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Abstract: Data mining and machine learning have created new avenues for creating software and investigation. The software development 

life cycle (SDLC) has also benefited from incorporating machine learning, opening up prospects for efficient and well-planned growth. 

The SDLC includes the reusability of software as a key component. Software reuse management thus assumes an active part in the SDLC. 

It reduces the expense and time needed to produce a software application. Evaluating a software component's reusability, or how appropriate 

it is for reuse, is a key difficulty in this scenario. The most effective methods for determining whether a particular software part is reusable 

or not come from machine learning to evaluate reusability; this study aims to create an ensemble machine learning model that integrates 

Support Vector Machine, K-Nearest Neighbour, Decision Tree, Artificial Neural Network, and Naive Bayes. After pre-processing, the 

publicly accessible benchmark dataset is used for experimentation. Compared with base classifiers, the suggested model delivered the most 

favourable results, with accuracy, precision, recall, and f1-score values of 89.48%, 0.9406, 0.9484, and 0.9445, respectively. According to 

the assessment of our technique, our approach can accurately evaluate reusability as experienced by engineers. 

Keywords: Ensemble Model, Machine Learning, Prediction, Reusability, Software. 

1. Introduction 

The life cycle of creating software is an exhausting 

endeavour that requires funds and staff. However, efficiency 

is increased with reusable software. It additionally boosts 

the software product's reliability and maintenance. It lowers 

the total expense for a piece of software. The discipline of 

software intelligence is created by integrating knowledge 

discovery and data mining methods into software 

development procedures [1]. AI creates smart software and 

may be reused using computerised reusability approaches 

[2]. Code pieces and non-code elements are the two main 

categories for reusability [3]. Reusability may also be 

evaluated using a variety of measures. To achieve "growth 

by reuse" and "growth for reuse," software indicators that 

assess the reusability of programs are essential [2]. 

The reuse criteria might assist in creating reusability 

forecasting techniques that software engineers may employ. 

By understanding the overall amount of script that may be 

reused, it is possible to gather data on the collaborative costs 

associated with creating a fresh release of a previously 

developed piece of software or upgrading an old one. 

Numerous reusability-focused methods are presented in the 

literature. However, the literature does not specifically 

identify the measures needed for reuse. Evaluating a source 

code component's reusability before incorporating it as part  

 

of the developer's source code is essential because low-

quality parts are frequently challenging to incorporate and 

fix. In certain situations, they can produce errors. Because 

the software's functionality is extremely context-specific 

and may entail various things depending on the individuals 

[4, 5], assessing reusability can  

be difficult. Reusability is truly a quality notion. Software 

reusability, or the degree to whereby a piece of software is 

reusable, is connected to reliability, following the ISO/IEC 

25010:2011 quality norm [6]. An element may be viewed as 

extremely reusable through a somewhat smoother viewpoint 

if it is flexible, shows weak coupling and strong cohesion, 

and offers concealment of data and division of 

responsibilities [7]. 

Statistical analysis and classification algorithms are crucial 

in software reusability by categorising, identifying, 

evaluating, and forecasting the static metric [8, 9]. Software 

reusability is organised, analysed, determined, and predicted 

using a variety of classification algorithms, including 

artificial neural networks (ANN), K-nearest neighbours 

(KNN), naive bays, decision trees (DT), support vector 

machines (SVM), many more. A machine learning 

approach, an ensemble algorithm, integrates predictions 

from many machine learning models. One of the most 

essential frameworks for developing excellent, precise 

models for forecasting is the ensemble model. 

1.1. Key Contributions 

This paper proposes a novel automated reusability 
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prediction model that considers the dynamic aspects of a 

software project along with its static metrics to conquer the 

problem effectively. 

• Employing the reuse rate as a measure of 

developer-perceived reusability. 

• An ensemble model is introduced for reusability 

evaluation based on the values of various static 

analysis metrics. 

• Reusability estimation is done based on different 

source code properties. 

• The accuracy, precision, recall, and f1-score of the 

proposed solution are compared to those of each of 

the base classifiers, and it is shown that the 

suggested model performs better, demonstrating 

the originality of our approach. 

