoo et al. [18], fuzzy logic

was utilized for representing the various nodes in a cloud

environment as a load-balancing algorithm. Choudhary

and Kumar [19] propose an HG-GSA for load balancing.

The firefly algorithm was created by Kashikolaei et al.

[20]. A sophisticated meta-heuristic algorithm schedules

and processes user requests for load balancing. Using

some searching algorithms, the proposed algorithms to

improve load balancing, and scheduling in cloud

computing. Li et al. employed genetic and differential

evolution algorithms (DEs) to minimize and increase

virtual machine time, price, and load balancing [21].

Jena et al. [22] used a better Q-learning algorithm

(QMPSO). Also used modified particle swarm

optimization (MPSO) to dynamically balance virtual

hosts. Pbest adjusts the MPSO rate over gbest to promote

better Q-learning's best action. Sun et al. proposed QoS-

aware scheduling [23]. With QoS-aware service in edge-

cloud combined with fault-tolerance in edge- cloud, this

fault-tolerant technique is created on standard primary

backup (PB). The above works can be summarized as

shown in Table 1.

Table1: A summary of different fault tolerance techniques

Authors Application Techniques/

Methods

Findings

Om

Kumar et

al.[8]

CloudSim Reactive

(Live

Migration)

Adaptive fuzzy

fault tolerance.

Reduce execution

 and

migration time.

Sadi et al.

[9]

ACS Reactive

(Checkpoint)

Enhancement

Performance is

better, but the

checkpoint interval

 isn't

fixed, which makes

availability low.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 89

Sivagami

et al.[10]

CloudSim Reactive(mi

gration)

Low resource

utilization and

minimal

complexity.

Migration time is

maximum.

Zhao et

al.[11]

Google

Cloud trace

logs

Reactive (re

submission

and

replication)

Response time and

resource utilization

are low.

Goraya

et.al. [12]

CloudSim Reactive(rep

lication)

System scalability

and resource

utilization are both

high. Resource

consumption and

response time are

both low.

Esfahani

et al.

[13]

CloudSim Proactive(Pr

ediction)

Reduce the time it

takes to execute

and repeat. High

throughput and

response time are

low.

Mohamme

d et al.[14]

CloudSim Redundancy

checkpoint

Performance is

high and Utilization

of resources is low.

Zohng et

al.[15]

CloudSim Workflow

Scheduling

Utilization of

resources is high.

Ragmaniet

al,

[16]

Cloud

analyst

Nature

Inspired

Processing time,

response time and

cost is maximum.

Tonget

Et al.

[17]

CloudSim Workflow

Scheduling

Balance of load is

maximum and

makespan is low.

Sahoo et

al.

[18]

CloudSim Nature

Inspired

Response time is

high

Kumar

Et al.

[19]

CloudSim Nature

Inspired

Cost is low and

maximum

utilization

Kashikol

et al.[20]

Dot Net Task

Scheduling

Improved

productivity and

efficiency of the

resources increases

due to stability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 90

Li et

al.[21]

CloudSim Task

Scheduling

Balancing of load

is better. Cost and

total time is

minimal.

Jana et

al.[22]

CloudSim Nature

Inspired

A reduction in

makespan times

increases system

throughput and

optimizes

utilization of the

resources.

Sun et

al.[24]

Python QoS task

Scheduling

Better performance

and improved

service reliability.

3. Methodology

The Mann-Whitney U test is non-parametric, this is an

alternative to an unpaired t-test . A null hypothesis can

be tested by comparing two samples from the same

population (having the same median) or by examining

whether observations in one sample incline to be larger

than observations in the other. Even though it is a non-

parametric test, it is based on the assumption that both

the distributions are analogous. The number of times a xi

from sample 1 is greater than an yj from sample 2 is

calculated. Ux refers to this number. Similarly, Uy

indicates the number of times a xi from sample 1 is

smaller than an yj from sample 2. In accordance with the

null hypothesis, it is expected that Ux and Uy to be

almost equal.

The test should be conducted as follows:

1. The observations should be arranged in order of

magnitude.

2. To indicate which sample each observation belongs to,

write X or Y (or some other appropriate symbol) under

it.

3. Write down the number of ys that are to the left

(smaller than it); this indicates that xi > yj. The number

of xs to the left of each y indicates that yj is greater than

xi.

4. Calculate the total number of times that xi > yj -

denoted by Ux. The total number of times that yj> xi -

denoted by Uy - must be added up. Make sure the sum of

Ux and Uy equals nxny.

5. Minimum (Ux, Uy) = Calculate U

6. Calculate the possibility of accessing a value U or

lower using statistical tables for the Mann-Whitney U

test. For one-sided tests, this is the p-value; for two-sided

tests, double this possibility to obtain the p-value.

