

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 298

Enhancing Testing Efficiency through the Implementation of an Optimal Test

Automation Framework Selection Model

Geetika Singh1, Jitendra Choudhary2, Lokesh Kumar Laddhani3

Submitted: 26/04/2023 Revised: 25/06/2023 Accepted: 05/07/2023

Abstract: Selecting the best automation testing framework from a diverse range of approaches poses a significant challenge, as the

available selection schemes fail to produce substantial results when multiple testing scenarios with varying functional requirements are

present. In this paper, the authors present the Quality Assurance (QA) aware algorithm and an Optimal Test Automation Framework

Selection (OTAFS) model, which consider QA parameters for selecting the optimal automation testing framework. The reliability,

throughput and execution time of the selected framework are identified as the most efficient parameters. The study discusses the results

of QA parameter values for the selected automation frameworks, which are implemented using Python and Selenium platform is used to

create test cases. The proposed model and algorithm is experimentally evaluated on an e-commerce website, and a comparative analysis

of the results is provided with QA parameter values of different automation testing frameworks.

Keywords: Quality Assurance, Test Automation Framework, Automation Tools, Test Cases, Test Suite.

1. Introduction

The rapid adoption of digital technologies is causing

significant disruptions and digitization, fundamentally

changing the world. In this new landscape, speed plays

a crucial role in all IT operations, necessitating a

paradigm shift in quality assurance (QA) practices [1].

The ability to deliver high-quality products at a faster

pace has become the primary focus of digital assurance

and organization want to deliver quality products much

faster than ever before. This is making QA teams to

bank on test automation. Various advancements have

evolved in the area of automation testing. However,

with advancements in automation testing, it is essential

for organizations to choose the right automation

framework [2], as it is a critical factor for success.

Since, each project is unique, presenting its own set of

challenges, duration, and tool requirements. To achieve

agility in their business processes, organizations need a

robust test automation solution that ensures superior

software quality. Therefore, successful test automation

frameworks for digital assurance not only prioritize the

functional aspects of the project but also consider QA

attributes.

QA is an additional aspect that encompasses non-

functional properties, ensuring that automated tests

accurately and reliably verify the expected functionality

of the software application [3],[4]. However, if QA

parameters are not carefully defined, automated tests

may produce false positives or false negatives, resulting

in inaccurate test results and undermining the credibility

of the testing process. The effectiveness of test

automation frameworks heavily relies on evaluating QA

parameters. Several important QA parameters, such as

reliability, throughput, test report results, execution time,

and portability, play a significant role in ensuring the

quality and performance of automated testing

procedures. This paper aims to explore how different QA

parameters impact the selection of the right framework,

ultimately helping organizations achieve their digital

assurance goals. The proposed model will recommend an

automation framework that leads to smarter automation,

better overall results, productivity benefits, and cost-

effectiveness in the dynamic digital landscape. The paper

is organized as follows: Section 2 describes some

available testing framework selection approaches.

section 3 gives an overview design of proposed system

architecture and defines mechanism. Section 4 describes

the proposed algorithm for QA evaluation. Section 5

provides the details of implementation, experimentation

and discussion. Section 6 describes the conclusion and

future scope.

2. Related Work

Some approaches and algorithms have been proposed for

the dynamic selection of test automation framework.

There are selection scheme of testing framework that

1Research Scholar, Department of Computer Science, Medi-Caps

University, Indore Madhya Pradesh,

geetika.singh3@gmail.com

2Associate Professor, Department of Computer Science, Medi-Caps

University, Indore Madhya Pradesh,

jitendra.choudhary@medicaps.ac.in

3Assistant Lecturer, Institute of Computer Science, Vikram University,

Ujjain, Madhya Pradesh,

lokesh.laddhani@gmail.com

mailto:pnegi@gehu.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 299

considers different parameters such as functionality,

technology, data environment, cost and scalability.

An existing literature evaluated testing tools focusing on

identifying the quality parameters that aid to achieve

usability, correctness and robustness in the application

under test and provides support for quality assurance [5].

