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Abstract: Selecting the best automation testing framework from a diverse range of approaches poses a significant challenge, as the 

available selection schemes fail to produce substantial results when multiple testing scenarios with varying functional requirements are 

present. In this paper, the authors present the Quality Assurance (QA) aware algorithm and an Optimal Test Automation Framework 

Selection (OTAFS) model, which consider QA parameters for selecting the optimal automation testing framework. The reliability, 

throughput and execution time of the selected framework are identified as the most efficient parameters. The study discusses the results 

of QA parameter values for the selected automation frameworks, which are implemented using Python and Selenium platform is used to 

create test cases. The proposed model and algorithm is experimentally evaluated on an e-commerce website, and a comparative analysis 

of the results is provided with QA parameter values of different automation testing frameworks. 
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1. Introduction 

The rapid adoption of digital technologies is causing 

significant disruptions and digitization, fundamentally 

changing the world. In this new landscape, speed plays 

a crucial role in all IT operations, necessitating a 

paradigm shift in quality assurance (QA) practices [1]. 

The ability to deliver high-quality products at a faster 

pace has become the primary focus of digital assurance 

and organization want to deliver quality products much 

faster than ever before. This is making QA teams to 

bank on test automation. Various advancements have 

evolved in the area of automation testing. However, 

with advancements in automation testing, it is essential 

for organizations to choose the right automation 

framework [2], as it is a critical factor for success. 

Since, each project is unique, presenting its own set of 

challenges, duration, and tool requirements. To achieve 

agility in their business processes, organizations need a 

robust test automation solution that ensures superior 

software quality. Therefore, successful test automation 

frameworks for digital assurance not only prioritize the 

functional aspects of the project but also consider QA 

attributes. 

QA is an additional aspect that encompasses non-

functional properties, ensuring that automated tests 

accurately and reliably verify the expected functionality 

of the software application [3],[4]. However, if QA 

parameters are not carefully defined, automated tests 

may produce false positives or false negatives, resulting 

in inaccurate test results and undermining the credibility 

of the testing process. The effectiveness of test 

automation frameworks heavily relies on evaluating QA 

parameters. Several important QA parameters, such as 

reliability, throughput, test report results, execution time, 

and portability, play a significant role in ensuring the 

quality and performance of automated testing 

procedures. This paper aims to explore how different QA 

parameters impact the selection of the right framework, 

ultimately helping organizations achieve their digital 

assurance goals. The proposed model will recommend an 

automation framework that leads to smarter automation, 

better overall results, productivity benefits, and cost-

effectiveness in the dynamic digital landscape. The paper 

is organized as follows:  Section 2 describes some 

available testing framework selection approaches. 

section 3 gives an overview design of proposed system 

architecture and defines mechanism. Section 4 describes 

the proposed algorithm for QA evaluation. Section 5 

provides the details of implementation, experimentation 

and discussion. Section 6 describes the conclusion and 

future scope. 

2. Related Work 

Some approaches and algorithms have been proposed for 

the dynamic selection of test automation framework. 

There are selection scheme of testing framework that 
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considers different parameters such as functionality, 

technology, data environment, cost and scalability. 

An existing literature evaluated testing tools focusing on 

identifying the quality parameters that aid to achieve 

usability, correctness and robustness in the application 

under test and provides support for quality assurance [5]. 

Xu.D et al. [6] have presented an automated test 

generation technique Model-based Integration and 

System Test Automation (MISTA) for integrated 

functional and security testing. It generate executable test 

with respect to a variety of coverage criteria of test 

models to enhance quality. 

Brochi et al. [7] compared one open source testing tool 

with a commercial tool on the basis of quality assurance 

metrics like testability, learnability and supportability 

and deduced that Selenium is better. Huang et al. [8] 

proposed an efficient service selection scheme to help 

service requester choose Web services by considering 

non functional characteristics. They presented QOS 

model of Web service, it consider different data types 

and uses Multiple Criteria Decision Making (MCDM) 

technique to help service requester evaluate service 

numerically. It facilitates dynamic adaptable 

composition. 