µU =
𝑛𝑥 𝑛𝑦

2
 , σU = √

𝑛𝑥 𝑛𝑦 (𝑁+1)

12
 , where N = nx + ny

nxny is large enough (> 20), Two or more observations

may be identical. By providing half the tie to the X value

and half the tie to the Y value, we can still calculate U. If

this is the case, it is necessary to adjust the standard

deviation when using the normal approximation.

Therefore, we have:

σU = √
𝑛𝑥 𝑛𝑦

𝑁(𝑁−1)
× [

𝑁3 −𝑁

12
− ∑

𝑡𝑗
3

12
−

𝑡𝑗

12

𝑔
𝑗=1]

Where N = nx + ny

g = the number of groups of ties

tj = the number of tied ranks in group j

Table 2: Parameter Table

Type Parameter Value

DC
No. of DC 5

No. of Hosts 2

VM

No. of VMS 20

No. of PEs per VM 250(MIPS)

 512~2048MB

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 91

VM Memory

Type of manager Timeshared

Task No. of task 10~50

Length 5000MI

Algorithm

1. Initialize number of VMs

2. Initialize number of cloudlets

3. Initialize optimization parameters

4. For each cloudlet:

• For each VM:

• Calculate the time to process the task by the VM.

• Find the VM with the minimum processing time.

5. Cluster tasks using BIRCH (Balanced Iterative

Reducing and Clustering using Hierarchies).

6. For each iteration of the optimization algorithm:

• For each group of tasks:

• For each cloudlet:

• For each VM:

• If the VM is not tabu:

• Calculate the time to process the task by the VM.

• Calculate the probability of processing the task by

the VM.

• If the new probability is greater than the old

probability:

o Update the probability.

o Keep track of the VM index.

• Update ACO parameters:

• Set Factor to 0.

• For each cloudlet:

• Update Factor using the task probability.

• If the new Factor is greater than the old Factor:

• Add the VM to the VM list.

7. Calculate performance.

The above algorithm outlines a process for optimizing

the allocation of tasks (cloudlets) to individual virtual

machines (VMs) in a cloud computing environment.

Fig 3 (a): Implementation of the algorithm for 10 tasks

Fig 3 (b): Simulated results for 10tasks

Figures 3 (a) & 3(b) are the screenshot of simulated results for BIRCH-GWO algorithm utilization for 10 tasks. This shows

it can balance all the loads and able to tolerate the fault in a less time period successfully.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 92

Fig 3 (c): Implementation of the algorithm for 30 tasks

Fig 3 (d): Simulated results for 30tasks

Figures 3 (c) & 3(d) are the screenshot of simulated

results for BIRCH-GWO algorithm utilization for 30

tasks. This shows the algorithm can successfully balance

all the loads and tolerate the fault with a minimum CPU

time.

4. Result & Discussion

Above figure shows with varying number of tasks how

makespan time of different models get affected. The

degree of imbalance is better with more number of tasks

while using optimization algorithms. As because with

less number of tasks the objective of finding a suitable

VM is not that much necessary and each task get

processed by any VM. Above figure taken from figure-2

to give clarity on how makespan is reduced with

application of optimization.

Fig-4: simulated graph with 10 VMs

Figure 4 shows with varying numbers of tasks how the

makespan time of different models get affected. We have

utilized 5 different algorithms on the task variation from

10 to 30. We have varied the number of tasks, but the

number of VMs for all the algorithms remains the same

as 10. We observed that the variation with different

algorithms would be minimal with fewer tasks, but when

no. of tasks increased, the makespan time gets affected.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 93

Fig-5: simulated graph with 20 VMs

Figure 5 shows with varying numbers of tasks how the

makespan time of different models get affected. We have

utilized 5 different algorithms on the task variation from

10 to 30. We have varied the number of tasks, but the

number of VMs for all the algorithms remains the same

at 20. We observed that the variation with different

algorithms would be minimal with fewer tasks, but when

no. of tasks increased, the makespan time gets affected.

Fig-6: simulated graph with different no. of tasks

In Figure 6, we observed that the degree of imbalance is

better with more tasks while using optimization

algorithms. As with fewer tasks, the objective of finding

a suitable VM is not that much required, and each task

gets processed by any VM, so more tasks can provide

better clarity on utilizing proper algorithms.

In Figure 7, we tried to clarify how makespan timings

are reduced with 10 no. of tasks by utilizing all 5

different algorithms for optimization application.

Fig-7: Simulated graph with 10 tasks

Fig-8: simulated graph with 12 tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 94

In Figure 8, we tried to clarify how makespan timings

are reduced with 12 no. of tasks by utilizing all 5

different algorithms for optimization application.