Xu.D et al. [6] have presented an automated test

generation technique Model-based Integration and

System Test Automation (MISTA) for integrated

functional and security testing. It generate executable test

with respect to a variety of coverage criteria of test

models to enhance quality.

Brochi et al. [7] compared one open source testing tool

with a commercial tool on the basis of quality assurance

metrics like testability, learnability and supportability

and deduced that Selenium is better. Huang et al. [8]

proposed an efficient service selection scheme to help

service requester choose Web services by considering

non functional characteristics. They presented QOS

model of Web service, it consider different data types

and uses Multiple Criteria Decision Making (MCDM)

technique to help service requester evaluate service

numerically. It facilitates dynamic adaptable

composition.

Dobslaw F. et al. [9] presented a manual replay method

for ROI estimation for the Automated GUI Testing

(AGT) frameworks and compared two fundamentally

different AGT frameworks, namely Selenium and

EyeAutomate and investigate difference between the two

testing framework. ROI is also compared to manual

testing, and here defect finding capabilities and usability

are also reported. Miranda B. et al. [10] proposed a

FAST technique that provides scalable similarity based

test case prioritization in both white box and black box

testing. The simulation study of scalability showed that

FAST technique can prioritize a million test cases in less

than 20 minutes. It helped to scale up the industry

demand.

Winkler et al. [11] presents a flexible Test Automation

Framework (TAF) based on Behavior-Driven Testing,

which enables continuous integration and testing for

control code variants in Production Systems Engineering

(PSE). The framework uses Abstract Syntax Tree (AST)

for human-based verification and validation and is

evaluated using an Industry 4.0 Testbed. The results

show that the TAF concept supports flexible

configurations of testing tool chains and can support

human-based verification and validation of control code

variants. Elberzhager et al. [12] shows the systematic

mapping study aims to identify existing approaches that

can reduce testing effort and provide an overview for

researchers and practitioners. The study found an

increased interest in this topic in recent years, with

automation and prediction approaches receiving the most

attention. Some input reduction approaches were also

identified, but only a small number of approaches

combine early quality assurance activities with testing to

reduce test effort. The study highlights the need for

future research in this area to address the ongoing

challenge of reducing test effort

Borg et al. [13] This paper discusses the use of AI-

enabled conversational agents for language practice,

specifically in the context of virtual job interviews. The

authors present ongoing action research aimed at quality

assurance of generative dialog models and describe a set

of requirements and corresponding automated test cases.

Results show that some test case designs can detect

meaningful differences between candidate models. The

paper offers initial steps towards an automated

framework for machine learning model selection in the

context of conversational agents, with future work

focusing on model selection in an MLOps setting. Yu et

al. [14] presents SimRT, an automated regression testing

framework for detecting data races introduced by code

modifications in concurrent programs. SimRT uses a

regression test selection technique to reduce the number

of test cases that must be run and a test case

prioritization technique to improve the detection rate of

such races. The empirical study of SimRT shows that it

is more efficient and effective for detecting races than

other approaches, and both its test selection and

prioritization components contribute to its performance

Shahamiriet al.[15] proposes an automated test oracle

framework to address output-domain generation, input

domain to output domain mapping, and comparator

challenges. The proposed approach uses I/O Relationship

Analysis to generate the output domain automatically

and Multi-Networks Oracles based on artificial neural

networks to handle the second challenge. The last

challenge is addressed using an automated comparator.

The proposed approach was evaluated using an industry

strength case study, which was injected with faults, and

the results showed that the proposed approach automated

the oracle generation process 97% in this experiment.

The accuracy of the proposed oracle was up to 98.26%,

and the oracle detected up to 97.7% of the injected faults.

