

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 150

Reconnoitering Static Analysis Metrics for Predicting Software Component

Reusability Using Ensemble Model

Srishti Bhugra1, Puneet Goswami*2

Submitted: 28/04/2023 Revised: 27/06/2023 Accepted: 06/07/2023

Abstract: Data mining and machine learning have created new avenues for creating software and investigation. The software development

life cycle (SDLC) has also benefited from incorporating machine learning, opening up prospects for efficient and well-planned growth.

The SDLC includes the reusability of software as a key component. Software reuse management thus assumes an active part in the SDLC.

It reduces the expense and time needed to produce a software application. Evaluating a software component's reusability, or how appropriate

it is for reuse, is a key difficulty in this scenario. The most effective methods for determining whether a particular software part is reusable

or not come from machine learning to evaluate reusability; this study aims to create an ensemble machine learning model that integrates

Support Vector Machine, K-Nearest Neighbour, Decision Tree, Artificial Neural Network, and Naive Bayes. After pre-processing, the

publicly accessible benchmark dataset is used for experimentation. Compared with base classifiers, the suggested model delivered the most

favourable results, with accuracy, precision, recall, and f1-score values of 89.48%, 0.9406, 0.9484, and 0.9445, respectively. According to

the assessment of our technique, our approach can accurately evaluate reusability as experienced by engineers.

Keywords: Ensemble Model, Machine Learning, Prediction, Reusability, Software.

1. Introduction

The life cycle of creating software is an exhausting

endeavour that requires funds and staff. However, efficiency

is increased with reusable software. It additionally boosts

the software product's reliability and maintenance. It lowers

the total expense for a piece of software. The discipline of

software intelligence is created by integrating knowledge

discovery and data mining methods into software

development procedures [1]. AI creates smart software and

may be reused using computerised reusability approaches

[2]. Code pieces and non-code elements are the two main

categories for reusability [3]. Reusability may also be

evaluated using a variety of measures. To achieve "growth

by reuse" and "growth for reuse," software indicators that

assess the reusability of programs are essential [2].

The reuse criteria might assist in creating reusability

forecasting techniques that software engineers may employ.

By understanding the overall amount of script that may be

reused, it is possible to gather data on the collaborative costs

associated with creating a fresh release of a previously

developed piece of software or upgrading an old one.

Numerous reusability-focused methods are presented in the

literature. However, the literature does not specifically

identify the measures needed for reuse. Evaluating a source

code component's reusability before incorporating it as part

of the developer's source code is essential because low-

quality parts are frequently challenging to incorporate and

fix. In certain situations, they can produce errors. Because

the software's functionality is extremely context-specific

and may entail various things depending on the individuals

[4, 5], assessing reusability can

be difficult. Reusability is truly a quality notion. Software

reusability, or the degree to whereby a piece of software is

reusable, is connected to reliability, following the ISO/IEC

25010:2011 quality norm [6]. An element may be viewed as

extremely reusable through a somewhat smoother viewpoint

if it is flexible, shows weak coupling and strong cohesion,

and offers concealment of data and division of

responsibilities [7].

Statistical analysis and classification algorithms are crucial

in software reusability by categorising, identifying,

evaluating, and forecasting the static metric [8, 9]. Software

reusability is organised, analysed, determined, and predicted

using a variety of classification algorithms, including

artificial neural networks (ANN), K-nearest neighbours

(KNN), naive bays, decision trees (DT), support vector

machines (SVM), many more. A machine learning

approach, an ensemble algorithm, integrates predictions

from many machine learning models. One of the most

essential frameworks for developing excellent, precise

models for forecasting is the ensemble model.

1.1. Key Contributions

This paper proposes a novel automated reusability

1 Department of Computer Science &Engineering, SRM University, Delhi

NCR, Sonepat, India

ORCID ID : 0000-0002-1765-6837
2 Department of Computer Science &Engineering, SRM University, Delhi

NCR, Sonepat, India

ORCID ID : 0000-0002-9545-7163

* Corresponding Author Email: goswamipuneet@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 151

prediction model that considers the dynamic aspects of a

software project along with its static metrics to conquer the

problem effectively.

• Employing the reuse rate as a measure of

developer-perceived reusability.

