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Abstract: Palmprints are stable and unique information used for biometric identification. This paper devises a novel texture-based feature 

extraction method inspired by the Gammadion structure that recognizes an individual based on Palmprint. The Region of Interest (ROI) 

extracted from the palm is initially normalized using the Histogram equalization technique. The ROI is converted into the frequency domain 

using Shearlet transformation to represent it in an illumination invariant form. Then the gammadion structure-based feature extraction 

method is used. It generates multiple feature maps fed to a simple Convolutional Neural Network(CNN). The proposed methodology is 

invariant with illumination and noise. Four publicly accessible standard Palmprint databases (CASIA, IITD, Tongji, and PolyU2) are used 

for extensive experimentation. The result is then compared with existing state-of-art techniques. The experimental analysis shows that the 

proposed methodology obtains the highest accuracy of 99.45% for the PolyU2 dataset, which is superior to some existing methods in the 

literature. 
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1. Introduction 

Biometric recognition has attracted significant interest over 

the past two decades. Palmprint features are much more 

stable than other biometrics and have discriminative 

characteristics [1] including texture, principal line, 

geometrics, and more. Variations in environmental factors, 

such as illumination, noise, and change in orientation during 

image capture, make it difficult to acquire high-quality 

images in real-world situations [2]. A wide variety of 

Palmprint recognition techniques have been developed, 

including low-resolution [3][4][5], high-resolution [6], 

multispectral [7], and 3-D Palmprint recognition [8]. These 

techniques have proven to be good in recognition 

performance. High-resolution Palmprint images provide a 

high degree of similar features in detail, such as minutiae, 

density, orientation, principal lines, etc., which requires 

high pixel density for the images (more than 500 pixels per 

inch) [6].  Over the recent years, most of the research on 

Palmprint recognition has predominantly focused on low-

resolution Palmprint recognition due to a lack of good 

quality image-capturing devices [9][10].  

In most cases, Palmprint recognition consists of two steps 

of Palmprint feature representation and matching [11].  

 

Palmprint feature representation aims to exploit 

discriminative features to make Palmprint more separable. 

The second step, being is to build and design effective 

classifiers to distinguish the extracted features. Without any 

doubt, Palmprint feature representation significantly affects 

the performance of Palmprint recognition. However, 

extracting the discriminative features remains a demanding 

task in Palmprint recognition. Although Spatial domains are 

widely used for image representation, others consider using 

frequency domain to represent the image. The majority of 

image representation techniques exclusively compute 

features in the spatial domain. Local Binary Pattern (LBP) 

is an efficient texture descriptor that encodes local structures 

of the image by comparing each pixel to its adjacent 

neighborhood pixels [12]. It is highly robust to rotation 

[13][14] and changes in illumination and has a lower 

computing complexity. As a result, it is suitable for 

touchless Palmprint recognition. Many times, LBP’s single-

directional pixel approach frequently fails to capture 

multidirectional patterns. Hence, it is appropriate for 

touchless Palmprint recognition. 

In the frequency domain approaches such as Discrete 

Cosine Transform (DCT) [15], Discrete Wavelet transform 

(DWT) [16] Curvelet Wavelet transform [17], Dual-tree 

[18], and so on are utilized for illumination normalization. 

Yet, these have their own limitations. Detection of 

curvilinear as well as point singularity structures in an image 

is challenging. In addition, DWT is not the best choice for 

sparse appropriation [19]. DWT only captures high-

frequency features along three different directions in an 

image, i.e., horizontal, vertical, and diagonal. In contrast, 
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illumination normalization based on DCT removes low-

frequency components by discretizing some of the DCT 

components in the input. It is difficult to predict the amount 

of DCT coefficients to be eliminated as it depends on the 

input image and its modality. The Curvelet and Contourlet 

transforms are not properly aligned with the continuum 

domain theory, hence generating various artifacts as a 

consequence. With its multidirectional approach, the 

geometric multi-scale Shearlet transform solves the 

aforementioned disadvantages, allowing us to construct 

sensitive sparse representations of image data while 

retaining anisotropic properties. We choose Shearlet over 

the wavelet and curvelet transforms due to several reasons. 

