

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 97

Memory Optimization Using Distributed Shared Memory Management for

Re-engineering

R. N. Kulkarni 1, Venkata Sandeep Edara*2

Submitted: 23/04/2023 Revised: 25/06/2023 Accepted: 02/07/2023

Abstract: Restructure the old input C++ programming system to make it suitable for reengineering, which necessitates humongous

memory. This study has made significant contributions to the disciplines of system-on-chip design and on-chip memory management,

among others. This paper presents a new technique for optimizing memory subsystems during system design that is suited to specific

applications like re-engineering. This work can be improved to optimize memory controller activities and design challenges for distributed

shared memory management. It has the capacity to manage an increasing number of processors simultaneously, as well as security and

faster execution. The Xilinx 14.2 integrated simulation environment produces outstanding results when the proposed memory optimization

approaches are fully integrated into the simulation, optimization, and code generation cycle. The proposed memory device has an extremely

low on-chip power consumption of 0.0082 W, which amply demonstrates how well memory has been improved.

Keywords: Memory management, Power Consumption, Shared distributed memory (SDM), Memory mapping Mechanism, Re-engineering

1. Introduction

This A variety of high-speed applications, such as consumer

embedded products, audio and video processing,

multimedia animation (including 3D animation), and

weather forecasting, were created by IC designers as a result

of the development of VLSI technology [1]. Field

programmable gate arrays (FPGAs) have only lately

demonstrated their viability in decreasing the overall

computational load placed on the CPU core of the primary

processor. Data on the reconfigurable fabric, which is used

by both the software and the hardware, is mapped using a

memory mapping technique designed specifically for this

resolution. This memory mapping approach is the

foundation of the entire methodology. Parallel and

distributed processing are two of the most cutting-edge

areas of research being investigated right now in computer

architecture. The shared memory architecture is generated

in systems with physically distributed memories by

incorporating the two aspects of both approaches. One of the

most widely researched subjects in multiprocessor networks

is the study of distributed shared memory. Traditional

single-processor architectures are unable to push ahead with

the expanding number of high-speed applications, requiring

the creation of extremely sophisticated multiprocessor

architectures. A multiprocessor, also recognised as a Multi

core SoC or Multi processor System on Chip, is a device

that enables the integration of multiple Intellectual Property

(IP) cores in a single chip, which could be in the form of

high-speed digital signal processors, controllers, hardware

accelerators, memory blocks, and I/O blocks to perform

multiple tasks while operating at different clock

frequencies.

Memory-management components of the operating system

split each memory resource and load data across multiple

types of memory at the system level. Part of the main-

memory content, for example, must be shifted to secondary

storage, the disc. Virtual-memory and physical-memory

layouts, redeployment to avoid fragmentation, and other

more sophisticated jobs are among the more difficult tasks.

The main memory is split into 2 parts: one for the operating

system to handle globally, and one for each programme

being performed, which requires a different type of memory

management [2].

In real-time operating systems, memory management is

handled in one of two ways: using a stack or using a heap.

The stack management technique is used for context

switching between jobs, whereas the heap management

mechanism is used for dynamically giving space to tasks

[3]. Even many researchers have investigated the most

recent methodologies for co-optimizing test time and test

power reduction techniques. These actions that incur

overhead are seen as vital after prefetching, even if they are

not finished. To limit the amount of time spent

reconfiguring them, they must be re-used (In future

iterations of the same task graph execution). As a result,

reusing previously loaded configurations is one of the most

1 Ballari Institute of Technology and Management, Ballari- 583104,

Karnataka, India. ORCID ID : 0000-0002-9948-1398

2 Sasi Institute of Technology and Engineering, Tadepalligudem- 534101,

Research Scholar, VTU Belagavi, Karnataka, India ORCID ID : 0009-

0004-6318-6735

* Corresponding Author Email: evsandeep@sasi.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 98

cost-effective ways to reduce overall reconfiguration

expenses [4].