1.2. Section Division 

The paper is divided into the sections that follow. In Section 

2, the literature review is examined. Section 3 presents 

several machine learning techniques considered in recent 

research, and the ensemble model is introduced. Section 4 

provides a description of the experiments conducted and the 

results attained. The investigation concluded in Section 5. 

2. Literature Survey 

Investigators have been interested in software reuse for 

decades due to its generally acknowledged ability to save 

production expenses and time [10, 11]. Douglas McIlroy 

first advocated the widespread creation of software 

employing reusable elements in 1968, when the reuse notion 

first emerged [12]. As a result, the obstacle now is more than 

merely identifying operationally sufficient sections and 

ensuring that these elements are appropriate for reuse. The 

expansion of the open-source development effort and the 

emergence of internet-based code repositories have 

presented novel chances for reuse. Software reusability 

considered an aspect of quality associated with reliability 

and relates to the extent to which a software object may be 

utilised in multiple systems or for the construction of 

additional resources, is defined by the ISO/IEC 25010:2011 

quality norm [6]. Because of this, several approaches have 

been put forth to evaluate software parts' reusability using 

static analysis indicators [10] and realistically constructing 

reusability measurements using recognised quality features 

[13, 14]. 

Software reusability estimation by static analysis metrics is 

a challenging endeavour that frequently requires the 

assistance of qualified specialists who review the source 

code. Manually checking the source code might take time 

and effort, particularly for large and complicated 

applications and applications that evolve often. Considering 

the consistently rising needs for functional and non-

functional criteria, this holds for most applications 

worldwide. 

A thorough taxonomical breakdown of several AI 

approaches used in software engineering is given in [1]. The 

classification system is known by the term AI-SEAL. It 

helps researchers and specialists discover and comprehend 

the benefits and drawbacks of using AI techniques for 

software development. The taxonomy provides instructions 

on how to use a particular method for reusability. The type 

of AI (TAI) utilised, Point of Application (PA), and Level 

of Automation (LA) supplied are the three aspects that have 

been suggested as crucial. The study goes into more depth 

on how PA is implemented in the SWEBOK cognitive 

domains. Wangoo, D.P. [5] has identified many AI 

strategies that result in software intelligence. The article 

illustrates how software intelligence may be produced by 

doing intelligent knowledge discovery utilising AI 

approaches to data from software engineering. Software 

intelligence eventually results in smart automation through 

intelligent code reuse. Software processes are translated to 

different AI approaches. According to a case study on 

Microsoft [15], the company uses AI strategies in its 

ongoing software creation procedures. When incorporating 

AI into processes for developing software, programmers 

encountered three difficulties: finding, organising, 

managing, and versioning the data required for machine 

learning systems is far more challenging than other software 

development areas. The software development team must 

have a specific skill set to personalise, customise, and reuse 

a model. Compared to standard software modules, AI 

components are more challenging to handle as independent 

objects and sections because simulations may become 

"entangled" in intermittent failure conduct that has a 

complex character. The contributor has done surveys by 

interviewing people and examining how software is used. 

Each problem and the related techniques taken to fix it are 

identified in the findings, which are provided in quantitative 

form.  

Ammar et al. [16] apply cutting-edge AI methods to 

software operations. For instance, it connects knowledge-

based systems to demand engineering by pointing out that 

recycling design data from experts may significantly 

improve the efficiency and standard of the software creation 

procedure. Similar connections exist between different 

systems and their efficient AI techniques. 

Component-based software engineering (CBSE) is an 

emergent phenomenon in [2]. Numerous reusable non-code 

sections, including the project plan, design, layout, 

comprehensive structure & scheme, code snippets, and 

validation instances, have been affected by adopting 

algorithms like Kmean and cosine analogy. Kaur et 

al. classified the information in the article [17] using 

algorithms for classification, sometimes called meta-
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classifiers, that utilised seven reusable criteria on four 

distinct versions of the same application. Components with 

comparable features are grouped using the component 

clustering approach in the article [2]. The data mining 

techniques employed in this work include hierarchical 

clustering, K-mean, K-mode, and K-medoid. After the 

cluster has been established, it may be searched for 

predicted components. Therefore, this method makes it 

possible to reuse parts.   