Dobslaw F. et al. [9] presented a manual replay method 

for ROI estimation for the Automated GUI Testing 

(AGT) frameworks and compared two fundamentally 

different AGT frameworks, namely Selenium and 

EyeAutomate and investigate difference between the two 

testing framework. ROI is also compared to manual 

testing, and here defect finding capabilities and usability 

are also reported. Miranda B. et al. [10] proposed a 

FAST technique that provides scalable similarity based 

test case prioritization in both white box and black box 

testing. The simulation study of scalability showed that 

FAST technique can prioritize a million test cases in less 

than 20 minutes. It helped to scale up the industry 

demand. 

Winkler et al. [11] presents a flexible Test Automation 

Framework (TAF) based on Behavior-Driven Testing, 

which enables continuous integration and testing for 

control code variants in Production Systems Engineering 

(PSE). The framework uses Abstract Syntax Tree (AST) 

for human-based verification and validation and is 

evaluated using an Industry 4.0 Testbed. The results 

show that the TAF concept supports flexible 

configurations of testing tool chains and can support 

human-based verification and validation of control code 

variants. Elberzhager et al. [12] shows the systematic 

mapping study aims to identify existing approaches that 

can reduce testing effort and provide an overview for 

researchers and practitioners. The study found an 

increased interest in this topic in recent years, with 

automation and prediction approaches receiving the most 

attention. Some input reduction approaches were also 

identified, but only a small number of approaches 

combine early quality assurance activities with testing to 

reduce test effort. The study highlights the need for 

future research in this area to address the ongoing 

challenge of reducing test effort 

Borg et al. [13] This paper discusses the use of AI-

enabled conversational agents for language practice, 

specifically in the context of virtual job interviews. The 

authors present ongoing action research aimed at quality 

assurance of generative dialog models and describe a set 

of requirements and corresponding automated test cases. 

Results show that some test case designs can detect 

meaningful differences between candidate models. The 

paper offers initial steps towards an automated 

framework for machine learning model selection in the 

context of conversational agents, with future work 

focusing on model selection in an MLOps setting. Yu et 

al. [14] presents SimRT, an automated regression testing 

framework for detecting data races introduced by code 

modifications in concurrent programs. SimRT uses a 

regression test selection technique to reduce the number 

of test cases that must be run and a test case 

prioritization technique to improve the detection rate of 

such races. The empirical study of SimRT shows that it 

is more efficient and effective for detecting races than 

other approaches, and both its test selection and 

prioritization components contribute to its performance 

Shahamiriet al.[15] proposes an automated test oracle 

framework to address output-domain generation, input 

domain to output domain mapping, and comparator 

challenges. The proposed approach uses I/O Relationship 

Analysis to generate the output domain automatically 

and Multi-Networks Oracles based on artificial neural 

networks to handle the second challenge. The last 

challenge is addressed using an automated comparator. 

The proposed approach was evaluated using an industry 

strength case study, which was injected with faults, and 

the results showed that the proposed approach automated 

the oracle generation process 97% in this experiment. 

The accuracy of the proposed oracle was up to 98.26%, 

and the oracle detected up to 97.7% of the injected faults.  

Salariet al.[16] addresses the problem of choosing a 

suitable test automation framework for testing software 

on Programmable Logic Controllers (PLCs) used in 

industrial control systems. The authors focus on the 

popular COntrollerDEvelopmentSYStem (CODESYS) 

development environment and explore its supported test 

automation frameworks. They identify 29 different 

criteria for evaluating these frameworks, validate them 

with an industry practitioner, and compare the resulting 

frameworks in an industrial case study. The study shows 
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that CODESYS Test Manager and CoUnit are the most 

frequently mentioned frameworks in the grey literature 

review results. The paper aims to increase knowledge in 

automated testing of PLCs and assist researchers and 

practitioners in selecting the right framework for test 

automation in an industrial context. 