Salariet al.[16] addresses the problem of choosing a

suitable test automation framework for testing software

on Programmable Logic Controllers (PLCs) used in

industrial control systems. The authors focus on the

popular COntrollerDEvelopmentSYStem (CODESYS)

development environment and explore its supported test

automation frameworks. They identify 29 different

criteria for evaluating these frameworks, validate them

with an industry practitioner, and compare the resulting

frameworks in an industrial case study. The study shows

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 300

that CODESYS Test Manager and CoUnit are the most

frequently mentioned frameworks in the grey literature

review results. The paper aims to increase knowledge in

automated testing of PLCs and assist researchers and

practitioners in selecting the right framework for test

automation in an industrial context.

Lukasczyk et al. [17] Pynguin is a test-generation

framework designed for dynamically-typed

programming languages like Python. The tool aims to

reduce the effort of writing tests manually by generating

regression tests with high code coverage. Pynguin is

designed to be easily usable by practitioners and can be

extended to adapt to researchers' needs for future

research. The paper highlights the need for tools and

research on test generation for dynamically-typed

languages, as they have gained significant popularity

over the last decade. The authors provide a demo of

Pynguin and make the tool, documentation, and source

code available on their website. Overall, the paper

presents a valuable contribution to the field of test-

generation, addressing the gap in research and practice

for dynamically-typed languages like Python.

Lukasczyket al.[18] This paper extends previous work on

PYNGUIN to support more aspects of the Python

language and evaluates various state-of-the-art test-

generation algorithms. The results demonstrate that

evolutionary algorithms can outperform random test

generation in the context of Python and that DynaMOSA

yields the highest coverage results, but fundamental

issues remain, such as inferring type information for

code without this information. Regression assertions

were also generated and evaluated in the improved

PYNGUIN tool.

Thörnet al.[19] This case study explores how strategies

from safety-critical development can enhance quality

assurance for a test framework in an agile, non-safety

development context. The study identifies candidate

solutions to quality assurance and divides them into four

aspects. The importance of perceiving a test framework

as a tool-chain, with sub-tools analyzed for applicable

measures, is emphasized. Additionally, sub-tools can be

classified on an individual basis and confidence argued

as the sum of applied measures throughout the

framework. The study offers insights for improving the

quality of embedded systems through test framework

risk mitigation.

Prasetya et al. [20] proposes an agent-based approach for

robust automated testing in modern computer games.

The proposed approach is based on the reasoning type of

AI to address challenges such as huge interaction spaces,

non-deterministic environments, and changing layouts

and game logic. The approach is designed to maintain

test robustness, which is lacking in existing game testing

approaches. The paper presents a case study to validate

the proposed approach and demonstrates its effectiveness

in improving the reliability and efficiency of game

development through automated testing.

The literature has highlighted several concerns that need

to be addressed, including the absence of

experimentation on an actual application, deficient

quality assurance attributes, an unreliable environment,

and the imperative to enhance efficiency while reducing

complexity. To overcome these issues, a solution has

been proposed that encompasses the identified

challenges. The approach involves incorporating various

quality assurance (QA) attributes, such as reliability,

throughput, portability, execution time, and cost, to

evaluate and compare frameworks effectively. The

proposed model has been successfully tested on an e-

commerce website and can be customized to meet the

unique requirements of different projects and testing

environments. Moreover, the solution is adaptable,

scalable, and versatile.

3. Proposed Optimal Test Automation

Framework Selection Model

We have considered an e-commerce website to select

automation testing framework. This model selects a

framework among existing frameworks for test case

execution. An optimal framework is selected for

different number of test cases with respect to the

computed values of QA parameters. Following

subsections describes the overview of adopted

methodology and gives the system architecture of the

proposed model.

3.1 An Overview of Proposed Model

Choosing an appropriate automation framework is a

critical aspect of ensuring that it can seamlessly

incorporate various automation testing technologies and

keep up with changes in the application being tested.

Such a framework can be leveraged across projects

within an organization and yield significant return on

investment [21]. However, selecting the right framework

for the entire testing process is a complex issue [22], and

requires effective integration of different Quality

Assurance (QA) parameters. The Optimal Test

Automation Framework Selection (OTAFS) model

provides an improved selection approach and enhances

the performance of the testing process. This model

utilizes a filtration strategy that drives the search based

on the computed QA parameters of the automation

framework, which enables better decision making during

the selection process.