Fig 9: simulated graph with 16 tasks

In this figure 9, we tried to clarify how makespan

timings are reduced with 16 no. of tasks by utilizing all 5

different algorithms for optimization application. Figure

10 shows our best efforts to explain how combining all 5

optimization strategies can shorten makespan times for

22 tasks.

Fig-10: simulated graph with 22 tasks

Fig-11: simulated graph with 30 tasks

We have clarified how makespan timings are reduced

with 30 no. of tasks by utilizing all 5 different algorithms

for optimization application shown in Figure 11.

Fig 12: simulated graph for checking overflow

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 95

Overflow occurrences are depicted graphically in Figure

12. When more jobs are made available for load

balancing, BIRCH-GWO can reduce the occurrence of

overflows. Number of time overflow occurred has been

shown above. With application of BIRCH-GWO

numbers of overflows are reduced specifically for more

number of tasks.

5. Conclusion

This paper introduces a dynamic fault tolerance

management algorithm for VM migration in cloud data

centers. The algorithm is based on a layered modeling

architecture that combines reactive and proactive fault

modeling theories to ensure reliable and fault-tolerant

cloud computing systems. The algorithm minimizes

service interruptions and maximizes resource utilization

by considering defect prediction, and resource allocation

techniques. The algorithm's effectiveness in reducing

service downtime, ensuring application reliability, and

sustaining optimal performance has been demonstrated

through extensive simulations and evaluations. The

dynamic VM migration capability based on defect

prediction enhances resource allocation and load

balancing, contributing to system resilience. The

proposed algorithm provides a comprehensive approach

to maintaining fault tolerance and recovery in cloud data

centers, making cloud-based applications more

dependable. By resolving fault tolerance concerns

through a layered modeling approach, the algorithm

offers a robust and reliable solution for managing fault

tolerance in cloud computing environments. This

research contributes to developing fault-tolerant cloud

systems by presenting a practical algorithm for dynamic

fault tolerance management and VM migration in cloud

data centers.

Overall, this paper highlights the effectiveness of

the BIRCH-GWO algorithm in reducing overflows and

emphasizes the importance of considering the number of

tasks when optimizing task scheduling algorithms in

cloud environments. The findings suggest potential

avenues for future research to enhance the dynamic

modification of task numbers and further optimize task

allocation and scheduling algorithms in cloud

computing.

Acknowledgements

This research was partially supported by Dr. Saumendra

Pattnaik and Prof. (Dr.) Binod Kumar Pattanayak. We

thank our colleagues from Siksha 'O' Anusandhan

University, Bhubaneswar, Odisha, India, who provided

insight and expertise that greatly assisted the research.

Author contributions

Bikash Chandra1 Pattanaik1: Related works,

Experimental analysis & Implementation, Abstract

Bidush Kumar2 Sahoo2: Result & Discussion, Abstract

Bibudhendu3 Pati3: Methodology, References,

Abstract Suprava Ranjan4 Laha4: Introduction,

Background Study, Conclusion, Abstract.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Gowri, A. S. (2019). Impact of virtualization

technologies in the development and management

of cloud applications. International Journal of

Intelligent Systems and Applications in

Engineering, 7(2), 104-110.

[2] Ahmet, E. F. E., & Isık, A. (2020). A general view

of industry 4.0 revolution from cybersecurity

perspective. International Journal of Intelligent

Systems and Applications in Engineering, 8(1), 11-

20.

[3] Pattanayak, B. K., Mohanty, R. K., Venkataramana,

T., Pattnaik, S., Ranjan, R., Laha, S. R. (2022) An

IoT Enabled Cloud Based Virtual Classroom

Assisted e-Learning System. In NeuroQuantology,

Vol.20, 9.

[4] Laha, S. R., Parhi, M., Pattnaik, S., Pattanayak, B.

K., & Patnaik, S. (2020, October). Issues,

Challenges and Techniques for Resource

Provisioning in Computing Environment. In 2020

2nd International Conference on Applied Machine

Learning (ICAML) (pp. 157-161). IEEE.

[5] Hota, N., & Pattanayak, B. K. (2021). Cloud

computing load balancing using Amazon web

service technology. In Progress in Advanced

Computing and Intelligent Engineering (pp. 661-

669). Springer, Singapore.

[6] Laha, S. R., Mahapatra, S. K., Pattnaik, S.,

Pattanayak, B. K., & Pati, B. (2021). U-INS: an

android-based navigation system. In Cognitive

Informatics and Soft Computing (pp. 125-132).

Springer, Singapore.

[7] The worst cloud outages of 2013, Online, cited

01.07.2013.URL:http://www.infoworld.com/slidesh

ow/107783/the-worst-cloud-outages of 2013-so-far-

221831.