Lukasczyk et al. [17] Pynguin is a test-generation 

framework designed for dynamically-typed 

programming languages like Python. The tool aims to 

reduce the effort of writing tests manually by generating 

regression tests with high code coverage. Pynguin is 

designed to be easily usable by practitioners and can be 

extended to adapt to researchers' needs for future 

research. The paper highlights the need for tools and 

research on test generation for dynamically-typed 

languages, as they have gained significant popularity 

over the last decade. The authors provide a demo of 

Pynguin and make the tool, documentation, and source 

code available on their website. Overall, the paper 

presents a valuable contribution to the field of test-

generation, addressing the gap in research and practice 

for dynamically-typed languages like Python. 

Lukasczyket al.[18] This paper extends previous work on 

PYNGUIN to support more aspects of the Python 

language and evaluates various state-of-the-art test-

generation algorithms. The results demonstrate that 

evolutionary algorithms can outperform random test 

generation in the context of Python and that DynaMOSA 

yields the highest coverage results, but fundamental 

issues remain, such as inferring type information for 

code without this information. Regression assertions 

were also generated and evaluated in the improved 

PYNGUIN tool. 

Thörnet al.[19] This case study explores how strategies 

from safety-critical development can enhance quality 

assurance for a test framework in an agile, non-safety 

development context. The study identifies candidate 

solutions to quality assurance and divides them into four 

aspects. The importance of perceiving a test framework 

as a tool-chain, with sub-tools analyzed for applicable 

measures, is emphasized. Additionally, sub-tools can be 

classified on an individual basis and confidence argued 

as the sum of applied measures throughout the 

framework. The study offers insights for improving the 

quality of embedded systems through test framework 

risk mitigation.  

Prasetya et al. [20] proposes an agent-based approach for 

robust automated testing in modern computer games. 

The proposed approach is based on the reasoning type of 

AI to address challenges such as huge interaction spaces, 

non-deterministic environments, and changing layouts 

and game logic. The approach is designed to maintain 

test robustness, which is lacking in existing game testing 

approaches. The paper presents a case study to validate 

the proposed approach and demonstrates its effectiveness 

in improving the reliability and efficiency of game 

development through automated testing. 

The literature has highlighted several concerns that need 

to be addressed, including the absence of 

experimentation on an actual application, deficient 

quality assurance attributes, an unreliable environment, 

and the imperative to enhance efficiency while reducing 

complexity. To overcome these issues, a solution has 

been proposed that encompasses the identified 

challenges. The approach involves incorporating various 

quality assurance (QA) attributes, such as reliability, 

throughput, portability, execution time, and cost, to 

evaluate and compare frameworks effectively. The 

proposed model has been successfully tested on an e-

commerce website and can be customized to meet the 

unique requirements of different projects and testing 

environments. Moreover, the solution is adaptable, 

scalable, and versatile. 

3. Proposed Optimal Test Automation 

Framework Selection Model 

We have considered an e-commerce website to select 

automation testing framework. This model selects a  

framework among existing frameworks for test case 

execution. An optimal framework is selected for 

different number of test cases with respect to the 

computed values of QA parameters. Following 

subsections describes the overview of adopted 

methodology and gives the system architecture of the 

proposed model. 

3.1 An Overview of Proposed Model 

Choosing an appropriate automation framework is a 

critical aspect of ensuring that it can seamlessly 

incorporate various automation testing technologies and 

keep up with changes in the application being tested. 

Such a framework can be leveraged across projects 

within an organization and yield significant return on 

investment [21]. However, selecting the right framework 

for the entire testing process is a complex issue [22], and 

requires effective integration of different Quality 

Assurance (QA) parameters. The Optimal Test 

Automation Framework Selection (OTAFS) model 

provides an improved selection approach and enhances 

the performance of the testing process. This model 

utilizes a filtration strategy that drives the search based 

on the computed QA parameters of the automation 

framework, which enables better decision making during 

the selection process. 

3.2 System Architecture 

Fig. 1 presents the system architecture of the Optimal 
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Test Automation Framework Selection (OTAFS) model. 

The model is the combination of different modules such 

as Input module, Framework Repository, Evaluation 

Engine, Ranking Module, Output Module and 

Integration Module. 

 

 

 

 

Fig. 1 Optimal Test Automation Framework Selection (OTAFS) Model 

A detailed description of each module is as follows: 

Input Module: The Input Module helps in enabling users 

to furnish input data for the tests that are being executed. 