3.2 System Architecture

Fig. 1 presents the system architecture of the Optimal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 301

Test Automation Framework Selection (OTAFS) model.

The model is the combination of different modules such

as Input module, Framework Repository, Evaluation

Engine, Ranking Module, Output Module and

Integration Module.

Fig. 1 Optimal Test Automation Framework Selection (OTAFS) Model

A detailed description of each module is as follows:

Input Module: The Input Module helps in enabling users

to furnish input data for the tests that are being executed.

This input may take the form of user inputs, data

procured from databases or files. Typically, this module

offers users a structured approach to specifying input

data, such as through an XML file or via a programming

interface like an API or a command line interface.

Furthermore, it offers a mechanism to seamlessly read

input data and transmit it to the testing framework for

execution. In the context of an e-commerce website, this

module helps in enabling users to provide input data that

reflects the real-world scenarios and user behaviors that

the website is designed to handle. This input data may

include product information, order details, customer

information, and other relevant data that is essential to

the functioning of the website. The Input Module enables

the testing framework to simulate these real-world

scenarios, helping to identify any potential issues or

errors that may arise in the system. This module

facilitates the collection of user input to drive testing

processes, thereby enabling the provision of optimal user

experiences.

Framework Repository: The Framework Repository

represents a centralized storehouse of crucial information

pertaining to the array of available testing frameworks.

This repository encapsulates critical details concerning

framework features and their compatibility with various

platforms and programming languages. Developers can

leverage this repository to readily access and evaluate

diverse testing frameworks, and compare their features

and capabilities through specific testing requirements.

This helps to ensure that the testing process is optimized

for maximum efficiency and effectiveness, leading to

better overall project outcomes.

In our repository, we have identified four popular testing

frameworks, including Keyword-Driven, Data-Driven,

Test Data Driven and Hybrid frameworks. Each of these

frameworks has its own unique features and capabilities,

making them suitable for different types of testing

scenarios. The Framework Repository provides a

detailed overview of these frameworks, enabling

developers to evaluate their suitability for their specific

testing needs.

Evaluation Engine: The Evaluation Engine compares

and evaluates diverse testing frameworks based on

Quality Assurance (QA) parameters specified with the

help of the proposed algorithm. This engine scrutinizes

each framework based on the QA criteria, such as

reliability, throughput, execution time, cost, and

portability. It assigns scores to each testing framework

against the predefined QA criteria to determine how well

each framework aligns with the needs of the project. The

Evaluation Engine serves as a powerful tool for

facilitating informed decision-making by project

stakeholders regarding the most suitable testing

framework for the project at hand. It enables project

teams to choose the optimal testing framework, which

can have a significant impact on the effectiveness and

efficiency of the testing process.

Ranking Module:This module takes into consideration

the diverse QA attributes evaluated by the Evaluation

Engine, such as reliability, throughput, execution time,

cost, and portability. Based on this assessment, the

Ranking Module generates a comprehensive ranking that

outlines the strengths and weaknesses of each testing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 302

framework. The ranking provides project stakeholders

with an insightful and data-driven perspective on the

suitability of each framework. It serves as a valuable

phase for making informed decisions about the most

appropriate testing framework to use in a given project,

based on the values of QA parameters.

Output Module: The Output Module is a key component

that provides users with critical information about the

results of the evaluation process, including the ranking of

the testing frameworks and individual scores for each

criterion. This module generates a comprehensive report

that details the tests that passed, failed, or were skipped,

along with additional information such as the duration of

each test, any error messages that were generated, and a

summary of the overall test results. The Output Module

plays an essential role in facilitating effective decision-

making by project stakeholders, who can use the report

to gain valuable insights into the strengths and

weaknesses of the testing frameworks under

consideration. Additionally, the Output Module allows

for the export of results, enabling further analysis and

sharing with other relevant stakeholders. This feature

empowers project teams to identify areas for

improvement, make necessary adjustments, and optimize

the testing process for better outcomes.