Wavelet representations are useful for approximating 

features at points or singularities. Wavelets are incapable of 

dealing with the discontinuities that are present on the edges 

of ground borders, hence not ideal when dealing with 

multivariate data. Although curvelets can provide better 

edge feedback than wavelets, they have been inconvenient 

to use. Some researchers subsequently suggested 

contourlets, but the method lacks a correct continuum 

theory. By taking the directional features into account, the 

Shearlet transform was developed to overcome the 

limitations of the wavelet transform. The affine system 

employs three additional parameters, which include scaling, 

shear, and translation, to record the orientation of edges 

more precisely. To capture the micro-level features, we 

introduce a Gammadion-based binary pattern feature 

extractor inspired by photoconductive antennas [20] [21] for 

Palmprint recognition.  

The significant contribution of this work is as follows: 

1. Proposed a novel Gammadion binary pattern in the 

frequency domain using Shearlet transform for 

Palmprint recognition. 

2. Incorporated Adaptive histogram equalization with 

gamma correction for illumination normalization for 

enhancement of the input Palmprint. 

3. Systematic analysis is performed by comparing the 

proposed approach with other state-of-art schemes viz 

LBP, LDP, HOL, CR-CompCode, PCA-Net, VGG-16, 

VGG-19, and Alexnet. 

The remainder of the paper is as follows: Section 2 provides 

a brief literature review of Palmprint recognition. Section 3 

demonstrates the proposed methodology. Section 4 presents 

a discussion on the implementation and results of the 

proposed approach with existing state-of-the-art 

approaches. Finally, section 5 presents the conclusion with 

future scope. 

2. Literature Review  

In the existing literature, Palmprint recognition can be 

mainly classified into five different categories that include 

line-based, texture-based, local direction coding-based, sub-

space learning-based, and deep learning-based. (1) Line-

based techniques capture the principal lines and local lines 

in the Palmprint image and use them as the dominant 

features for Palmprint recognition [22] [23]. To improve the 

recognition accuracy multi-biometric features extraction 

technique is adopted that combines the principal line 

features from both the left and right Palmprint images using 

the Gabor filter [24]. (2) Texture-based techniques are 

implemented by leveraging the prevalent features of the 

input image to perform Palmprint recognition. A 

comparative study made by [12] of the texture-based 

descriptors such as LBP, LDP, and BSIF, along with their 

variants, provides better recognition accuracy 

[25][26][27][28]. (3) Sub-space learning-based methods 

covert the Palmprint image from high dimensional vector 

space to low dimensional representation. PCA, ICA, LDA, 

and KFD, along with variants, are some of the prominent 

methods in this category[29] [30].  (4) Local direction 

encoding methods encode each pixel according to the 

dominant direction in which it was captured [31][32]. 

Competitive code and robust line orientation code compute 

the one dominant orientation for extracting the directional 

features. Chen et al. [33] transformed the double orientation 

pattern into hash code for faster recognition. (5) Deep 

learning-based techniques train the model using deep CNN 

for feature extraction in order to obtain higher recognition 

accuracy. For instance, Meraoumia Abdallah, et al.[4] 

proposed PCAnet based[34] deep learning method that 

provides a promising result. Genovese et al. [35] proposed 

Gabor-PCA approach tuning with filter. Further John 

Veigas et al. [36] presented Genetic Algorithm Based Gabor 

CNN for Palmprint Recognition. Moreover, many other 

deep learning approaches were proposed which provide 

higher recognition accuracies. 