This input may take the form of user inputs, data 

procured from databases or files. Typically, this module 

offers users a structured approach to specifying input 

data, such as through an XML file or via a programming 

interface like an API or a command line interface. 

Furthermore, it offers a mechanism to seamlessly read 

input data and transmit it to the testing framework for 

execution. In the context of an e-commerce website, this 

module helps in enabling users to provide input data that 

reflects the real-world scenarios and user behaviors that 

the website is designed to handle. This input data may 

include product information, order details, customer 

information, and other relevant data that is essential to 

the functioning of the website. The Input Module enables 

the testing framework to simulate these real-world 

scenarios, helping to identify any potential issues or 

errors that may arise in the system. This module 

facilitates the collection of user input to drive testing 

processes, thereby enabling the provision of optimal user 

experiences. 

Framework Repository: The Framework Repository 

represents a centralized storehouse of crucial information 

pertaining to the array of available testing frameworks. 

This repository encapsulates critical details concerning 

framework features and their compatibility with various 

platforms and programming languages. Developers can 

leverage this repository to readily access and evaluate 

diverse testing frameworks, and compare their features 

and capabilities through specific testing requirements. 

This helps to ensure that the testing process is optimized 

for maximum efficiency and effectiveness, leading to 

better overall project outcomes. 

In our repository, we have identified four popular testing 

frameworks, including Keyword-Driven, Data-Driven, 

Test Data Driven and Hybrid frameworks. Each of these 

frameworks has its own unique features and capabilities, 

making them suitable for different types of testing 

scenarios. The Framework Repository provides a 

detailed overview of these frameworks, enabling 

developers to evaluate their suitability for their specific 

testing needs. 

Evaluation Engine: The Evaluation Engine compares 

and evaluates diverse testing frameworks based on 

Quality Assurance (QA) parameters specified with the 

help of the proposed algorithm. This engine scrutinizes 

each framework based on the QA criteria, such as 

reliability, throughput, execution time, cost, and 

portability. It assigns scores to each testing framework 

against the predefined QA criteria to determine how well 

each framework aligns with the needs of the project. The 

Evaluation Engine serves as a powerful tool for 

facilitating informed decision-making by project 

stakeholders regarding the most suitable testing 

framework for the project at hand. It enables project 

teams to choose the optimal testing framework, which 

can have a significant impact on the effectiveness and 

efficiency of the testing process. 

Ranking Module:This module takes into consideration 

the diverse QA attributes evaluated by the Evaluation 

Engine, such as reliability, throughput, execution time, 

cost, and portability. Based on this assessment, the 

Ranking Module generates a comprehensive ranking that 

outlines the strengths and weaknesses of each testing 
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framework. The ranking provides project stakeholders 

with an insightful and data-driven perspective on the 

suitability of each framework. It serves as a valuable 

phase for making informed decisions about the most 

appropriate testing framework to use in a given project, 

based on the values of QA parameters.  

Output Module: The Output Module is a key component 

that provides users with critical information about the 

results of the evaluation process, including the ranking of 

the testing frameworks and individual scores for each 

criterion. This module generates a comprehensive report 

that details the tests that passed, failed, or were skipped, 

along with additional information such as the duration of 

each test, any error messages that were generated, and a 

summary of the overall test results. The Output Module 

plays an essential role in facilitating effective decision-

making by project stakeholders, who can use the report 

to gain valuable insights into the strengths and 

weaknesses of the testing frameworks under 

consideration. Additionally, the Output Module allows 

for the export of results, enabling further analysis and 

sharing with other relevant stakeholders. This feature 

empowers project teams to identify areas for 

improvement, make necessary adjustments, and optimize 

the testing process for better outcomes.  

Integration Module: The Integration Module enables 

seamless integration with diverse testing tools such as 

Test Automation and Management tools. This integration 

ensures that the selected testing framework can be 

readily integrated with the existing testing infrastructure, 

thereby enhancing the overall efficiency and 

effectiveness of the testing process. The Integration 

Module also tests the integration between different 

components or modules of the system, enabling project 

teams to assess how different parts of the system work 

together to achieve the intended functionality. Through 

this testing, the Integration Module helps to identify any 

potential issues or inconsistencies that may arise in the 

system, allowing for timely corrective action to be taken. 