Integration Module: The Integration Module enables

seamless integration with diverse testing tools such as

Test Automation and Management tools. This integration

ensures that the selected testing framework can be

readily integrated with the existing testing infrastructure,

thereby enhancing the overall efficiency and

effectiveness of the testing process. The Integration

Module also tests the integration between different

components or modules of the system, enabling project

teams to assess how different parts of the system work

together to achieve the intended functionality. Through

this testing, the Integration Module helps to identify any

potential issues or inconsistencies that may arise in the

system, allowing for timely corrective action to be taken.

4. Proposed QA Evaluation Algorithm for

OTAFS Model

This section describes the algorithm. The algorithm

computes [23] the values of QA parameters which aids

in finding the optimal test automation framework.

Let us assume T is the list of test suites for which QA

parameters needs to be evaluated for different test

automation frameworks. The testing tool is selected

according to the application and testers preferences. In

our study we have selected Selenium [24] as the testing

tool for the execution of test cases. This algorithm will

help in finding the optimal testing framework according

to the values of QA parameters evaluated. This

algorithm will aid in searching and optimizing the

appropriate testing framework by the OTAFS model.

4.1 Optimal Automation testing framework selection algorithm:

Input: List of Test cases t = {t1, t2,t3,……,tn} for each test suite T, testing tool according to application and practitioner’s

preference

Output: Optimum Test Automation Framework selected for each test suit T.

// Find the testing tool.

/* We have selected Selenium for execution of test cases in our previous study*/

For each test suite T do

{

 Fort each testsuiteurl do

{

Result[] = invokerbean(select testing tool, testsuiteurl)

// QA calculation phase

Calculation of Reliability

Calculation of Probability

Calculation of Execution Time

Calculation of Throughput

Calculation of Cost

// Normalization phase

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 303

// Normalize the resultant QA

/* Select the Test Automation Framework which is optimum for each Test suite T*/

}

}

5. Implementation and Experimental

Evaluation

This section constitutes the description of tools and

technologies used to implement the proposed approach.

Further, experiment has been performed to evaluate the

proposed OTAFS approach based on different QA

parameters. Next, the evaluation of computational values

of QA parameters is analyzed and ranked.

5.1 Implementation Details

Optimal Test Automation Framework Selection

(OTAFS) is implemented on Python Platform. A demo

website (http://www.saucedemo.com) and four

frameworks are used to test the proposed approach over

the dataset of varying test cases i.e. 48 and 98. These test

cases are executed to evaluate the value of QA

parameters. The approach is programmed on following

specification -Packages {"pluggy": "1.0.0", "pytest":

"7.0.1"}, Platform macOS-11.6-x86_64-i386-64bit,

Plugins {"html": "3.2.0", "metadata": "2.0.4"}, Python

3.9.15. Table -1 and 2 shows the performance measures

based different QA criteria.

5.2 Performance Metrics

The proposed model has been evaluated in terms of

Quality Assurance (QA) parameters for selecting a Test

Automation Framework. These attributes [23] are

significant for successful implementation of Test

Automation Framework. The mathematical

representation and description of the metrics chosen are

as follows:

Reliability: It is measured using a metric called Rel (F),

which represents the probability that a test is correctly

executed by the testing framework and that the

framework handles all the exceptions within an expected

time period.

 Rel (F) = P(F) / T (F)

where, P(F) represents the probability that the testing

framework will execute a test correctly without

encountering any errors or exceptions. T (F) represents

the expected time period within which the framework

should handle any exceptions or errors that occur during

the test execution process.

Execution Time: The test execution time reporting metric

represents the number of successful test cases executed

by the framework for a particular amount of invocation.

This metric is denoted by Ext.

 Ext = Nsuc (F)

where, Nsuc (F) represents the total number of

successful test cases executed by the testing framework

for a particular amount of invocation.