• An ensemble model is introduced for reusability

evaluation based on the values of various static

analysis metrics.

• Reusability estimation is done based on different

source code properties.

• The accuracy, precision, recall, and f1-score of the

proposed solution are compared to those of each of

the base classifiers, and it is shown that the

suggested model performs better, demonstrating

the originality of our approach.

1.2. Section Division

The paper is divided into the sections that follow. In Section

2, the literature review is examined. Section 3 presents

several machine learning techniques considered in recent

research, and the ensemble model is introduced. Section 4

provides a description of the experiments conducted and the

results attained. The investigation concluded in Section 5.

2. Literature Survey

Investigators have been interested in software reuse for

decades due to its generally acknowledged ability to save

production expenses and time [10, 11]. Douglas McIlroy

first advocated the widespread creation of software

employing reusable elements in 1968, when the reuse notion

first emerged [12]. As a result, the obstacle now is more than

merely identifying operationally sufficient sections and

ensuring that these elements are appropriate for reuse. The

expansion of the open-source development effort and the

emergence of internet-based code repositories have

presented novel chances for reuse. Software reusability

considered an aspect of quality associated with reliability

and relates to the extent to which a software object may be

utilised in multiple systems or for the construction of

additional resources, is defined by the ISO/IEC 25010:2011

quality norm [6]. Because of this, several approaches have

been put forth to evaluate software parts' reusability using

static analysis indicators [10] and realistically constructing

reusability measurements using recognised quality features

[13, 14].

Software reusability estimation by static analysis metrics is

a challenging endeavour that frequently requires the

assistance of qualified specialists who review the source

code. Manually checking the source code might take time

and effort, particularly for large and complicated

applications and applications that evolve often. Considering

the consistently rising needs for functional and non-

functional criteria, this holds for most applications

worldwide.

A thorough taxonomical breakdown of several AI

approaches used in software engineering is given in [1]. The

classification system is known by the term AI-SEAL. It

helps researchers and specialists discover and comprehend

the benefits and drawbacks of using AI techniques for

software development. The taxonomy provides instructions

on how to use a particular method for reusability. The type

of AI (TAI) utilised, Point of Application (PA), and Level

of Automation (LA) supplied are the three aspects that have

been suggested as crucial. The study goes into more depth

on how PA is implemented in the SWEBOK cognitive

domains. Wangoo, D.P. [5] has identified many AI

strategies that result in software intelligence. The article

illustrates how software intelligence may be produced by

doing intelligent knowledge discovery utilising AI

approaches to data from software engineering. Software

intelligence eventually results in smart automation through

intelligent code reuse. Software processes are translated to

different AI approaches. According to a case study on

Microsoft [15], the company uses AI strategies in its

ongoing software creation procedures. When incorporating

AI into processes for developing software, programmers

encountered three difficulties: finding, organising,

managing, and versioning the data required for machine

learning systems is far more challenging than other software

development areas. The software development team must

have a specific skill set to personalise, customise, and reuse

a model. Compared to standard software modules, AI

components are more challenging to handle as independent

objects and sections because simulations may become

"entangled" in intermittent failure conduct that has a

complex character. The contributor has done surveys by

interviewing people and examining how software is used.

Each problem and the related techniques taken to fix it are

identified in the findings, which are provided in quantitative

form.

Ammar et al. [16] apply cutting-edge AI methods to

software operations. For instance, it connects knowledge-

based systems to demand engineering by pointing out that

recycling design data from experts may significantly

improve the efficiency and standard of the software creation

procedure. Similar connections exist between different

systems and their efficient AI techniques.

Component-based software engineering (CBSE) is an

emergent phenomenon in [2]. Numerous reusable non-code

sections, including the project plan, design, layout,

comprehensive structure & scheme, code snippets, and

validation instances, have been affected by adopting

algorithms like Kmean and cosine analogy. Kaur et

al. classified the information in the article [17] using

algorithms for classification, sometimes called meta-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 152

classifiers, that utilised seven reusable criteria on four

distinct versions of the same application. Components with

comparable features are grouped using the component

clustering approach in the article [2]. The data mining

techniques employed in this work include hierarchical

clustering, K-mean, K-mode, and K-medoid. After the

cluster has been established, it may be searched for

predicted components. Therefore, this method makes it

possible to reuse parts.