Kandemir et. al. extend their prior work to multi-processor

systems in [5] by using a compiler-based scratchpad

management mechanism. Array-dominated embedded

applications, as previously stated, are the most common use

case. When several processors are working in the same array

or collecting data, data reuse is a critical notion for

decreasing energy and delay. Se-Jun Kwon et al. (2017)

proposed an efficient and effective fast compression

technique for in-memory data [6]. The suggested technique

takes advantage of the features of in-memory data that are

often identified to increase efficiency.

Dynamic Frequent Pattern Compression was developed by

Yuncheng Guo et. al. as an adaptive non-volatile memory

write approach based on frequent pattern compression [7].

The contents of cache lines are encoded using more types of

common data patterns when utilizing DFPC, resulting in a

greater compression ratio. In addition to regular metrics and

cache hit rates, Esha Choukse et. al. included proposed

mechanisms to incorporate correct virtual address

translation, identify a region in the programme that is

reflective of the compression ratio, as well as regular

metrics and cache hit rates, in their methodology [8]. Dual

dictionary compression was introduced as a last-level cache

compression solution by David Kaeli [9]. It is feasible to

make greater use of available die space while also boosting

system memory speed by compressing data in the final level

cache (LLC).

Memory is a vital component of real-time applications due

to the amount of time and money it takes to manage it

properly. As a result, real-time system designers concentrate

on minimising the worst-case execution time and memory

consumption. A cost-effective memory manager is required

in order to increase the performance of the real-time system.

Most real-time systems employ static memory allocators for

the random allocation and de-allocation of memory blocks,

and this is the case for the most majority of such systems.

The memory is allocated before the application enters the

core real-time stage, in which the full physical memory is

available as a single block and can be used as needed, at the

time of compilation or launch of the programme, whichever

occurs first. There is a problem with excessive memory

consumption since the memory required to hold objects

cannot be easily recovered because automatic memory

management is not available. Programmers must create and

manage distinct private memory pools in order to avoid

wasting memory space on unneeded operations. Real-time

systems based on multicore and multiprocessor

architectures have grown in size and complexity,

necessitating the flexible use of existing resources, such as

memory [10], as a result of this growth. For real-time

applications to achieve the predictable performance and

flexibility necessary in the multiprocessor system era,

dynamic memory management allocators will eventually be

required [11], [12].

The process of uncovering the technological principles of a

technology, object, or system by analyzing its structure,

function, and operation is known as reverse engineering

[13]. Reverse engineering binary executable code has

proven effective in a variety of situations. It's used to move

a system to a newer platform, unbundle monolithic systems

into components and utilise them separately, and interpret

binary code for untrusted code and malware. The ubiquitous

use of C++ in many modern applications necessitates an

understanding of the disassembly of C++ object-oriented

code. Today, reverse engineering binary code is common,

particularly for untrusted code and malware. Software re-

engineering is the process of improving or changing existing

software so that it can be understood, managed, and reused

as new software. Re-engineering is required when the

system's software architecture and platforms become

absolute and must be modified. The value of software re-

engineering stems from its capacity to recover and reuse

items that already present in an out-of-date system. This will

definitely reduce system maintenance costs and lay the

groundwork for future software development. Furthermore,

re-engineering needs huge memory. This paper presents

design and optimization of distributed memory for re-

engineering.

Memory access is a major performance constraint in many

data-intensive applications. The system's performance and

power usage are both impacted by delays in access. As a

result, a memory hierarchy is the most popular solution to

alleviating this bottleneck and ensuring efficient memory

design. Between the CPU and the main memory, various

levels of memory are utilised. It's common practise to keep

small, quick memories close to the central processing unit.

Memory instances get larger and slower as you go down the

memory hierarchy. With growing memory size, energy

efficiency declines in the same way that it has been

previously stated. As can be seen in Figure 1, embedded and

SoC devices use a variety of memory hierarchy systems.

Fig. 1 Common memory architecture.

There is a unique global naming strategy in place to keep

such disputes at bay for all of the sites that use the shared

data. One way to get access to remote computers' shared

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 99

data is by having the distributed shared memory system's

memory controller do physical-to-logical address

translation. A global directory of shared data items will be

maintained by the memory controller for all sites. Here, the

memory controller is a software layer that sits on top of the

local memory and allows for virtual shared memory. Fig. 2

shows how the system's memory controller will link to all

of the system's local RAM and manage the system's virtual

memory. Other than address conversion and fetching, it will

schedule and optimize operations. However, if the shared

data is of a smaller size, this approach would be

inappropriate. In this case, the requesting site will be able to

locate shared remote data after communicating with the

memory controller.