[8] The worst cloud outages of 2014, Online, cited

01.01.2015.URL:http://www.infoworld.com/article/

2606209/cloud-computing/162288-The-worst-

cloud-outages-of-2014-so-far.html.

[9] CU, O. K., & Bhama, P. R. S. (2019). Fuzzy based

energy efficient workload management system for

flash crowd. Computer Communications, 147, 225-

234.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 85–96 | 96

[10] Amoon, M., El-Bahnasawy, N., Sadi, S., & Wagdi,

M. (2019). On the design of reactive approach with

flexible checkpoint interval to tolerate faults in

cloud computing systems. Journal of Ambient

Intelligence and Humanized Computing, 10(11),

4567-4577.

[11] Sivagami, V. M., & Easwarakumar, K. S. (2019).

An improved dynamic fault tolerant management

algorithm during VM migration in cloud data

center. Future Generation Computer Systems, 98,

35-43.

[12] Yao, G., Ren, Q., Li, X., Zhao, S., & Ruiz, R.

(2020). A hybrid fault-tolerant scheduling for

deadline-constrained tasks in Cloud systems. IEEE

Transactions on Services Computing.

[13] Hasan, M., & Goraya, M. S. (2019). Flexible fault

tolerance in cloud through replicated cooperative

resource group. Computer Communications, 145,

176-192.

[14] Beheshti, M. K., & Safi-Esfahani, F. (2020). BFPF-

Cloud: Applying SVM for Byzantine Failure

Prediction to Increase Availability and Failure

Tolerance in Cloud Computing. SN Computer

Science, 1(5), 1-31.

[15] Alaei, M., Khorsand, R., & Ramezanpour, M.

(2021). An adaptive fault detector strategy for

scientific workflow scheduling based on improved

differential evolution algorithm in cloud. Applied

Soft Computing, 99, 106895.

[16] Zhong, J. H., Peng, Z. P., Li, Q. R., & He, J. G.

(2019). Multi workflow fair scheduling scheme

research based on reinforcement learning. Procedia

Computer Science, 154, 117-123.

[17] Ragmani, A., Elomri, A., Abghour, N., Moussaid,

K., & Rida, M. (2020). FACO: A hybrid fuzzy ant

colony optimization algorithm for virtual machine

scheduling in high-performance cloud

computing. Journal of Ambient Intelligence and

Humanized Computing, 11(10), 3975-3987.

[18] Tong, Z., Chen, H., Deng, X., Li, K., & Li, K.

(2020). A scheduling scheme in the cloud

computing environment using deep Q-

learning. Information Sciences, 512, 1170-1191.

[19] Hamdani, M., Aklouf, Y., & Bouarara, H. A. (2019,

March). Improved fuzzy load-balancing algorithm

for cloud computing system. In Proceedings of the

9th International Conference on Information

Systems and Technologies (pp. 1-4).

[20] Chaudhary, D., & Kumar, B. (2019). Cost

optimized hybrid genetic-gravitational search

algorithm for load scheduling in cloud

computing. Applied Soft Computing, 83, 105627.

[21] Kashikolaei, S. M. G., Hosseinabadi, A. A. R.,

Saemi, B., Shareh, M. B., Sangaiah, A. K., & Bian,

G. B. (2020). An enhancement of task scheduling in

cloud computing based on imperialist competitive

algorithm and firefly algorithm. The Journal of

Supercomputing, 76(8), 6302-6329.

[22] Li, Y., Wang, S., Hong, X., & Li, Y. (2018, July).

Multi-objective task scheduling optimization in

cloud computing based on genetic algorithm and

differential evolution algorithm. In 2018 37th

Chinese Control Conference (CCC) (pp. 4489-

4494). IEEE.

[23] Jena, U. K., Das, P. K., & Kabat, M. R. (2020).

Hybridization of meta-heuristic algorithm for load

balancing in cloud computing environment. Journal

of King Saud University-Computer and Information

Sciences.

[24] Sun, H., Yu, H., Fan, G., & Chen, L. (2020). QoS-

aware task placement with fault-tolerance in the

edge-cloud. IEEE Access, 8, 77987-78003.

[25] Parshapa, P. ., & Rani, P. I. . (2023). A Survey on

an Effective Identification and Analysis for Brain

Tumour Diagnosis using Machine Learning

Technique. International Journal on Recent and

Innovation Trends in Computing and

Communication, 11(3), 68–78.

https://doi.org/10.17762/ijritcc.v11i3.6203

[26] Sahoo, D. K. . (2022). A Novel Method to Improve

the Detection of Glaucoma Disease Using Machine

Learning. Research Journal of Computer Systems

and Engineering, 3(1), 67–72. Retrieved from

https://technicaljournals.org/RJCSE/index.php/jour

nal/article/view/44