Throughput: It is calculated as the ratio of the total

number of test data generated by the framework to the

time it takes to execute them.

Ttp(F) = Ntd(F) / Tinv(F)

where,Ntd(F) represents the total number of test data

generated by the framework and Tinv(F) is the total time

taken to execute these test data.

Probability: The portability metric for a test framework

is determined by the number of handled requests from

various team members who use different platforms, such

as Windows, Mac, or Linux, in a specific time period. A

framework that can be easily ported across multiple

platforms is highly desirable as it allows for a wider user

base and can save time and resources.

The portability P(F) of a test framework is a qualitative

parameter. A higher portability score indicates that the

framework is easily portable and can function efficiently

on different platforms. A low portability score may

indicate that the framework may require additional

resources and time to be deployed on different platforms,

which can impact the testing process and the overall

project timeline.

Execution Cost: The cost of executing a test automation

framework refers to the financial expenses incurred in

implementing the framework. The cost may vary

depending on the type of framework utilized or

developed. It may involve the cost of tools, licenses,

hardware, and personnel. The cost can be measured by

assessing the expenses required to maintain and operate

the framework over a specified time period. It is crucial

to consider the cost of implementing and maintaining a

framework to ensure that the return on investment is

worthwhile.

The cost function can be represented as Tcost(F).

5.3 Performance Measure

The given situation entails a comprehensive end-to-end

testing of an e-commerce website, which involves

thorough testing of every component, including input

http://www.saucedemo.com/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 304

boxes, buttons, and other elements, to ensure their

desired functionality. To achieve this, we have devised

four distinct testing frameworks, namely Keyword

Driven, Data Driven, Test Driven, and Hybrid, each

utilizing the Python language and tailored to evaluate

different aspects of the website's performance.

To ensure seamless execution of the test cases across

these testing frameworks, we initially crafted a set of

different number of test cases for each suite, aiming to

encompass the entire website's functionality and

logically organize them for easy management and

maintenance. The Selenium automation testing tool [24]

was utilized to evaluate these test suites on various

testing frameworks, each having a different set of tools

and utilities for organizing and running the tests.

Upon completion of the testing process, the evaluation

engine generated a comprehensive test report based on

the QA attribute values evaluated by the proposed QA

evaluation algorithm, providing a detailed assessment of

the effectiveness of each testing framework. The ranking

module was then employed to rank these frameworks

based on their suitability to the project's overall

requirements. The most effective testing framework was

selected by comparing the scores of each framework,

thereby providing a robust and scalable testing solution

for the Application under Test (AUT). Following the

selection of the most effective testing framework, the

application underwent real testing to ensure its seamless

functionality. The utilization of this comprehensive

testing process provides an efficient and reliable solution

for evaluating the website's performance and ensuring its

smooth operation.

Table 1. Performance measure based on QA attributes where Test cases t1= 48

Quality Assurance

Parameters

Number of Test Cases = 48

Keyword

Driven
Data Driven Test Driven Hybrid

Reliability 40 30 40 49

Execution Time (in

min)
7.266 8 8.66 4.33

Throughput 5.505 3.75 4.619 11.316

Portability High High High High

Fig 2. Graphical representation of QA attributes vs Testing Frameworks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 305

Table 2. Performance measure based on QA attributes where Test cases t2 = 98

Quality Assurance

Parameters

Number of Test Cases = 98

Keyword

Driven
Data Driven Test Driven Hybrid

Reliability 80 62 85 97

Execution Time (in min) 14.533 16 17.333 8.667

Throughput 5.505 3.875 4.904 11.192

Portability High High High High

Fig 3. Graphical representation of QA attributes vs Testing Frameworks

In the evaluation process, we have identified reliability,

throughput, and execution time as the critical parameters

that significantly impact the automation framework's

performance, especially with varying numbers of test

cases. Hence, it is imperative to consider these

parameters to ensure the quality and efficacy of the test

automation framework.