According to Chythanya et al. [18], CBSE classifies 

generation into two categories: "The Creation for reuse" and 

"The Creation by reuse." As a result, enormous component 

databases are built for future reuse. Effectively scanning the 

databases to find and get a certain component is done using 

neural network techniques. The study demonstrates two 

ways to determine reusability: empirically and qualitatively. 

The objective of this study is to construct an ensemble 

machine learning model that incorporates Support Vector 

Machine (SVM), K-Nearest Neighbour (KNN), Decision 

Tree (DT), Artificial Neural Network (ANN), and Naive 

Bayes (NB) on static analysis metrics to assess reusability. 

3. Proposed Model 

The architecture of the proposed model is presented in 

Error! Reference source not found.. 

3.1. Data Pre-processing 

The benchmark dataset recommended by Papamichail et al. 

has been employed in the current investigation [8, 19]. The 

dataset was generated after examining the majority of 

prevalent endeavours listed in the Maven registry and using 

the SourceMeter tool [20] to calculate an extensive set of 

static analysis metrics across class and package categories 

that measure each of the six main source code 

characteristics: complexity, cohesion, coupling, inheritance, 

documentation, and size. The obtained dataset may be an 

empirical foundation for creating and implementing data-

driven reusability assessment methods because it comprises 

statistical data for over 24,000 classes and 2000 packages. 

28 of the 32 attributes defined by the dataset specify the 

properties of the fundamental software element. 27494 

instances altogether are used in the current investigation. 

The dataset is initially pre-processed to eliminate any cases 

with missing values and outliers [21, 22]. After that, the 

target attribute (ReuseRate) is converted from a numerical 

value to an enumeration type with three categories: Low, 

Medium, and High. 

3.2. Feature Selection 

A full classification model may be produced by eliminating 

pointless characteristics from the data set and reducing the 

overall dimension of the part. The authors combined the 

 
Fig. 1. Proposed Model 
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ranker search approach with the Info Gain Attribute 

Evaluator [23] feature selection technique to choose the 

most pertinent attributes. The Info Gain Attribute Evaluator 

determines a feature’s worth by assessing the information 

gained about the categories. Rather than appropriately 

separating the characteristics, the Info Gain Attribute 

Evaluator may consider binary numerical factors. The 

missing value can either be handled as a distinct value or 

distributed over additional discounts in proportion to their 

mean value for a category property or the typical occurrence 

for a numeric characteristic. The Info Gain Attribute 

Evaluator can recognise Nominal characteristics, Date 

features, Integer characteristics, Unary properties, Binary 

properties, Null nominal characteristics, and missing values. 

In addition to feature evaluators like gain ratio and entropy, 

the ranker search technique used to produce rankings 

attributes rates each attribute by its particular evaluator. It is 

equipped to make attribute ranking. The best initial search 

technique has been implemented with the additional feature 

selection authors employed in this investigation wrapper 

subset evaluator. When evaluating attribute sets, the 

wrapper subset evaluator uses a learning pattern. Cross-

validation has been conducted to determine the correctness 

of the learning pattern for a group of qualities. It can identify 

the types of characteristics, including string format 

characteristics, null attributes, Absent values, Date features, 

Relationship characteristics, Numeral features, Unary 

characteristics, Binary characteristics, and Nominal 

features. It can also determine the absence of values, the 

Nominal category, the Binary category, the Date category, 

and the Numeric group. The best first search by greedy hill 

climbing involving more backtracking capability is used for 

exploring a pool of feature groups. The number of permitted 

successive non-improving nodes controls the amount of 

backtracking. Best first may begin with an unpopulated set 

of characteristics and search forward, begin with the 

complete set of parts and search backwards, begin at any 

stage and explore in either direction (taking into account all 

potential individual feature alterations and additions at a 

particular moment), or any combination of these. 