According to Chythanya et al. [18], CBSE classifies

generation into two categories: "The Creation for reuse" and

"The Creation by reuse." As a result, enormous component

databases are built for future reuse. Effectively scanning the

databases to find and get a certain component is done using

neural network techniques. The study demonstrates two

ways to determine reusability: empirically and qualitatively.

The objective of this study is to construct an ensemble

machine learning model that incorporates Support Vector

Machine (SVM), K-Nearest Neighbour (KNN), Decision

Tree (DT), Artificial Neural Network (ANN), and Naive

Bayes (NB) on static analysis metrics to assess reusability.

3. Proposed Model

The architecture of the proposed model is presented in

Error! Reference source not found..

3.1. Data Pre-processing

The benchmark dataset recommended by Papamichail et al.

has been employed in the current investigation [8, 19]. The

dataset was generated after examining the majority of

prevalent endeavours listed in the Maven registry and using

the SourceMeter tool [20] to calculate an extensive set of

static analysis metrics across class and package categories

that measure each of the six main source code

characteristics: complexity, cohesion, coupling, inheritance,

documentation, and size. The obtained dataset may be an

empirical foundation for creating and implementing data-

driven reusability assessment methods because it comprises

statistical data for over 24,000 classes and 2000 packages.

28 of the 32 attributes defined by the dataset specify the

properties of the fundamental software element. 27494

instances altogether are used in the current investigation.

The dataset is initially pre-processed to eliminate any cases

with missing values and outliers [21, 22]. After that, the

target attribute (ReuseRate) is converted from a numerical

value to an enumeration type with three categories: Low,

Medium, and High.

3.2. Feature Selection

A full classification model may be produced by eliminating

pointless characteristics from the data set and reducing the

overall dimension of the part. The authors combined the

Fig. 1. Proposed Model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 153

ranker search approach with the Info Gain Attribute

Evaluator [23] feature selection technique to choose the

most pertinent attributes. The Info Gain Attribute Evaluator

determines a feature’s worth by assessing the information

gained about the categories. Rather than appropriately

separating the characteristics, the Info Gain Attribute

Evaluator may consider binary numerical factors. The

missing value can either be handled as a distinct value or

distributed over additional discounts in proportion to their

mean value for a category property or the typical occurrence

for a numeric characteristic. The Info Gain Attribute

Evaluator can recognise Nominal characteristics, Date

features, Integer characteristics, Unary properties, Binary

properties, Null nominal characteristics, and missing values.

In addition to feature evaluators like gain ratio and entropy,

the ranker search technique used to produce rankings

attributes rates each attribute by its particular evaluator. It is

equipped to make attribute ranking. The best initial search

technique has been implemented with the additional feature

selection authors employed in this investigation wrapper

subset evaluator. When evaluating attribute sets, the

wrapper subset evaluator uses a learning pattern. Cross-

validation has been conducted to determine the correctness

of the learning pattern for a group of qualities. It can identify

the types of characteristics, including string format

characteristics, null attributes, Absent values, Date features,

Relationship characteristics, Numeral features, Unary

characteristics, Binary characteristics, and Nominal

features. It can also determine the absence of values, the

Nominal category, the Binary category, the Date category,

and the Numeric group. The best first search by greedy hill

climbing involving more backtracking capability is used for

exploring a pool of feature groups. The number of permitted

successive non-improving nodes controls the amount of

backtracking. Best first may begin with an unpopulated set

of characteristics and search forward, begin with the

complete set of parts and search backwards, begin at any

stage and explore in either direction (taking into account all

potential individual feature alterations and additions at a

particular moment), or any combination of these.

3.3. Base Classifiers

The objective of this study is to construct an ensemble

machine learning model that incorporates Support Vector

Machine (SVM), K-Nearest Neighbour (KNN), Decision

Tree (DT), Artificial Neural Network (ANN), and Naive

Bayes (NB) on static analysis metrics to assess reusability.

3.3.1. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine

learning technique built on statistical instruction principles.