To gain a better understanding of the performance of the

different testing frameworks under varying numbers of

test cases, we analyzed and compared their performance

using a graphs represented in Fig. 2 & 3. The results

from this analysis clearly indicate that the Hybrid

framework outperforms the other frameworks based on

the evaluated values of various QA parameters obtained

from implementation the proposed algorithm.

These observations validate the importance of choosing a

suitable testing framework that provides optimum

reliability, high throughput, and efficient execution time,

especially when the number of test cases varies.

Therefore, it is crucial to consider these parameters while

selecting a testing framework to ensure optimal

performance and quality of the automation process.

6. Conclusion

The proposed algorithm and model offers a better

solution to the challenge of selecting an appropriate

automation testing framework. The Optimal Test

Automation Framework Selection (OTAFS) model was

implemented on an e-commerce website and its

performance was evaluated using various Quality

Assurance (QA) parameters, such as reliability,

execution time, probability, throughput, and execution

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 306

cost, across a dataset of test cases with the help of

proposed algorithm. The results indicate that the

proposed model is effective and efficient in determining

the performance of existing testing frameworks.

Moreover, the evaluation revealed that the Hybrid

framework performed the best among the evaluated

options. To further enhance this research, the OTAFS

model could be expanded to include additional QA

attributes and be evaluated on a broader range of

automation testing frameworks. Overall, this study

provides valuable insights into the effective selection of

automation testing frameworks, and could greatly benefit

organizations seeking to improve their testing processes.

References

[1] Tripathy, P., & Naik, K. (2011). Software testing

and quality assurance: theory and practice. John

Wiley & Sons.

[2] Amaricai, S., & Constantinescu, R. (2014).

Designing a software test automation framework,

Informatica Economica, 18(1), 152.

[3] Lin, Y. D., Rojas, J. F., Chu, E. T. H., & Lai, Y. C.

(2014). On the accuracy, efficiency, and reusability

of automated test oracles for android devices. IEEE

Transactions on Software Engineering, 40(10), 957-

970.

[4] Umar, M. A., &Zhanfang, C. (2019). A study of

automated software testing: Automation tools and

frameworks. International Journal of Computer

Science Engineering (IJCSE), 6, 217-225.

[5] Anjum, H., Babar, M. I., Jehanzeb, M., Khan, M.,

Chaudhry, S., Sultana, S., ... & Bhatti, S. N. (2017).

A comparative analysis of quality assurance of

mobile applications using automated testing tools.

International Journal of Advanced Computer

Science and Applications, 8(7).

[6] Xu, D., Xu, W., Kent, M., Thomas, L., & Wang, L.

(2014). An automated test generation technique for

software quality assurance. IEEE transactions on

reliability, 64(1), 247-268.

[7] Brohi, A. B., Butt, P. K., & Zhang, S. (2019).

Software Quality Assurance: Tools and Techniques.

In Security, Privacy, and Anonymity in

Computation, Communication, and Storage:

SpaCCS 2019 International Workshops, Atlanta,

GA, USA, July 14–17, 2019, Proceedings 12 (pp.

283-291). Springer International Publishing.

[8] Huang, A. F., Lan, C. W., & Yang, S. J. (2009). An

optimal QoS-based Web service selection scheme,

Information Sciences, 179(19), 3309-3322.

[9] Dobslaw, F., Feldt, R., Michaëlsson, D., Haar, P., de

Oliveira Neto, F. G., &Torkar, R. (2019, October).

Estimating return on investment for gui test

automation frameworks. In 2019 IEEE 30th

International Symposium on Software Reliability

Engineering (ISSRE) (pp. 271-282). IEEE.

[10] Miranda, B., Cruciani, E., Verdecchia, R.,

&Bertolino, A. (2018, May). FAST approaches to

scalable similarity-based test case prioritization. In

Proceedings of the 40th International Conference on

Software Engineering (pp. 222-232).

[11] Winkler, D., Meixner, K., & Novak, P. (2019).