3.3. Base Classifiers 

The objective of this study is to construct an ensemble 

machine learning model that incorporates Support Vector 

Machine (SVM), K-Nearest Neighbour (KNN), Decision 

Tree (DT), Artificial Neural Network (ANN), and Naive 

Bayes (NB) on static analysis metrics to assess reusability. 

3.3.1. Support Vector Machine 

Support Vector Machine (SVM) is a supervised machine 

learning technique built on statistical instruction principles. 

SVM has a good efficiency level in classification, 

regression, and prediction [24, 25, 26]. It creates a unique 

hyperplane in the interplanetary description of the training 

information, and blends are categorised according to where 

the hyperplane is placed across. Regression and 

classification algorithms are employed to forecast and 

analyse the collected data [27, 28]. SVM stands for 

supervised learning methods frequently used for 

classification in data mining. SVM uses multiple algorithms 

for sorting to provide the right outcome. It can reduce the 

likelihood of error by maximising the sum of the 

occurrences of the two classes. The advantage of the SVM 

is that it eliminates the need to perform an explicit 

conversion of the primary characteristics by using a "kernel 

trick" to determine the proximity of an element and the 

hyperplane in a modified (nonlinear) characteristic space. 

3.3.2. K-nearest Neighbor 

The KNN method is a supervised learning technique that is 

nonparametric by definition [27]. Separating linear from 

nonlinear is not necessary. KNN works well for many 

records and trains models quickly. KNN identifies the items 

from the provided k number of items that are closest to the 

majority decision or precise point query. It operates based 

on the nearest class item closest to the training instance and 

has the least distance between them. KNN is the model-

building technique with the quickest execution period, as 

defined by [29, 30]. Simple majority voting is applied to the 

forecast question by KNN, which gathers all of the 

neighbouring items. The k instances that must be classified 

for each query Xn are x1, x2,... xk,  Various distance 

metrics, including the Euclidean (E), Manhattan (Ma), and 

Minkowski (Mi) as presented in Equation (1), Equation (2) 

and Equation (3), respectively, will be used to identify the 

closest class. 

𝐸 =  (∑ (𝑋𝑖 − 𝑌𝑖)2
∀𝑖∈1,2,..𝑛 )

1/2
  (1) 

𝑀𝑎 =  ∑ 𝑎𝑏𝑠(𝑋𝑖 − 𝑌𝑖)∀𝑖∈1,2,..𝑛   (2) 

𝑀𝑖 =  √∑ 𝑎𝑏𝑠((𝑋𝑖 − 𝑌𝑖)𝑛)∀𝑖∈1,2,..𝑛
𝑛

   (3) 

3.3.3. Decision Tree (DT): J48 

A freely available Java implementation of the C4.5 

DT technique is a J48 DT [31]. This application expands 

Ross Quinlan's earlier ID3 technique [31]. J48 classification 

algorithm builds trees using top-down greedy search 

techniques [32]. The J48 DT generates a sorting tree 

wherein the leaf indicates the finishing category, and 

intrinsic features provide a range of potential fork feature 

outcomes [32]. The distinction is between the splitting 

characteristics of information acquisition. The indicator of 

the disorder information is called entropy. Entropy is a 

gauge of the degree of uncertainty in any random element. 

Entropy (Γ) is easily computed as presented in Equation (4) 

for every likelihood l and sample δ. 

Γ(δ) = ∑ [−li ln(pi)]∀i∈1,2,..n   

 (4) 
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Information gain, or choosing the ideal characteristic for 

selecting the particular vertex in a tree. When computing the 

quantity of a feature concerning collection, refer to the 

attribute's value as the numerical value of (Ω), the value of 

sample δ from δi, then Equation (5) is adopted to compute 

information gain, G. 