SVM has a good efficiency level in classification,

regression, and prediction [24, 25, 26]. It creates a unique

hyperplane in the interplanetary description of the training

information, and blends are categorised according to where

the hyperplane is placed across. Regression and

classification algorithms are employed to forecast and

analyse the collected data [27, 28]. SVM stands for

supervised learning methods frequently used for

classification in data mining. SVM uses multiple algorithms

for sorting to provide the right outcome. It can reduce the

likelihood of error by maximising the sum of the

occurrences of the two classes. The advantage of the SVM

is that it eliminates the need to perform an explicit

conversion of the primary characteristics by using a "kernel

trick" to determine the proximity of an element and the

hyperplane in a modified (nonlinear) characteristic space.

3.3.2. K-nearest Neighbor

The KNN method is a supervised learning technique that is

nonparametric by definition [27]. Separating linear from

nonlinear is not necessary. KNN works well for many

records and trains models quickly. KNN identifies the items

from the provided k number of items that are closest to the

majority decision or precise point query. It operates based

on the nearest class item closest to the training instance and

has the least distance between them. KNN is the model-

building technique with the quickest execution period, as

defined by [29, 30]. Simple majority voting is applied to the

forecast question by KNN, which gathers all of the

neighbouring items. The k instances that must be classified

for each query Xn are x1, x2,... xk, Various distance

metrics, including the Euclidean (E), Manhattan (Ma), and

Minkowski (Mi) as presented in Equation (1), Equation (2)

and Equation (3), respectively, will be used to identify the

closest class.

𝐸 = (∑ (𝑋𝑖 − 𝑌𝑖)2
∀𝑖∈1,2,..𝑛)

1/2
 (1)

𝑀𝑎 = ∑ 𝑎𝑏𝑠(𝑋𝑖 − 𝑌𝑖)∀𝑖∈1,2,..𝑛 (2)

𝑀𝑖 = √∑ 𝑎𝑏𝑠((𝑋𝑖 − 𝑌𝑖)𝑛)∀𝑖∈1,2,..𝑛
𝑛

 (3)

3.3.3. Decision Tree (DT): J48

A freely available Java implementation of the C4.5

DT technique is a J48 DT [31]. This application expands

Ross Quinlan's earlier ID3 technique [31]. J48 classification

algorithm builds trees using top-down greedy search

techniques [32]. The J48 DT generates a sorting tree

wherein the leaf indicates the finishing category, and

intrinsic features provide a range of potential fork feature

outcomes [32]. The distinction is between the splitting

characteristics of information acquisition. The indicator of

the disorder information is called entropy. Entropy is a

gauge of the degree of uncertainty in any random element.

Entropy (Γ) is easily computed as presented in Equation (4)

for every likelihood l and sample δ.

Γ(δ) = ∑ [−li ln(pi)]∀i∈1,2,..n

 (4)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 154

Information gain, or choosing the ideal characteristic for

selecting the particular vertex in a tree. When computing the

quantity of a feature concerning collection, refer to the

attribute's value as the numerical value of (Ω), the value of

sample δ from δi, then Equation (5) is adopted to compute

information gain, G.

𝐺(δ, Ω) = Γ(δ) − ∑ (Γ(δ)
𝑎𝑏𝑠(δ𝑖)

𝑎𝑏𝑠(δ)
)𝑛

𝑖∈𝑣𝑎𝑙𝑢𝑒(Ω) (5)

3.3.4. Artificial neural network

Artificial neural networks (ANN), usually called "neural

networks," are frequently used in practical applications and

are based on actual neurons. The interconnected

components of artificial neurons make up an ANN, which

links every node with movable weights that alter its

prearrangement as messages are sent [33]. Since ANN is a

system that learns, it may adapt to changing its composition

due to learning and the data it receives through its inner and

outer environments [34]. Many levels are included in ANN

for transmitting different data. Input, hidden, and output

layers make up the layer structure. One or more layers with

a certain amount of nodes are hidden layers. Each of these

layers is arranged about one another, with weight connected

to every single node. A supervised learning method known

as an ANN uses input from network participants to create

output. The perception of an ANN is its fundamental

operational unit. Data collection may be divided into two

classes using a perceptron algorithm. Individual nodes,

along with weights, make up perceptron. The three basic

components of a perceptron are connection, adder, and

activation mechanisms.