When the Palmprint image is captured in a local 

environment, pose deformation, illumination, and rotational 

variations degrade the recognition accuracy. For example, 

Naveena et al.[37] detected features from texture, and Fei et 

al. [38] proposed multi-curvature pattern. Whenever the 

images are captured in an open or unconstrained 

environment, due to deformation, illumination variation, 

and scale variation in the Palmprint image result in 

degradation of the recognition accuracy. Fie et al. suggested 

a recognition method using Low-rank representation 

combined with principal line distance, which provides better 

robustness to the noise for contactless Palmprint images. 

Kumar [39] presented a similar approach for contactless 

palmprint identification with a more precise deformation 

alignment. In these works, accurate region-of-interest image 

alignment is based on handcrafted alignments are crucial for 

enhancing matching accuracy. Zaho et al. [40] presented a 

deep learning framework termed deep discriminative 

representation (DDR), which is a generic framework that 
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utilizes limited Palmprint training data. To address the 

performance degradation due to single view, a multi-view 

discriminant Palmprint recognition with feature 

concatenation was proposed. This approach is prone to the 

overfitting problem. The literature uses least square 

regression and subspace learning techniques to represent 

multi-view features [41][42]. 

The issue of illumination variation is tackled by using 

Adaptive histogram equalization with gamma correction 

that dynamically determines the intensity transformation 

function as per the characteristics of the input Palmprint 

image. The following section provides a detailed description 

of the methodology followed in this research work.   

3. Methodology 

This section briefs about the methodology adapted and 

describes the underlying theory behind the methodology's 

purpose. These include the proposed block diagram for the 

methods adopted and the employed gammadion structure. 

3.1. Image Pre-processing 

After capturing the image from the input device, pre-

processing is essential in constructing any biometric system. 

Initially, the ROI is extracted by making use of the Otsu 

thresholding and edge Kirsch edge detector methods 

mentioned in [36]. Then illumination normalization is 

performed using adaptive histogram Equalization to remove 

the noise and illumination variations [43]. 

3.2. Representation of Digital Shearlet Coefficient 

Digital Shearlet Coefficient is a geometric multiresolution 

transform. In order to generate Shearlet Coefficient, apply 

Translation, shearing and  dilation operations on mother 

function 𝜑 ∈ 𝐿2 (𝑅2). 

The dilation matrix is given by 𝐷𝑥 

𝐷𝑥 = [
√𝑥 0

0 1 √𝑥⁄
]    ∀ 𝑥 ∈ 𝑅+   (1) 

The Shearing matrix is given by 𝑆𝑦 

𝑆𝑦 = [
1 𝑦
0 1

]      ∀ 𝑦 ∈ 𝑅       (2) 

For a given image I(M,N) with M rows and N columns with 

mother function  𝜑 ∈ 𝐿2 (𝑅2) the Shearlet system can be 

represented as, 

𝐼 → 𝑆𝑇𝜑𝐼(𝑥, 𝑦, 𝜌) = 〈𝐼, 𝜑𝑥,𝑦,𝜌〉          (3) 

Shearlet system be influenced by three major parameters 

that is 1) Dilation parameter (x) which estimates different 

resolution or scales 2) The shearing parameter (y), measures 

the orientation 3)Positional parameter (𝜌) measures the 

location. Therefore, the transformation using Shearlet can 

be stated as, 

𝑆𝑇𝜑 𝐼(𝑥, 𝑦, 𝜌)  = ∫ 𝐼(𝑞)
∞

−∞

𝜑𝑥,𝑦(𝜌 − 𝑞)𝑑𝑞   

= 𝐼 ∗ 𝜑𝑥,𝑦(𝜌)    (4) 

The continuous Shearlet model can be stated as, 

𝑆𝑇{𝜑} = {𝜑𝑥,𝑦,𝜌 = √𝑥34
𝜑𝑆𝑦𝐷𝑥(. −𝜌))}     

∀ 𝑥, 𝑦 ∈ 𝑅, 𝜌 ∈ 𝑅2      (5) 