Fig 2. Memory controller Architecture.

The shared zone represented in Fig. 3 is an illusion created

by the memory controller, which is connected to each site

and so appears to be shared. When a process requests access

to external data, a request will be made to the memory

controller by the process requesting access to external data.

The data is organised using the shared variable as a guide.

Sequential consistency does an excellent job of handling the

coherence semantics. Additional effort was required for

commercial application in order to make the system the

most successful possible from a variety of perspectives. The

concepts and languages of object-oriented programming can

also be utilised to develop graphical user interfaces (GUIs).

Meanwhile, the message-passing structure is more

complicated to construct but relatively easy to expand. Both

the shared memory structure and the message transmission

must develop in lockstep with each other in order to function

properly. A realistic solution for parallel system architecture

can be found in distributed shared memory, but only after

careful analysis of the conditions and their justification.

Fig. 3 Memory mapping Architecture using shared

memory.

2. Proposed Memory Hierarchy and Methodology

When it comes to high-performance, large-scale

multiprocessor systems, optimizing the performance of

distributed shared memory is critical. In the past, several

constraints were solved; however, the core problem

continues to exist: Below, we go into further detail on the

DSM method, locking shared space, thrashing, concurrent

access, page faults, extension, transparency, huge database

support, and cost. The objective of this research project was

to create a novel distributed shared memory architecture that

uses software parameters to significantly outperform

existing structural designs while handling distributed shared

address spaces [14]. Additionally, as we move closer to the

deployment of software distributed shared memory, a slew

of considerations will come into play. Implementing a

distributed shared memory system is achievable through the

use of an expanded virtual address space architecture in

conjunction with the application of a new operating system

paradigm. Because of the use of replication and granularity

selection for data transfer, this unique DSM technique

(figure 4) improves the overall efficiency of the system by

employing a sequential consistency mechanism. Each

system node is equipped with a mapping manager, which

acts as a bridge between the node's local memory and the

shared virtual memory space on the network. Write-up

protocols are used to keep track of what each node is looking

up and performing on a given time frame.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 100

Fig 4. Architecture of distributed multi core architecture.

Configuration data must be downloaded from off-chip

memory in order to map jobs onto the FPGA, as shown in

Figure 5. A certain amount of energy is used and a delay is

generated for each configuration data fetch from off-chip

memory. To alleviate these overheads, a memory hierarchy

consisting of two memories is used. One memory is

optimised for High Speed (HS), while the other is optimised

for Low Energy (LE). In comparison, HS memory has a

shorter time delay and uses less energy than LE memory

[15] –[18]. As a result, the configuration data is mapped in

the suggested memory hierarchy using a mapping technique

that decreases energy usage while still satisfying deadlines.

Fig 5. Memory hierarchy for mapping the configuration

data.

Simulates memory operations, calculates access latency,

and returns the result to the sim-outorder callback function.

An example of the memory_ access latency function

signature is as follows:

unsigned int memory_accessJatency(struct mem_t·

mem, int chunks, md_addr_t addr, enum mem_cmd

cmd, tick_t now);

This option has a mem t pointer that points to the sim-

outorder simulation program's mem t data structure. The

second input, chunks, defines the total number of bytes

sought by the processor/cache when it requests memory

access (in sim-outorder, it is the L2 cache block size since

the L2 cache is the only cache that requests for memory

access). The address that the processor/cache is looking for

as the initial address is specified by the addr option. The

processor cycle that happened when the processor/cache

requested the memory access is the final parameter.

However, the latency number returned by memory access

latency is a latency value relative to the 'now' argument, not

the sum of the timing parameters (Tcmd, Trp, Trd, Teas,

Twd, and data transmission).

Fig 6. Flow of Memory Access.