3.3.5. Naïve Bayes

A probabilistic method of classification using distinct

premise characteristics is known as the naive Bayes

classifier. In various practical supervised classification

situations, the Naïve-Bayes classification method works

effectively and picks up new information rapidly [27]. A

worldwide issue is diagnosed and predicted using naive

Bayes. To forecast and assess the parameter, the Naïve

Bayes method needs fewer training data from classification

[35]. A member of each class is predicted using the Naive

Bayes classification algorithm. For instance, the target

class's supplied record will likely exist. The type with the

greatest odds is the one that is most likely to occur.

3.4. Ensemble Classifier

Ensemble learning is a machine learning algorithm that

builds an assortment of ensemble forecasting models and

integrates the results to improve the outcomes of each

distinct method. Ensembles with the greatest heterogeneous

classifier typically have an excellent prediction assessment

[36]. The most effective technique to fix mistakes caused by

the base classifier is utilising an ensemble classifier [36].

Using many classifiers rather than one classifier is

becoming quite common in machine learning combined

classification. The benefit is that one may employ two or

more categorisation algorithms instead of just one with

greater strength. To categorise examples from the training

set, cross-fold validation set, or testing set, the model

authors develop will thus be more potent and advanced. The

ensemble classification model aims to integrate many

classifiers, each uniquely impacting the outcome [37]. The

strategies have altered the training procedure to create

classifier models that produce results in various

classification conclusions [37]. The major benefit of

ensemble methods is that they integrate distinct classifier

criteria into stronger predictions than those rules alone. The

ensemble model concept blends diverse individual

classifiers to provide better prediction ability. For this

objective, the authors of the current work use a voting

classifier.

The ensemble approach known as the voting classifier offers

a means to aggregate forecasts from several forecasting

models. A majority vote determines the ultimate prognosis

or the anticipated possibilities are averaged. The authors

utilised DT, ANN, and NB as the basis classifiers for this

research. Authors additionally employed the 'soft voting'

technique, which averages the likelihoods from every

classifier to determine the ultimate forecast for every

category.

4. Results and Discussions

The efficacy of the ensemble model has been assessed by

several critical tests described in this section. To run the

ensemble model, a Jupyter Notebook version 6.4.6 was

used. Python code is simple to run and write using Jupyter

Notebook, a well-liked open-source tool for creating and

executing neural network algorithms for classification. To

evaluate the effectiveness of the ensemble model, five

parameters have been used to assess the final forecast

produced by the ensemble model. The efficiency of the

ensemble model described in the current work has been

assessed using accuracy, precision, recall, and F1 score [38,

39]. The proportion of accurate forecasts to total forecasts is

known as accuracy. It refers to a classification approach's

capacity to forecast the classes in a dataset. It demonstrates

how the algorithms are accurately classified—equation (6),

which calculates. Accuracy is defined as the ratio of correct

forecasts to all forecasts.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒_𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (6)

The recall is also known as sensitivity which recovered

pertinent occurrences. The recall is the proportion of true

positives to all other positives. The recall is calculated using

Equation (7).

Recall =
True_Positive

True_Positive+False_Negative
 (7)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 155

The ratio of true positive outcomes to all anticipated positive

results is known as precision. The precision is calculated

using Equation (8).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8)

F1-score serves as a gauge for test accuracy. In terms of

recall and precision, it is a skewed mean. It is calculated

using criteria for recall and precision. The greatest F1 score

is achieved when memory and accuracy are equal. The F1

score is determined using Equation (9).

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (9)

Because the dataset contains statistical information for more

than 24,000 classes and 2000 packages, the produced

dataset may be used as an empirical basis for developing and

using data-driven reusability evaluation techniques. The

qualities of the essential software element are described by

28 of the 32 attributes included in the dataset. In all, 27494

examples are employed in this research. The dataset is

initially pre-processed to remove any occurrences with

missing values and outliers. The target characteristic

(ReuseRate), originally a numerical number, is then

changed to an enumeration type with three categories: Low,

Medium, and High. The dataset is split into 20% for testing

and 80% for training.