Equation (5) holds good when the function 𝜑 ∈ 𝐿2 (𝑅2) 

satisfies the permissibility condition [19]. Now 

discretization equivalent can be obtained by mapping 𝑅 →

𝑍 as  

𝑆𝑇{𝜑} = {𝜑𝑘,𝑙,𝑚 = √23𝑘4
 𝜑(𝑆𝑙𝐷2𝑗  . −𝑚)}  

∀𝑘 ∈   𝑍, 𝑚    𝑍2     (6)                               

Here Z represents the digital grid. At this point equal usage 

of the digital and continuous domain should be given as 

shearing matrix 𝑆𝑙 maps to 𝑍2 to itself.  

For a given digital signal 𝑓 ∈  𝐿2 (𝑍2), the Digital Shearlet 

Transformation can be represented as, 

𝐷𝑆𝛵𝑘,𝑙,𝑚 = 𝑆𝑇𝑘,𝑙,𝑚∀  𝑘 ∈ {0, 𝐾 − 1} 𝑎𝑛𝑑 |𝑙|

< ⌈√2𝑗  ⌉          (7) 

Here K denotes maximum number of scale being 

represented. 

3.3. Representation of Illumination invariance using 

Digit Shearlet Coefficient 

As per the illumination-reflectance model [43], a digital 

image I (M, N) can be denoted as   

I(M, N)=R (M, N) * L (M, N)                          (8)     

Here R (M, N) and L (M, N) represent the illumination and 

reflectance components of the given digital image. The R 

(M, N) characterizes the Palmprint properties such as 

principle lines, ridges, minutia, etc. The component L (M, 

N) represents how much light incident onto the Palmprint 

surface. 

Applying logarithm 

𝑙𝑜𝑔10(𝐼)    = 𝑙𝑜𝑔10(𝑅) + 𝑙𝑜𝑔10(𝐿)            () 

𝑙𝑜𝑔10 𝑅 =  𝑙𝑜𝑔10(𝐼) − 𝑙𝑜𝑔10(𝐿)  =  𝑙𝑜𝑔10(𝐼/𝐿) 

         =  𝑙𝑜𝑔10(𝐼/𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡) 

=> 𝑅 =
𝐼

𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡
                         () 

Equation (10) gives the required illumination invariant 

reflectance part of the given  image I. 

ξ ( ) ={
1           ∀ |𝐷𝑆𝑇𝑗,𝑘,𝑚

𝐻𝐹 (𝑀, 𝑁)| >  𝑇ℎ

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 () 
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The shrinkage value is given by, 

  𝑇ℎ =
𝜌2

𝜌𝑥
2                      (12) 

Where σ  = 
𝑚𝑒𝑑𝑖𝑎𝑛|𝐷𝑆𝑇𝑗,𝑘,𝑚

𝐻𝐹 (𝑀,𝑁)|

0.6745
 

The coefficients are restructured with ξ (M, N) to obtain 

high frequency denoised coefficients 

𝐷𝑆𝑇𝑚𝑜𝑑𝑗,𝑘,𝑚
𝐻𝐹 (𝑥, 𝑦) = 𝐷𝑆𝑇𝑗,𝑘,𝑚

𝐻𝐹 (𝑀, 𝑁) × 𝜉 (𝑀, 𝑁)    (13) 

 

The image is the reconstructed using the 

𝐷𝑆𝑇𝑚𝑜𝑑𝑗,𝑘,𝑚
𝐻𝐹 (𝑀, N)  bands and the unaltered bands  

𝐷𝑆𝑇𝑗,𝑘,𝑚
𝐻𝐹 (x, y)  

 𝐼𝑟𝑒𝑐𝑜𝑛𝑠 =

𝑊−1 (𝐷𝑆𝑇𝑚𝑜𝑑𝑗,𝑘,𝑚
𝐻𝐹 (𝑀, 𝑁), 𝐷𝑆𝑇𝑗,𝑘,𝑚

𝐻𝐹 (𝑀, 𝑁))  (14) 

where, 𝑊𝐷𝑆𝑇
−1  represents the inverse Shearlet transformation 

operation. To approximation the component of reflectance 

Rest,   

𝐼𝑟𝑒𝑐𝑜𝑛𝑠  should be replaced with 𝑅𝑒𝑠𝑡 =
𝐼

𝐼′
𝑟𝑒𝑐𝑜𝑛𝑠

. 