4. Proposed QA Evaluation Algorithm for 

OTAFS Model 

This section describes the algorithm. The algorithm 

computes [23] the values of QA parameters which aids 

in finding the optimal test automation framework.  

Let us assume T is the list of test suites for which QA 

parameters needs to be evaluated for different test 

automation frameworks. The testing tool is selected 

according to the application and testers preferences. In 

our study we have selected Selenium [24] as the testing 

tool for the execution of test cases. This algorithm will 

help in finding the optimal testing framework according 

to the values of QA parameters evaluated. This 

algorithm will aid in searching and optimizing the 

appropriate testing framework by the OTAFS model. 

4.1 Optimal Automation testing framework selection algorithm: 

Input: List of Test cases t = {t1, t2,t3,……,tn} for each test suite T, testing tool according to application and practitioner’s 

preference  

Output: Optimum Test Automation Framework selected for each test suit T. 

// Find the testing tool.  

/* We have selected Selenium for execution of test cases in our previous study*/ 

For each test suite T do 

{ 

 Fort each testsuiteurl do 

{ 

Result[] = invokerbean( select testing tool, testsuiteurl) 

// QA calculation phase  

Calculation of Reliability 

Calculation of Probability 

Calculation of Execution Time 

Calculation of Throughput 

Calculation of Cost 

// Normalization phase 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 |  303 

// Normalize the resultant QA 

/* Select the Test Automation Framework which is optimum for each Test suite T*/ 

} 

} 

5. Implementation and Experimental 

Evaluation 

 

This section constitutes the description of tools and 

technologies used to implement the proposed approach. 

Further, experiment has been performed to evaluate the 

proposed OTAFS approach based on different QA 

parameters. Next, the evaluation of computational values 

of QA parameters is analyzed and ranked. 

5.1 Implementation Details 

Optimal Test Automation Framework Selection 

(OTAFS) is implemented on Python Platform. A demo 

website (http://www.saucedemo.com) and four 

frameworks are used to test the proposed approach over 

the dataset of varying test cases i.e. 48 and 98. These test 

cases are executed to evaluate the value of QA 

parameters. The approach is programmed on following 

specification -Packages {"pluggy": "1.0.0", "pytest": 

"7.0.1"}, Platform macOS-11.6-x86_64-i386-64bit, 

Plugins {"html": "3.2.0", "metadata": "2.0.4"}, Python 

3.9.15. Table -1 and 2 shows the performance measures 

based different QA criteria. 

5.2 Performance Metrics 

The proposed model has been evaluated in terms of 

Quality Assurance (QA) parameters for selecting a Test 

Automation Framework. These attributes [23] are 

significant for successful implementation of Test 

Automation Framework. The mathematical 

representation and description of the metrics chosen are 

as follows: 

Reliability: It is measured using a metric called Rel (F), 

which represents the probability that a test is correctly 

executed by the testing framework and that the 

framework handles all the exceptions within an expected 

time period.  

 Rel (F) = P(F) / T (F) 

where, P(F) represents the probability that the testing 

framework will execute a test correctly without 

encountering any errors or exceptions. T (F) represents 

the expected time period within which the framework 

should handle any exceptions or errors that occur during 

the test execution process. 

Execution Time: The test execution time reporting metric 

represents the number of successful test cases executed 

by the framework for a particular amount of invocation. 

This metric is denoted by Ext. 

 Ext = Nsuc (F)  

where, Nsuc (F) represents the total number of 

successful test cases executed by the testing framework 

for a particular amount of invocation.  

Throughput: It is calculated as the ratio of the total 

number of test data generated by the framework to the 

time it takes to execute them.  

Ttp(F) = Ntd(F) / Tinv(F) 

where,Ntd(F) represents the total number of test data 

generated by the framework and Tinv(F) is the total time 

taken to execute these test data. 