The SVM, KNN, DT, ANN, and NB base classifiers have

been implemented in this study to compare the effectiveness

of the ensemble model against these methods. Accuracy,

precision, recall, and F1 score have all been used as

evaluation criteria to determine the extent to which these

classification algorithms worked. Each prediction algorithm

has been evaluated using 10-fold cross-validation, with a

95% testing error, to avoid overfitting. Experimental

outcomes for accuracy, precision, recall, and F1 score for

various foundational models are presented in Table 1. Fig.

2. illustrates how the ensemble model, which had an

accuracy rating of 89.48%, accomplished higher. The

accuracy of the NB model ranked the lowest, reaching

81.93%. Focusing on the F1 score, the ensemble model

produced superior results (0.9445), while the NB model

produced the least satisfactory results (0.9007).

Furthermore, the ANN had the lowest recall scores (0.9049),

while the ensemble model had the best precision

assessments (0.9406). However, the ensemble model fared

second best, with a recall of 0.9484, and the ANN model

provided the most astounding results (0.9759), while the NB

model gave the least impressive results (0.886 only). The

confusion matrix for the different fundamental models,

including SVM, KNN, DT, ANN, NB, and the suggested

ensemble model, is shown in Fig. 3.

Table 1. Comparative performance of the various models

Model Accurac

y

Precision Recall F1 Score

SVM 86.84% 0.9154 0.9442 0.9296

KNN 84.96% 0.9166 0.9207 0.9186

DT 88.33% 0.9269 0.9494 0.938

ANN 88.51% 0.9049 0.9759 0.9391

NB 81.93% 0.9159 0.886 0.9007

Proposed

Ensembl

e

89.48% 0.9406 0.9484 0.9445

Fig. 1. Comparative performance of the various models

5. Conclusions

Software reusability improves the software development

process since it spares the programmer the time, money, and

effort required to implement the identical basic functionality

repeatedly. Reusability of software is a cost-effective

strategy that benefits the programmer and produces software

of excellent quality. A software component's reusability is

evaluated using a variety of measures. These metrics

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Accuracy Precision Recall F1 Score

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 156

support developing and using reusable software components

through machine-learning approaches. The machine

learning methodologies, as well as their related metrics that

aid in determining reusability, are explained by the

taxonomical cartography. The present investigation seeks to

build an ensemble machine-learning model that combines

SVM, KNN, DT, ANN, and NB to assess reusability. The

publicly available benchmark dataset is utilised for

experimentation after pre-processing. The recommended

model outperformed basic classifiers in accuracy, precision,

recall, and f1-score, with values of 89.48%, 0.9406, 0.9484,

and 0.9445, respectively. The evaluation of our method

Fig. 3. Confusion Matrices of various models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 157

indicates that it can effectively measure reusability as

experienced by engineers.

Author contributions

Srishti Bhugra: Conceptualization, Methodology,

Software, Visualization, Investigation, Writing-Reviewing

and Editing Puneet Goswami: Data curation, Writing-

Original draft preparation, Software, Validation.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] R. Feldt, F. de Oliveira Neto and R. Torkar, “Ways of

applying artificial intelligence in software engineering,” in

Proceedings of the 6th International Workshop on

Realizing Artificial Intelligence Synergies in Software

Engineering, 2018.

[2] S. Martínez-Fernández, J. Bogner, X. Franch, M. Oriol, J.

Siebert, A. Trendowicz, A. Vollmer and S. Wagner,

“Software engineering for AI-based systems: a survey,”

ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 31, no. 2, pp. 1-59, 2022.

[3] R. Ma, E. Sun and J. Zou, “A spectral method for assessing

and combining multiple data visualizations,” Nature

Communications, vol. 14, no. 1, p. 780, 2023.

[4] P. Goswami, A. Noorwali, A. Kumar, M. Khan, P.

Srivastava and S. Batra, “Appraising Early Reliability of a

Software Component Using Fuzzy Inference,”

Electronics, vol. 12, p. 1137, 2023.

[5] D. Wangoo, “Artificial intelligence techniques in software

engineering for automated software reuse and design,” in

2018 4th International Conference on Computing

Communication and Automation (ICCCA), 2018.

[6] “ISO/IEC 25010:2011,” [Online]. Available:

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-

1:v1:en. [Accessed 23 March 2023].

[7] S. Pfleeger and J. Atlee, Software engineering: theory and

practice, Pearson Education India, 2010.