In addition, inspired by Lai et al. [44], incorporates the 

tangent inverse operation on 𝑅𝑒𝑠𝑡 to further remove the 

noise effect in the invariant illumination feature map. 

𝜎𝑦
2 =

1

𝑃𝑋𝑄
∑ ∑ 𝐷𝑆𝑇𝑗,𝑘,𝑚

𝐻𝐹 (M, N)2
𝑞

𝑦=1

𝑝

𝑥=1
    (15) 

3.4. Gammadion binary pattern representation 

Local pattern feature extraction approaches are becoming 

popular for extraction of patterns and to perform 

classification tasks in recent years. Local Binary Pattern 

(LBP) is the most prevalent method to tackle machine vision 

and pattern recognition problems among researchers [12]. 

LBP transforms the image into a binary pattern and extracts 

features on the neighborhood pixels using simple 

thresholding. A value of 1 is assigned to neighbors in a 

predefined patch with a grey level greater than the center 

pixel; otherwise, 0 is assigned. There are many extensions 

and alterations for the LBP method suggested, namely 

Boosted LBP, in which the Palmprint region is scanned with 

a scalable sub-window from which LBP histograms are 

extracted. Dominant LBP, Local LDP, Local Quaternary 

Pattern (LQP), Local Ternary Pattern (LTP), etc.  [12]. 

Nevertheless, LBPs one-direction pixel difference 

technique frequently fails to record directional patterns in 

the Palmprint [45]. Inspired by these facts, this paper 

employs a multidirectional binary pattern motivated by the 

Gammadion structure [21].  

The Gammadion structure with four different pixel 

sequence patterns is shown in the figure 1. The pattern can 

be generated using (16). 

𝐺𝐵𝑃𝑘 = ∑
𝑓(𝑉(𝑗, 𝑘 + 1) − 𝑉(𝑗, 𝑘))2𝑘−1

       ∀ 𝑗 ∈ {1,2}                         (16)

4

𝑘=1

 

            

𝑓(𝑝) = {
1 𝑝 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}    (17)   

where, k denotes any of the GBP patterns as shown in 

Figure-1. Subsequently we obtain  different directional 

binary patterns from a Palmprint image. 

Sample Points:{𝑉(1,1), 𝑉(1,2), 𝑉(1,3), 𝑉(1,4), 𝑉(1,5)} 

GBP-1:              1 1 0 1 =13 

Points:{𝑉(2,1), 𝑉(2,2), 𝑉(2,3), 𝑉(2,4), 𝑉(2,5)} 

GBP-2:               0 1 0 1=5 

Points:{𝑉(1,1), 𝑉(1,2), 𝑉(1,3), 𝑉(1,4), 𝑉(1,5)} 

GBP-3:              0 1 0 1=5 

Sample Points:{𝑉(2,1), 𝑉(2,2), 𝑉(2,3), 𝑉(2,4), 𝑉(2,5)} 

GBP-4:          0 1 0 1=5 

 

Fig.1. structure of Gammadion based binary pattern descriptor 
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3.5. Convolutional Neural Network(CNN) 

CNN is an extensively researched and widely used area in 

the field of deep learning. It is a multilayer network model 

enriched from a backpropagation neural network algorithm. 

The CNN uses feed forward propagation to compute output 

values and backward propagation to compute the network 

weights and biases. In short, CNN repeatedly performs 

convolution and pooling on the enhanced input image to 

produce the classification. 