Efficient and flexible test automation in production

systems engineering. Security and Quality in Cyber-

Physical Systems Engineering: With Forewords by

Robert M. Lee and Tom Gilb, 227-265.

[12] Elberzhager, F., Rosbach, A., Münch, J., &

Eschbach, R. (2012). Reducing test effort: A

systematic mapping study on existing approaches.

Information and Software Technology, 54(10),

1092-1106.

[13] Borg, M., Bengtsson, J., Österling, H., Hagelborn,

A., Gagner, I., & Tomaszewski, P. (2022, May).

Quality assurance of generative dialog models in an

evolving conversational agent used for Swedish

language practice. In Proceedings of the 1st

International Conference on AI Engineering:

Software Engineering for AI (pp. 22-32).

[14] Yu, T., Srisa-an, W., &Rothermel, G. (2014, May).

SimRT: An automated framework to support

regression testing for data races. In Proceedings of

the 36th International Conference on Software

Engineering (pp. 48-59).

[15] Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S.,

& Hashim, S. Z. M. (2011). An automated

framework for software test oracle. Information and

Software Technology, 53(7), 774-788.

[16] Salari, M. E., Enoiu, E. P., Afzal, W., &Seceleanu,

C. (2022, April). Choosing a Test Automation

Framework for Programmable Logic Controllers in

CODESYS Development Environment. In 2022

IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW)

(pp. 277-284). IEEE.

[17] Lukasczyk, S., & Fraser, G. (2022, May). Pynguin:

Automated unit test generation for python. In

Proceedings of the ACM/IEEE 44th International

Conference on Software Engineering: Companion

Proceedings (pp. 168-172).

[18] Lukasczyk, S., Kroiß, F., & Fraser, G. (2023). An

empirical study of automated unit test generation for

Python. Empirical Software Engineering, 28(2), 36.

[19] Thörn, J., Strandberg, P. E., Sundmark, D., & Afzal,

W. (2022). Quality assuring the quality assurance

tool: applying safety-critical concepts to test

framework development. PeerJ Computer Science,

8, e1131.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 | 307

[20] Shirzadehhajimahmood, S., Prasetya, I. S. W. B.,

Dignum, F., Dastani, M., & Keller, G. (2021,

August). Using an agent-based approach for robust

automated testing of computer games. In

Proceedings of the 12th International Workshop on

Automating TEST Case Design, Selection, and

Evaluation (pp. 1-8).

[21] Graham, D. (2010). ROI of test automation: benefit

and cost. Professionaltester. com, November, 2010.

[22] Shahin, M., Babar, M. A., & Zhu, L. (2017).

Continuous integration, delivery and deployment: a

systematic review on approaches, tools, challenges

and practices. IEEE access, 5, 3909-3943.

[23] Singh, G., Choudhary, J., Laddhani, L. (2023) : An

Optimal Selection Scheme for Automation Testing

Framework with Quality Assurance. Grenze

International Journal of Engineering and

Technology, Volume 9, No. 1,p. 2935-2940

https://thegrenze.com ISSN(Online): 2395-5295,

ISSN(Print): 2395-5287.

[24] Singh, G., Choudhary, J., Laddhani, L. (2022):

Taxonomic Analysis of DevOps Tools. JOURNAL

OF ALGEBRAIC STATISTICS Volume 13, No. 3,

p. 2725-2731 https://publishoa.com ISSN: 1309-

3452.

[25] Paigude, S. ., Pangarkar, S. C. ., Hundekari, S. .,

Mali, M. ., Wanjale, K. ., & Dongre, Y. . (2023).

Potential of Artificial Intelligence in Boosting

Employee Retention in the Human Resource

Industry. International Journal on Recent and

Innovation Trends in Computing and

Communication, 11(3s), 01–10.

https://doi.org/10.17762/ijritcc.v11i3s.6149

[26] Mr. Rahul Sharma. (2013). Modified Golomb-Rice

Algorithm for Color Image Compression.

International Journal of New Practices in

Management and Engineering, 2(01), 17 - 21.

Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/13