[8] M. Papamichail, T. Diamantopoulos and A. Symeonidis,

“Measuring the reusability of software components using

static analysis metrics and reuse rate information,” Journal

of Systems and Software, vol. 158, p. 110423, 2019.

[9] R. Qayyum, J. Rubaab, U. Riaz and F. Arif, “Role of Data

Mining and Machine Learning in Software Reusability,”

in 2021 International Conference on Innovative

Computing (ICIC), 2021.

[10] A. Singh and P. Tomar, “Estimation of component

reusability through reusability metrics,” International

Journal of Computer and Information Engineering, vol. 8,

no. 11, pp. 2018-2025, 2014.

[11] L. Heinemann, F. Deissenboeck, M. Gleirscher, B.

Hummel and M. Irlbeck, “On the extent and nature of

software reuse in open source java projects,” in Top

Productivity through Software Reuse: 12th International

Conference on Software Reuse, ICSR 2011, Pohang, South

Korea, June 13-17, 2011. Proceedings 12, 2011.

[12] I. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger

and A. Hassan, “A large-scale empirical study on software

reuse in mobile apps,” IEEE software, vol. 31, no. 2, pp.

78-86, 2013.

[13] J. Bansiya and C. Davis, “A hierarchical model for object-

oriented design quality assessment,” IEEE Transactions

on software engineering, vol. 28, no. 1, pp. 4-17, 2002.

[14] O. Rotaru and M. Dobre, “Reusability metrics for software

components,” in The 3rd ACS/IEEE International

Conference onComputer Systems and Applications, 2005,

2005.

[15] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E.

Kamar, N. Nagappan, B. Nushi and T. Zimmermann,

“Software engineering for machine learning: A case

study,” in 2019 IEEE/ACM 41st International Conference

on Software Engineering: Software Engineering in

Practice (ICSE-SEIP), 2019.

[16] H. Ammar, W. Abdelmoez and M. Hamdi, “Software

engineering using artificial intelligence techniques:

Current state and open problems,” in Proceedings of the

First Taibah University International Conference on

Computing and Information Technology (ICCIT 2012),

Al-Madinah Al-Munawwarah, Saudi Arabia, 2012.

[17] L. Kaur and A. Mishra, “An empirical analysis for

predicting source code file reusability using meta-

classification algorithms,” in Advanced Computational

and Communication Paradigms: Proceedings of

International Conference on ICACCP 2017, Singapore,

2018.

[18] N. Chythanya and L. Rajamani, “Neural Network

Approach for Reusable Component Handling,” in 2017

IEEE 7th International Advance Computing Conference

(IACC), 2017.

[19] M. Papamichail, T. Diamantopoulos and A. Symeonidis,

“Software reusability dataset based on static analysis

metrics and reuse rate information,” Data in brief, vol. 27,

p. 104687, 2019.

[20] “SourceMeter,” [Online]. Available:

https://www.sourcemeter.com/. [Accessed 25 March

2023].

[21] S. Batra and S. Sachdeva, “Organizing standardized

electronic healthcare records data for mining,” Health

Policy and Technology, vol. 5, no. 3, pp. 226-242, 2016.

[22] S. Batra and S. Sachdeva, “Pre-processing highly sparse

and frequently evolving standardized electronic health

records for mining,” in Handbook of Research on Disease

Prediction Through Data Analytics and Machine

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 150–158 | 158

Learning, IGI Global, 2021, pp. 8-21.

[23] S. Mishra, P. Mallick, H. Tripathy, A. Bhoi and A.

González-Briones, “Performance evaluation of a proposed

machine learning model for chronic disease datasets using

an integrated attribute evaluator and an improved decision

tree classifier,” Applied Sciences, vol. 10, no. 22, p. 8137,

2020.

[24] H. Polat, H. Danaei Mehr and A. Cetin, “Diagnosis of

chronic kidney disease based on support vector machine

by feature selection methods,” Journal of medical systems,

vol. 41, pp. 1-11, 2017.

[25] A. Pathak, S. Batra and H. Chaudhary, “Imputing Missing

Data in Electronic Health Records,” in Proceedings of 3rd

International Conference on Machine Learning, Advances

in Computing, Renewable Energy and Communication:

MARC 2021, Singapore, 2022.