Probability: The portability metric for a test framework 

is determined by the number of handled requests from 

various team members who use different platforms, such 

as Windows, Mac, or Linux, in a specific time period. A 

framework that can be easily ported across multiple 

platforms is highly desirable as it allows for a wider user 

base and can save time and resources. 

The portability P(F) of a test framework is a qualitative 

parameter. A higher portability score indicates that the 

framework is easily portable and can function efficiently 

on different platforms. A low portability score may 

indicate that the framework may require additional 

resources and time to be deployed on different platforms, 

which can impact the testing process and the overall 

project timeline. 

Execution Cost: The cost of executing a test automation 

framework refers to the financial expenses incurred in 

implementing the framework. The cost may vary 

depending on the type of framework utilized or 

developed. It may involve the cost of tools, licenses, 

hardware, and personnel. The cost can be measured by 

assessing the expenses required to maintain and operate 

the framework over a specified time period. It is crucial 

to consider the cost of implementing and maintaining a 

framework to ensure that the return on investment is 

worthwhile. 

The cost function can be represented as Tcost(F). 

5.3 Performance Measure 

The given situation entails a comprehensive end-to-end 

testing of an e-commerce website, which involves 

thorough testing of every component, including input 

http://www.saucedemo.com/
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boxes, buttons, and other elements, to ensure their 

desired functionality. To achieve this, we have devised 

four distinct testing frameworks, namely Keyword 

Driven, Data Driven, Test Driven, and Hybrid, each 

utilizing the Python language and tailored to evaluate 

different aspects of the website's performance. 

To ensure seamless execution of the test cases across 

these testing frameworks, we initially crafted a set of 

different number of test cases for each suite, aiming to 

encompass the entire website's functionality and 

logically organize them for easy management and 

maintenance. The Selenium automation testing tool [24] 

was utilized to evaluate these test suites on various 

testing frameworks, each having a different set of tools 

and utilities for organizing and running the tests. 

Upon completion of the testing process, the evaluation 

engine generated a comprehensive test report based on 

the QA attribute values evaluated by the proposed QA 

evaluation algorithm, providing a detailed assessment of 

the effectiveness of each testing framework. The ranking 

module was then employed to rank these frameworks 

based on their suitability to the project's overall 

requirements. The most effective testing framework was 

selected by comparing the scores of each framework, 

thereby providing a robust and scalable testing solution 

for the Application under Test (AUT). Following the 

selection of the most effective testing framework, the 

application underwent real testing to ensure its seamless 

functionality. The utilization of this comprehensive 

testing process provides an efficient and reliable solution 

for evaluating the website's performance and ensuring its 

smooth operation. 

Table 1.  Performance measure based on QA attributes where Test cases t1= 48 

Quality Assurance 

Parameters 

Number of Test Cases = 48 

Keyword 

Driven 
Data Driven Test Driven Hybrid 

Reliability 40 30 40 49 

Execution Time (in 

min) 
7.266 8 8.66 4.33 

Throughput 5.505 3.75 4.619 11.316 

Portability High High High High 

 

Fig 2. Graphical representation of QA attributes vs Testing Frameworks 
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Table 2. Performance measure based on QA attributes where Test cases t2 = 98 

Quality Assurance 

Parameters 

Number of Test Cases = 98 

Keyword 

Driven 
Data Driven Test Driven Hybrid 

Reliability 80 62 85 97 

Execution Time (in min) 14.533 16 17.333 8.667 

Throughput 5.505 3.875 4.904 11.192 

Portability High High High High 

 

 

Fig 3. Graphical representation of QA attributes vs Testing Frameworks 

 

In the evaluation process, we have identified reliability, 

throughput, and execution time as the critical parameters 

that significantly impact the automation framework's 

performance, especially with varying numbers of test 

cases. Hence, it is imperative to consider these 

parameters to ensure the quality and efficacy of the test 

automation framework. 

To gain a better understanding of the performance of the 

different testing frameworks under varying numbers of 

test cases, we analyzed and compared their performance 

using a graphs represented in Fig. 2 & 3. The results 

from this analysis clearly indicate that the Hybrid 

framework outperforms the other frameworks based on 

the evaluated values of various QA parameters obtained 

from implementation the proposed algorithm. 