𝐺(δ, Ω) = Γ(δ) −  ∑ (Γ(δ)
𝑎𝑏𝑠(δ𝑖)

𝑎𝑏𝑠(δ)
)𝑛

𝑖∈𝑣𝑎𝑙𝑢𝑒(Ω)            (5) 

3.3.4. Artificial neural network 

Artificial neural networks (ANN), usually called "neural 

networks," are frequently used in practical applications and 

are based on actual neurons. The interconnected 

components of artificial neurons make up an ANN, which 

links every node with movable weights that alter its 

prearrangement as messages are sent [33]. Since ANN is a 

system that learns, it may adapt to changing its composition 

due to learning and the data it receives through its inner and 

outer environments [34]. Many levels are included in ANN 

for transmitting different data. Input, hidden, and output 

layers make up the layer structure. One or more layers with 

a certain amount of nodes are hidden layers. Each of these 

layers is arranged about one another, with weight connected 

to every single node. A supervised learning method known 

as an ANN uses input from network participants to create 

output. The perception of an ANN is its fundamental 

operational unit. Data collection may be divided into two 

classes using a perceptron algorithm. Individual nodes, 

along with weights, make up perceptron. The three basic 

components of a perceptron are connection, adder, and 

activation mechanisms. 

3.3.5. Naïve Bayes 

A probabilistic method of classification using distinct 

premise characteristics is known as the naive Bayes 

classifier. In various practical supervised classification 

situations, the Naïve-Bayes classification method works 

effectively and picks up new information rapidly [27]. A 

worldwide issue is diagnosed and predicted using naive 

Bayes. To forecast and assess the parameter, the Naïve 

Bayes method needs fewer training data from classification 

[35]. A member of each class is predicted using the Naive 

Bayes classification algorithm. For instance, the target 

class's supplied record will likely exist. The type with the 

greatest odds is the one that is most likely to occur.  

3.4. Ensemble Classifier 

Ensemble learning is a machine learning algorithm that 

builds an assortment of ensemble forecasting models and 

integrates the results to improve the outcomes of each 

distinct method. Ensembles with the greatest heterogeneous 

classifier typically have an excellent prediction assessment 

[36]. The most effective technique to fix mistakes caused by 

the base classifier is utilising an ensemble classifier [36]. 

Using many classifiers rather than one classifier is 

becoming quite common in machine learning combined 

classification. The benefit is that one may employ two or 

more categorisation algorithms instead of just one with 

greater strength. To categorise examples from the training 

set, cross-fold validation set, or testing set, the model 

authors develop will thus be more potent and advanced. The 

ensemble classification model aims to integrate many 

classifiers, each uniquely impacting the outcome [37]. The 

strategies have altered the training procedure to create 

classifier models that produce results in various 

classification conclusions [37]. The major benefit of 

ensemble methods is that they integrate distinct classifier 

criteria into stronger predictions than those rules alone. The 

ensemble model concept blends diverse individual 

classifiers to provide better prediction ability. For this 

objective, the authors of the current work use a voting 

classifier. 

The ensemble approach known as the voting classifier offers 

a means to aggregate forecasts from several forecasting 

models. A majority vote determines the ultimate prognosis 

or the anticipated possibilities are averaged. The authors 

utilised DT, ANN, and NB as the basis classifiers for this 

research. Authors additionally employed the 'soft voting' 

technique, which averages the likelihoods from every 

classifier to determine the ultimate forecast for every 

category. 

4. Results and Discussions 

The efficacy of the ensemble model has been assessed by 

several critical tests described in this section. To run the 

ensemble model, a Jupyter Notebook version 6.4.6 was 

used. Python code is simple to run and write using Jupyter 

Notebook, a well-liked open-source tool for creating and 

executing neural network algorithms for classification. To 

evaluate the effectiveness of the ensemble model, five 

parameters have been used to assess the final forecast 

produced by the ensemble model. The efficiency of the 

ensemble model described in the current work has been 

assessed using accuracy, precision, recall, and F1 score [38, 

39]. The proportion of accurate forecasts to total forecasts is 

known as accuracy. It refers to a classification approach's 

capacity to forecast the classes in a dataset. It demonstrates 

how the algorithms are accurately classified—equation (6), 

which calculates. Accuracy is defined as the ratio of correct 

forecasts to all forecasts.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒_𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
   (6) 

The recall is also known as sensitivity which recovered 

pertinent occurrences. The recall is the proportion of true 

positives to all other positives. The recall is calculated using 

Equation (7). 