[26] A. Pathak, S. Batra and V. Sharma, “An Assessment of the

Missing Data Imputation Techniques for COVID-19

Data,” in Proceedings of 3rd International Conference on

Machine Learning, Advances in Computing, Renewable

Energy and Communication: MARC 2021, Singapore,

2022.

[27] K. Chandel, V. Kunwar, S. Sabitha, T. Choudhury and S.

Mukherjee, “A comparative study on thyroid disease

detection using K-nearest neighbor and Naive Bayes

classification techniques,” CSI transactions on ICT, vol. 4,

pp. 313-319, 2016.

[28] S. Sachdeva, D. Batra and S. Batra, “Storage Efficient

Implementation of Standardized Electronic Health

Records Data,” in 2020 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2020.

[29] B. Boukenze, A. Haqiq and H. Mousannif, “Predicting

chronic kidney failure disease using data mining

techniques,” in Advances in Ubiquitous Networking 2:

Proceedings of the UNet’16 2, 2017.

[30] S. Sachdeva, M. Singh, N. Kumar and P. Goswami,

“Personalized e-learning based on ant colony

optimization,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 30, no. 1,

2022.

[31] S. Perveen, M. Shahbaz, A. Guergachi and K. Keshavjee,

“Performance analysis of data mining classification

techniques to predict diabetes,” Procedia Computer

Science,, vol. 82, pp. 115-121, 2016.

[32] R. Dhruvi, P. Yavnika and R. Nutan, “Prediction of

Probability of Chronic Diseases and Providing Relative

Real-Time Statistical Report using data mining and

machine learning techniques,” International Journal of

Science, Engineering and Technology Research (IJSETR),

vol. 5, no. 4, 2016.

[33] R. Ani, G. Sasi, U. Sankar and O. Deepa, “Decision

support system for diagnosis and prediction of chronic

renal failure using random subspace classification,” in

2016 International Conference on Advances in

Computing, Communications and Informatics (ICACCI),

2016.

[34] S. Ramya and N. Radha, “Diagnosis of chronic kidney

disease using machine learning algorithms,” International

Journal of Innovative Research in Computer and

Communication Engineering, vol. 4, no. 1, pp. 812-820,

2016.

[35] B. Deekshatulu and P. Chandra, “Classification of heart

disease using k-nearest neighbor and genetic algorithm,”

Procedia technology, vol. 10, pp. 85-94, 2013.

[36] S. Bashir, U. Qamar, F. Khan and L. Naseem, “HMV: A

medical decision support framework using multi-layer

classifiers for disease prediction,” Journal of

Computational Science, vol. 13, pp. 10-25, 2016.

[37] S. Bashir, U. Qamar, F. Khan and M. Javed, “MV5: a

clinical decision support framework for heart disease

prediction using majority vote based classifier ensemble,”

Arabian Journal for Science and Engineering, vol. 39, pp.

7771-7783, 2014.

[38] S. Batra, H. Sharma, W. Boulila, V. Arya, P. Srivastava,

M. Z. Khan and M. Krichen, “An Intelligent Sensor Based

Decision Support System for Diagnosing Pulmonary

Ailment through Standardized Chest X-ray Scans,”

Sensors, vol. 22, no. 19, p. Sensors, 2022.

[39] S. Batra, R. Khurana, M. Z. Khan, W. Boulila, A. Koubaa

and P. Srivastava, “A Pragmatic Ensemble Strategy for

Missing Values Imputation in Health Records,” Entropy,

vol. 24, no. 4, p. 533, 20

[40] Ch.Sarada, C., Lakshmi, K. V. ., & Padmavathamma, M. .

(2023). MLO Mammogram Pectoral Masking with

Ensemble of MSER and Slope Edge Detection and

Extensive Pre-Processing. International Journal on Recent

and Innovation Trends in Computing and Communication,

11(3), 135–144.

https://doi.org/10.17762/ijritcc.v11i3.6330

[41] Chang Lee, Deep Learning for Speech Recognition in

Intelligent Assistants , Machine Learning Applications

Conference Proceedings, Vol 1 2021.

https://doi.org/10.17762/ijritcc.v11i3.6330