Figure 2 shows the block diagram of the proposed approach. 

Initially, the ROI extracted from the Palmprint is normalized 

using Adaptive Histogram Equalization, then transformed 

into the frequency domain using Shearlet transform. The 

generated gammadion binary patterns are generated using 

(16). These patterns are fused using level 5 wavelet 

transform [46]. The fused images are trained using a simple 

CNN. The input query image is classified using the trained 

model during testing 

 

4. Implementation and results 

This section details the implementation and outcomes 

obtained for the popular standard datasets. Experiments are 

carried out on Intel-Xeon(R) 2.30 GHz processors with 

NVIDIA Tesla K80 GPUs. Accuracy, EER, and Receiver 

Operating Characteristic Curves are used to evaluate the 

final results. 

4.1.  Datasets used 

The presented methodology is assessed using four publicly 

accessible databases. Firstly, IIT Delhi Palmprint Database 

V1 is used, which was created by the Indian Institute of 

Technology Delhi and contained contactless Palmprint 

images from 230 individuals. Secondly, The CASIA 

Palmprint Database comprises 5502 Palmprints from 312 

individuals. 

Thirdly, the Tongji Palmprint consists of 600 Palmprint 

images belonging to 600 individuals. PolyU2 dataset has 

7752 grayscale palmprint images belonging to 386 

individuals. 

4.2. Performance evaluation 

To evaluate the performance of the Palmprint recognition 

system, various evaluation metrics such as accuracy, recall, 

precision, and F1 score are used to examine the model's 

reliability.  

Accuracy is the fraction of Palmprint images correctly 

classified over the entire set of images. Equation (18) is used 

to compute the accuracy of the classification. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

𝑆
     () 

Where TP, TN and S are True Positive(TP), True 

Negative(TN) and Total number of images respectively. 

Precision is the ratio of true positive to the sum of true 

positive and true negative is depicted in (19). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝑇𝑁)
 (19) 

Recall is the ratio of true positive and sum of false negative 

and true positives is denoted in (20)  

𝑅𝑒𝑐 𝑎 𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (20) 

Fig.2. Block Diagram of the proposed approach 
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Where TP, FN is true positives and false negatives 

respectively. 

The F1 score, which is shown in (21), is defined as the 

harmonic mean of precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅 𝑒𝑐𝑎𝑙𝑙)

(𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅 𝑒𝑐𝑎𝑙𝑙) 
        (21) 

4.3. Experimentation: 

Initially, the image from the dataset is converted to 

grayscale. The image background is removed, and the hand 

contour is pull out using the Otsu thresholding and edge 

Kirsch edge detector methods. From the hand contour, we 

extract the valley points corresponding to the index, middle 

and little finger by analyzing the local minima. ROI is 

extracted using the reference system based on the extracted 

valley points. 128*128 pixels ROI are extracted from the 

original dataset. Adaptive contrast limited adaptive 

histogram equalization and gamma correction [43] is 

applied to the ROI. The experiment is carried out using three 

variations. In the first type, the ROI is directly fed to CNN. 

We term it as 'raw pixels+CNN'. The second variation from 

the ROI gammadion binary pattern is obtained and fed to the 

CNN. We term this as 'GBP+CNN'. Figure 3 shows the 

Gammadion Pattern generated for different dataset ROI 

images. Finally, the Shearlet transform is applied to ROI in 

the third variation, and the  

gammadion binary pattern is obtained which is termed as 

‘GBPST+CNN. The patterns are fused and fed to a simple 

CNN. We discuss the results obtained in the next section by 

comparing them with other state-of-the-art techniques.  