These observations validate the importance of choosing a 

suitable testing framework that provides optimum 

reliability, high throughput, and efficient execution time, 

especially when the number of test cases varies. 

Therefore, it is crucial to consider these parameters while 

selecting a testing framework to ensure optimal 

performance and quality of the automation process. 

6. Conclusion 

The proposed algorithm and model offers a better 

solution to the challenge of selecting an appropriate 

automation testing framework. The Optimal Test 

Automation Framework Selection (OTAFS) model was 

implemented on an e-commerce website and its 

performance was evaluated using various Quality 

Assurance (QA) parameters, such as reliability, 

execution time, probability, throughput, and execution 
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cost, across a dataset of test cases with the help of 

proposed algorithm. The results indicate that the 

proposed model is effective and efficient in determining 

the performance of existing testing frameworks. 

Moreover, the evaluation revealed that the Hybrid 

framework performed the best among the evaluated 

options. To further enhance this research, the OTAFS 

model could be expanded to include additional QA 

attributes and be evaluated on a broader range of 

automation testing frameworks. Overall, this study 

provides valuable insights into the effective selection of 

automation testing frameworks, and could greatly benefit 

organizations seeking to improve their testing processes. 

 

References 

[1] Tripathy, P., & Naik, K. (2011). Software testing 

and quality assurance: theory and practice. John 

Wiley & Sons. 

[2] Amaricai, S., & Constantinescu, R. (2014). 

Designing a software test automation framework, 

Informatica Economica, 18(1), 152. 

[3] Lin, Y. D., Rojas, J. F., Chu, E. T. H., & Lai, Y. C. 

(2014). On the accuracy, efficiency, and reusability 

of automated test oracles for android devices. IEEE 

Transactions on Software Engineering, 40(10), 957-

970. 

[4] Umar, M. A., &Zhanfang, C. (2019). A study of 

automated software testing: Automation tools and 

frameworks. International Journal of Computer 

Science Engineering (IJCSE), 6, 217-225. 

[5] Anjum, H., Babar, M. I., Jehanzeb, M., Khan, M., 

Chaudhry, S., Sultana, S., ... & Bhatti, S. N. (2017). 

A comparative analysis of quality assurance of 

mobile applications using automated testing tools. 

International Journal of Advanced Computer 

Science and Applications, 8(7). 

[6] Xu, D., Xu, W., Kent, M., Thomas, L., & Wang, L. 

(2014). An automated test generation technique for 

software quality assurance. IEEE transactions on 

reliability, 64(1), 247-268. 

[7] Brohi, A. B., Butt, P. K., & Zhang, S. (2019). 

Software Quality Assurance: Tools and Techniques. 

In Security, Privacy, and Anonymity in 

Computation, Communication, and Storage: 

SpaCCS 2019 International Workshops, Atlanta, 

GA, USA, July 14–17, 2019, Proceedings 12 (pp. 

283-291). Springer International Publishing. 

[8] Huang, A. F., Lan, C. W., & Yang, S. J. (2009). An 

optimal QoS-based Web service selection scheme, 

Information Sciences, 179(19), 3309-3322. 

[9] Dobslaw, F., Feldt, R., Michaëlsson, D., Haar, P., de 

Oliveira Neto, F. G., &Torkar, R. (2019, October). 

Estimating return on investment for gui test 

automation frameworks. In 2019 IEEE 30th 

International Symposium on Software Reliability 

Engineering (ISSRE) (pp. 271-282). IEEE. 

[10] Miranda, B., Cruciani, E., Verdecchia, R., 

&Bertolino, A. (2018, May). FAST approaches to 

scalable similarity-based test case prioritization. In 

Proceedings of the 40th International Conference on 

Software Engineering (pp. 222-232). 

[11] Winkler, D., Meixner, K., & Novak, P. (2019). 

Efficient and flexible test automation in production 

systems engineering. Security and Quality in Cyber-

Physical Systems Engineering: With Forewords by 

Robert M. Lee and Tom Gilb, 227-265. 