The function's return result can be a significant amount

higher than the sum of the individual timings. Because the

memory model may be idle or busy servicing the previous

access when the processor/cache requests a memory access,

this occurs. If the memory is processing another access, it

must wait for the prior access to complete before servicing

the current access. The memory access latency function

(delay function) determines the earliest possible processor

cycle (start time) for the memory access requested by the

processor/cache. The latency function's primary goal is to

achieve this. To determine if the access is a random type or

a fast page type, the latency function will first call the get

mem real bank, get mem bank, get mem channel, and is

latched functions. The latency function will return a value

after these functions have been called. The latency function

will detect if the access is the initial memory access of the

simulation (bus timer = 0) once the access type has been

determined. If this is the case, the latency function will be

disabled. If this is the case, the start time can simply be set

to "now," and the access type can only be random (the initial

access in a simulation must be random access). The latched

row/page of all memory banks is set to row 0 when the mem

t data structure is initialised, which means we must override

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 101

the result of the is latch function). As a result, if this isn't the

first time the simulation has been accessed, latency is

determined by comparing the value of the "now" parameter

to the previous command start time (cmd timestamp +

Tcmd) for the channel, with the greater value being used as

the temporary start time. This is owing to the fact that no

access can start before the previous one. The temporary start

time will be increased as the function deals with more

scenarios (i.e., moved further away from the current time).

An access control method verifies whether local memory

holds a valid copy of the data after it is allocated. If this is

not the case, the mechanism uses an access policy to obtain

up-to-date information or additional access permissions.

The validity of a copy may be determined by the type of

access; for example, duplicated copies are valid for reading

but not for writing in most protocols [19] –[21]. Many

researchers have explored the ways to restructure The

Legacy C++ Program [22] –[26]. The access policy includes

both the coherence protocol and the global allocation policy,

which specify which node a request is forwarded to and how

it is processed. Memory access policy for shared data

objects residing locally and remotely is shown in Figure 6.

This policy employs both messaging and access constraints.

The policy may send signals telling other sites to invalidate

their copies before permitting the local node to write its

copy.

3. Results and Discussion

The RTL schematic for the cache memory compression

block is shown in Figure 7. It is a design abstraction that

represents the circuit in terms of digital signals flowing

between hardware registers and is used in the design of

integrated circuits.

Fig. 7 RTL schematic memory block.

The compression algorithms RTL schematic is displayed in

Figure 8. Figure 9 summarizes the device utilization for the

implemented design. After the synthesis, this is

demonstrated. The number of devices used during the

design and implementation phases can be calculated using

this

Fig. 8 RTL Schematic of the distributed memory using

compression algorithm.

Fig. 9 Device Utilization Summary.

The suggested shared distributed memory (SDM)

algorithm's power analysis is shown Table 1. This analysis

displays overall power and junction temperature. The Figure

10 gives timing summary for the distributed memory. The

proposed memory device consumes very less on-chip power

consumption of 0.0082 W which clearly signifies the

optimization of memory to a great extent. Furthermore,

junction temperature of the distributed shared memory is

nearly room temperature (25.4 0C), which clearly depicts

using SDM the current processor operating properly with

out any flaw and even not dissipating more heat. Henceforth

the proposed distributed memory is very efficient for the

next generation high speed computing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 102

Table 1 Power consumption and junction temperature of the

Proposed Shared Distributed Memory.

On-chip total Power 0.0082W

Junction Temperature 25.4 0C

Fig. 10 Timing summary.

4. Conclusion

A Scientists are now able to use high-performance

computers as a viable alternative to the more out-of-date

experiential and theoretical approaches. While attempting to

explain the language used to create distributed memory

systems, this part is included. Single-site networks are used

for this memory controller. IP address of the memory

controller node was utilised to establish a connection

between the client machine and the memory controller node.

A message on the output terminal of the memory controller

verifies the connection. If all of the client processes are

running on the same system, the memory controller can be

connected to the local host. As a large-scale DSM system,

future efforts can be prepared to improve algorithm

strategies in order to expand the number of nodes. All will

be able to access shared data items at the same time. To

improve distributed shared memory management, this work

can be improved to optimise memory controller tasks and

design difficulties. It has the ability to handle an increasing

number of processors at once, higher execution speed, and

security.