4.4 Results and Discussions 

Table 1 shows the identification results of different methods 

such as LBP, LDP, HOL, CR-Comp Code, PCA-net, VGG-

16, VGG-19, Alexnet with Raw Pixel + CNN,' GBP+CNN' 

and 'GBPST +CNN' on the IITD database. From the 

obtained results, one can see from Table 1 that the proposed 

'GBPST +CNN attains the maximum identification 

percentage of accuracy, precision, recall, and F-1 Score of 

98.42,0.97,0.97 and 0.96, respectively.  The accuracy of 

Gammadion based binary pattern with Shearlet 

transformation with CNN is improved by 2.3% and 0.2% as 

compared to Alex net and PCA-Net respectively. It is also 

observed that the accuracy improvement is approximately 

6% as compared to VGG-16 and VGG-19 models. 

Table 1.Performance metrics for IITD Dataset 

Sl 

no 

Method Preci

sion 

Recall F-1 

Scor

e 

accurac

y (%) 

1. LBP 0.91 0.92 0.92 92.81 

2. LDP 0.82 0.83 0.83 85.17 

3. HOL 0.92 0.94 0.93 95.90 

4. CR-Comp 

Code 

0.92 0.91 0.91 94.44 

5. PCA-Net 0.94 0.96 0.95 98.23 

6. VGG-16 0.92 0.89 0.91 92.56 

7. VGG-19 0.91 0.90 0.91 92.25 

8. Alexnet 0.96 0.94 0.95 96.1 

9. Raw 

Pixels+ 

CNN 

0.91 0.90 0.91 91.8 

10

. 

GBP + 

CNN 

0.94 0.93 0.94 94.3 

11

. 

GBPST + 

CNN 

0.96 0.97 0.97 98.42 

In contrast, GBP with CNN achieves an accuracy 

percentage, precision, and F-1 score of 94.3,0.94,0.93, and 

0.94. The raw pixel with CNN achieves an accuracy 

percentage, precision, and F-1 score of 91.8,0.91,0.90, and 

0.91.  It is observed that the proposed methodology 

performs better as compared to other state-of-the-art 

techniques. 

 

Fig.3. Gammadion Pattern generated for different dataset ROI images 
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Table 2. Performance metrics for Tongji Dataset 

Sl 

no 

Method Precision Recall F-1 

Score 

accuracy 

(%) 

1. LBP 0.96 0.97 0.97 98.2 

2. LDP 0.94 0.93 0.94 95.18 

3. HOL 0.97 0.95 0.96 98.3 

4. CR-

Comp 

Code 

0.95 0.96 0.95 98.82 

5. PCA-

Net 

0. 97 0.95 0.96 98.65 

6. VGG-

16 

0.93 0.92 0.93 94.28 

7. VGG-

19 

0.90 0.92 0.90 94.22 

8. Alexnet 0.92 0.93 0.92 98.88 

9. Raw 

Pixels+ 

CNN 

0.92 0.91 0.91 94.12 

10. GBP + 

CNN 

0.94 0.95 0.95 96.53 

11. GBPST 

+ CNN 

0.98 0.94 0.96 99.22 

Table 2 shows the performance metric results of the 

proposed methodology for the Tonji palmprint dataset. The 

results clearly show that the proposed 'GBPST + CNN’ has 

the highest performance metrics with an accuracy 

percentage, precision, Recall and F-1 score of 

99.22,0.98,0.94 and 0.96, respectively. On the other hand, 

GBP+CNN performs short with an accuracy percentage, 

precision,Recall and F-1 score of 96.53,0.94, 0.95 and 0.95. 

The raw pixel with CNN achieves an accuracy percentage, 

precision, and F-1 score of 94.12,0.92,0.91, and 0.91. The 

proposed methodology outperforms the other state-of-the-

art techniques listed in table. 

Table 3 shows the performance metrics of the proposed 

approach for the PolyU-II dataset. It is apparent from the 

results that the GBPST+CNN method has an accuracy 

percentage, precision, recall, and F-1 score of 

99.45,0.95,0.94 and 0.96. It is noted that GBP+CNN has an 

accuracy percentage, precision, recall, and F-1 score of 

97.48,0.92,0.94 and 0.95. The raw pixel with CNN achieves 

an accuracy percentage, precision, and F-1 score of 

95.83,0.90,0.93, and 0.92.  It is apparent from the 

performance metrics that GBPST+CNN performs better 

than the other techniques, as listed in table 3. 