Recall =
True_Positive

True_Positive+False_Negative
         (7) 
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The ratio of true positive outcomes to all anticipated positive 

results is known as precision. The precision is calculated 

using Equation (8). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8) 

F1-score serves as a gauge for test accuracy. In terms of 

recall and precision, it is a skewed mean. It is calculated 

using criteria for recall and precision. The greatest F1 score 

is achieved when memory and accuracy are equal. The F1 

score is determined using Equation (9). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (9) 

Because the dataset contains statistical information for more 

than 24,000 classes and 2000 packages, the produced 

dataset may be used as an empirical basis for developing and 

using data-driven reusability evaluation techniques. The 

qualities of the essential software element are described by 

28 of the 32 attributes included in the dataset. In all, 27494 

examples are employed in this research. The dataset is 

initially pre-processed to remove any occurrences with 

missing values and outliers. The target characteristic 

(ReuseRate), originally a numerical number, is then 

changed to an enumeration type with three categories: Low, 

Medium, and High. The dataset is split into 20% for testing 

and 80% for training. 

The SVM, KNN, DT, ANN, and NB base classifiers have 

been implemented in this study to compare the effectiveness 

of the ensemble model against these methods. Accuracy, 

precision, recall, and F1 score have all been used as 

evaluation criteria to determine the extent to which these 

classification algorithms worked. Each prediction algorithm 

has been evaluated using 10-fold cross-validation, with a 

95% testing error, to avoid overfitting. Experimental 

outcomes for accuracy, precision, recall, and F1 score for 

various foundational models are presented in Table 1. Fig. 

2. illustrates how the ensemble model, which had an 

accuracy rating of 89.48%, accomplished higher. The 

accuracy of the NB model ranked the lowest, reaching 

81.93%. Focusing on the F1 score, the ensemble model 

produced superior results (0.9445), while the NB model 

produced the least satisfactory results (0.9007). 

Furthermore, the ANN had the lowest recall scores (0.9049), 

while the ensemble model had the best precision 

assessments (0.9406). However, the ensemble model fared 

second best, with a recall of 0.9484, and the ANN model 

provided the most astounding results (0.9759), while the NB 

model gave the least impressive results (0.886 only). The 

confusion matrix for the different fundamental models, 

including SVM, KNN, DT, ANN, NB, and the suggested 

ensemble model, is shown in Fig. 3. 

Table 1. Comparative performance of the various models 

Model Accurac

y 

Precision Recall F1 Score 

SVM 86.84% 0.9154 0.9442 0.9296 

KNN 84.96% 0.9166 0.9207 0.9186 

DT 88.33% 0.9269 0.9494 0.938 

ANN 88.51% 0.9049 0.9759 0.9391 

NB 81.93% 0.9159 0.886 0.9007 

Proposed 

Ensembl

e 

89.48% 0.9406 0.9484 0.9445 

 

Fig. 1. Comparative performance of the various models 

5. Conclusions 

Software reusability improves the software development 

process since it spares the programmer the time, money, and 

effort required to implement the identical basic functionality 

repeatedly. Reusability of software is a cost-effective 

strategy that benefits the programmer and produces software 

of excellent quality. A software component's reusability is 

evaluated using a variety of measures. These metrics 
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support developing and using reusable software components 

through machine-learning approaches. The machine 

learning methodologies, as well as their related metrics that 

aid in determining reusability, are explained by the 

taxonomical cartography. The present investigation seeks to 

build an ensemble machine-learning model that combines 

SVM, KNN, DT, ANN, and NB to assess reusability. The 

publicly available benchmark dataset is utilised for 

experimentation after pre-processing. The recommended 

model outperformed basic classifiers in accuracy, precision, 

recall, and f1-score, with values of 89.48%, 0.9406, 0.9484, 

and 0.9445, respectively. The evaluation of our method 

 

Fig. 3. Confusion Matrices of various models
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indicates that it can effectively measure reusability as 

experienced by engineers. 
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