In order to decrease the energy used by the system for the

refresh operations themselves as well as the energy used

during the refresh activities themselves, further scheduling

techniques can be used. Also, proposed distributed memory

can be useful to restructure the input legacy C++

programming system.

Acknowledgment

Author thanks Dept. of Computer Science and Engineering,

Sasi Institute of Technology and Engineering,

Tadepalligudem for giving us opportunity to work under

High Performance computing lab.

5. References and Footnotes

Ethics approval

This article does not contain any studies with human or

animal subjects.

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability Statement

The data cannot be made publicly available upon

publication because no suitable repository exists for hosting

data in this field of study. The data that support the findings

of this study are available upon reasonable request from the

authors.

Funding No funding received to carry out this research

work.

References

[1] Ahmed, M.R., Zheng, H., Mukherjee, P., Ketkar, M.C.

and Yang, J., 2021, April. Mining message flows from

system-on-chip execution traces. In 2021 22nd

international symposium on quality electronic design

(ISQED) (pp. 374-380). IEEE.

[2] Shan, L. and Sun, H., 2021, May. Distributed

collaborative simulation middleware based on

reflective memory network. In 2021 IEEE 24th

international conference on computer supported

cooperative work in design (CSCWD) (pp. 274-279).

IEEE.

[3] Cao, Y., Mukherjee, P., Ketkar, M., Yang, J. and

Zheng, H., 2020, March. Mining message flows using

recurrent neural networks for system-on-chip designs.

In 2020 21st International Symposium on Quality

Electronic Design (ISQED) (pp. 389-394). IEEE.

[4] Adetomi, A., Enemali, G. and Arslan, T., 2017,

September. Towards an efficient intellectual property

protection in dynamically reconfigurable FPGAs.

In 2017 Seventh International Conference on Emerging

Security Technologies (EST) (pp. 150-156). IEEE.

[5] Wen, H. and Zhang, W., 2021. Cache Leakage

Reduction Techniques for Hybrid SPM-Cache

Architectures. Journal of Circuits, Systems and

Computers, 30(01), p.2150008.

[6] Kwon, S.J., Kim, S.H., Kim, H.J. and Kim, J.S., 2017,

January. LZ4m: A fast compression algorithm for in-

memory data. In 2017 IEEE International Conference

on Consumer Electronics (ICCE) (pp. 420-423). IEEE.

[7] Guo, Y., Hua, Y. and Zuo, P., 2018, March. DFPC: A

dynamic frequent pattern compression scheme in

NVM-based main memory. In 2018 Design,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 97–103 | 103

Automation & Test in Europe Conference & Exhibition

(DATE) (pp. 1622-1627). IEEE.

[8] Choukse, E., Erez, M. and Alameldeen, A.R., 2018,

October. Compresso: Pragmatic main memory

compression. In 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture

(MICRO) (pp. 546-558). IEEE.

[9] Lahiry, A. and Kaeli, D., 2017, November. Dual

dictionary compression for the last level cache. In 2017

IEEE International Conference on Computer Design

(ICCD) (pp. 353-360). IEEE.

[10] Rumyantsev, A., Krupkina, T., Losev, V. and

Maksimov, A., 2020, January. Development of a

Measurement System-on-Chip and Simulation on

FPGA. In 2020 IEEE Conference of Russian Young

Researchers in Electrical and Electronic Engineering

(EIConRus) (pp. 1851-1854). IEEE.

[11] Frolova, P.I., Chochaev, R.Z., Ivanova, G.A. and

Gavrilov, S.V., 2020, January. Delay matrix based

timing-driven placement for reconfigurable systems-

on-chip. In 2020 IEEE Conference of Russian Young

Researchers in Electrical and Electronic Engineering

(EIConRus) (pp. 1799-1803). IEEE.

[12] Jain, A., Soner, S. and Holkar, A., 2010, October.

“Reverse engineering”: Extracting information from

C++ code. In 2010 2nd International Conference on

Software Technology and Engineering (Vol. 1, pp. V1-

154). IEEE.

[13] Strobel, M., Radetzki, M.: Design-time memory

subsystem optimization for lowpower multi-core

embedded systems. In: 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), pp. 347–353 (2019). DOI

10.1109/MCSoC.2019.00056.