 

Table 3. Performance metrics for PolyU-2 Dataset 

Sl 

no 

Method Precision Recall F-1 

Score 

accuracy 

(%) 

1. LBP 0.95 0.96 0.94 98.9 

2. LDP 0.95 0.94 0.95 98.28 

3. HOL 0.94 0.96 0.95 98.21 

4. CR-

Comp 

Code 

0.96 0.97 0.97 98.11 

5. PCA-

Net 

0.95 0.96 0.96 98.78 

6. VGG-

16 

0.94 0.95 0.95 97.14 

7. VGG-

19 

0.93 0.94 0.94 96.04 

8. Alexnet 0.93 0.95 0.95 94.32 

9. Raw 

Pixels+ 

CNN 

0.90 0.93 0.92 95.83 

10. GBP + 

CNN 

0.92 0.94 0.95 97.48 

11. GBPST 

+ CNN 

0.95 0.94 0.96 99.45 

 

Table 4 lists the performance measures obtained for the 

proposed technique with the CASIA Palmprint dataset. It is 

observed that GBPSC+CNN has a maximum identification 

performance with accuracy percentage, precision, recall, 

and F-1 score of 98.17,0.98,0.94.96, respectively. It is noted 

that GBP+CNN has an accuracy percentage, precision, 

recall, and F-1 score of  96.85,0.94.0.97 and 0.96.  

Table 4. Performance metrics for CASIA Dataset 

Sl 

no 

Method Precision Recall F-1 

Score 

accuracy 

(%) 

1. LBP 0.94 0.96 0.95 97.3 

2. LDP 0.91 0.93 0.92 97.91 

3. HOL 0.94 0.95 0.95 97.96 

4. CR-Comp 

Code 

0.94 0.92 0.93 96.33 

5. PCA-Net 0.96 0.93 0.95 98.37 

6. VGG-16 0.91 0.89 0.90 92.14 

7. VGG-19 0.92 0.92 0.92 92.16 
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8. Alexnet 0.91 0.92 0.92 92.73 

9. Raw 

Pixels+ 

CNN 

0.92 0.93 0.93 93.64 

10. GBP + 

CNN 

0.94 0.97 0.96 96.85 

11. GBPST + 

CNN 

0.98 0.94 0.96 98.17 

 

The raw pixel with CNN achieves an accuracy percentage, 

precision, and F-1 score of 93.64,0.92,0.93, and 0.93 It can 

be seen that GBPST+CNN produces better results than the 

other state-of-the-art techniques listed in table 4.The overall 

improvement in accuracy of  proposed 'GBPST + CNN’ in 

the case of CASIA dataset is 5.13% and 0.67% respectively 

as compared to the Alex-net and PCA-net respectively. 

Further it is observed clearly that  proposed methodology 

outperformces the state of art technqies such as LBP, LDP, 

HOL, CR-CompCode, PCA-net, VGG-16,VGG-19 and 

Alexnet. 

5. Conclusion and future work 

We have proposed a texture-based approach for Palmprint 

recognition. In this approach, a Gammadion Binary Pattern 

of Shearlet coefficients are proposed and implemented. It is 

suitable for high or low-resolution Palmprint images. 

Experimental results show that the proposed approach 

yields better classification accuracy and has relatively high 

robustness to the variations of orientation, position, and 

illumination. Extensive experimentation is carried out on 

four publicly available standard Palmprint databases. 

Comprehensive experiments have been undertaken to 

evaluate the system's performance, and the test results 

confirm the efficacy of the proposed technique, which can 

produce a good result. In the future, the Gabor filter instead 

of Shearlet can be used and compared to find the efficiency 

of the methods. 
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