[14] H. Fan et al., "High-Precision Adaptive Slope

Compensation Circuit for System-on-Chip Power

Management," 2019 IEEE 38th International

Performance Computing and Communications

Conference (IPCCC), 2019, pp. 1-2.

[15] N. Arun Vignesh, Ravi Kumar, R. Rajarajan, S.

Kanithan, E. Sathish Kumar, Asisa Kumar

Panigrahy, and Selvakumar Periyasamy, “Silicon

Wearable Body Area Antenna for Speech-Enhanced

IoT and Nanomedical Applications”, Journal of

Nanomaterials, vol. 2022 , Article ID 2842861,

9 pages, 2022. https://doi.org/10.1155/2022/2842861

[16] Devi, M.P., Ravanan, V., Kanithan, S., N.A.Vignesh,

“Performance Evaluation of FinFET Device Under

Nanometer Regime for Ultra-low Power

Applications”, Silicon (2022).

https://doi.org/10.1007/s12633-022-01772-x

[17] D. Chen, J. Edstrom, Y. Gong, P. Gao, L. Yang, M.

McCourt, J. Wang and N. Gong, "Viewer-Aware

Intelligent Efficient Mobile Video Embedded

Memory", IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 26, no. 4, pp. 684-696,

2018.

[18] Calinescu, G., Fu, C., Li, M., Wang, K. and Xue, C.J.,

2018. Energy optimal task scheduling with normally-

off local memory and sleep-aware shared memory with

access conflict. IEEE Transactions on

Computers, 67(8), pp.1121-1135.

[19] Arun Jayakar, S., Rajesh, T., Vignesh, N.A. and

Kanithan, S., 2022. Performance Analysis of Doping

Less Nanotube Tunnel Field Effect Transistor for High

Speed Applications. Silicon, 14(12), pp.7297-7304.

[20] Z. Zhao, Y. Sheng, M. Zhu and J. Wang, "A Memory-

Efficient Approach to the Scalability of Recommender

System With Hit Improvement", IEEE Access, vol. 6,

pp. 67070-67081, 2018.

[21] Deepa, R., Devi, M.P., Vignesh, N.A. and Kanithan, S.,

2022. Implementation and performance evaluation of

ferroelectric negative capacitance FET. Silicon, 14(5),

pp.2409-2419.

[22] Handigund, S.M. and Kulkarni, R.N., 2010. An

Ameliorated Methodology for the design of Object

Structures from legacy ‘C’Program. International

Journal of Computer Applications, 975, p.8887.

[23] Dr. Shivanand M. Handigund, Dr. Rajkumar N.

Kulkarni, “An Ameliorated Methodology for the

Abstraction and Minimization of Functional

Dependencies of legacy ‘C’ Program Elements “.

International Journal of Computer Applications (0975

– 8887) Volume 16– No.3, February 2011.

[24] Dr. R.N. Kulkarni, Venkata Sandeep Edara, "A Novel

Approach to Restructure The Legacy C++ Program",

Journal of Huazhong University of Science and

Technology, Volume: 50 Issue: 05 , 2021, ISSN: 1671-

4512.

[25] Dr. R.N. Kulkarni, P.Pani Rama Prasad, "Abstraction

of UML Class Diagram from the Input Java Program",

Int. J. Advanced Networking and Applications,

Volume: 12 Issue: 04 Pages: 4644-4649(2021) ISSN:

0975-0290.

[26] R.N.Kulkarni and S.Shenaz Begum, "Abstraction of 'C'

Program from Algorithm", Springer Nature Singapore

Pte Ltd. 2021, Research in Intelligent and Computing

in Engineering, Advances in Intelligent Systems and

Computing 1254.

[27] Nair, K. S. S. . (2023). Rapidly Convergent Series from

Positive Term Series. International Journal on Recent

and Innovation Trends in Computing and

Communication, 11(3), 79–86.

https://doi.org/10.17762/ijritcc.v11i3.6204

[28] Ana Silva, Deep Learning Approaches for Computer

Vision in Autonomous Vehicles , Machine Learning

Applications Conference Proceedings, Vol 1 2021.

https://doi.org/10.17762/ijritcc.v11i3.6204