[12] Elberzhager, F., Rosbach, A., Münch, J., & 

Eschbach, R. (2012). Reducing test effort: A 

systematic mapping study on existing approaches. 

Information and Software Technology, 54(10), 

1092-1106. 

[13] Borg, M., Bengtsson, J., Österling, H., Hagelborn, 

A., Gagner, I., & Tomaszewski, P. (2022, May). 

Quality assurance of generative dialog models in an 

evolving conversational agent used for Swedish 

language practice. In Proceedings of the 1st 

International Conference on AI Engineering: 

Software Engineering for AI (pp. 22-32). 

[14] Yu, T., Srisa-an, W., &Rothermel, G. (2014, May). 

SimRT: An automated framework to support 

regression testing for data races. In Proceedings of 

the 36th International Conference on Software 

Engineering (pp. 48-59). 

[15] Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S., 

& Hashim, S. Z. M. (2011). An automated 

framework for software test oracle. Information and 

Software Technology, 53(7), 774-788. 

[16] Salari, M. E., Enoiu, E. P., Afzal, W., &Seceleanu, 

C. (2022, April). Choosing a Test Automation 

Framework for Programmable Logic Controllers in 

CODESYS Development Environment. In 2022 

IEEE International Conference on Software Testing, 

Verification and Validation Workshops (ICSTW) 

(pp. 277-284). IEEE. 

[17] Lukasczyk, S., & Fraser, G. (2022, May). Pynguin: 

Automated unit test generation for python. In 

Proceedings of the ACM/IEEE 44th International 

Conference on Software Engineering: Companion 

Proceedings (pp. 168-172). 

[18] Lukasczyk, S., Kroiß, F., & Fraser, G. (2023). An 

empirical study of automated unit test generation for 

Python. Empirical Software Engineering, 28(2), 36. 

[19] Thörn, J., Strandberg, P. E., Sundmark, D., & Afzal, 

W. (2022). Quality assuring the quality assurance 

tool: applying safety-critical concepts to test 

framework development. PeerJ Computer Science, 

8, e1131. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 298–307 |  307 

[20] Shirzadehhajimahmood, S., Prasetya, I. S. W. B., 

Dignum, F., Dastani, M., & Keller, G. (2021, 

August). Using an agent-based approach for robust 

automated testing of computer games. In 

Proceedings of the 12th International Workshop on 

Automating TEST Case Design, Selection, and 

Evaluation (pp. 1-8). 

[21] Graham, D. (2010). ROI of test automation: benefit 

and cost. Professionaltester. com, November, 2010. 

[22] Shahin, M., Babar, M. A., & Zhu, L. (2017). 

Continuous integration, delivery and deployment: a 

systematic review on approaches, tools, challenges 

and practices. IEEE access, 5, 3909-3943. 

[23] Singh, G., Choudhary, J., Laddhani, L. (2023) : An 

Optimal Selection Scheme for Automation Testing 

Framework with Quality Assurance. Grenze 

International Journal of Engineering and 

Technology, Volume 9, No. 1,p. 2935-2940 

https://thegrenze.com ISSN(Online): 2395-5295, 

ISSN(Print): 2395-5287. 

[24] Singh, G., Choudhary, J., Laddhani, L. (2022): 

Taxonomic Analysis of DevOps Tools. JOURNAL 

OF ALGEBRAIC STATISTICS Volume 13, No. 3,  

p. 2725-2731 https://publishoa.com ISSN: 1309-

3452. 

[25] Paigude, S. ., Pangarkar, S. C. ., Hundekari, S. ., 

Mali, M. ., Wanjale, K. ., & Dongre, Y. . (2023). 

Potential of Artificial Intelligence in Boosting 

Employee Retention in the Human Resource 

Industry. International Journal on Recent and 

Innovation Trends in Computing and 

Communication, 11(3s), 01–10. 

https://doi.org/10.17762/ijritcc.v11i3s.6149 

[26] Mr. Rahul Sharma. (2013). Modified Golomb-Rice 

Algorithm for Color Image Compression. 

International Journal of New Practices in 

Management and Engineering, 2(01), 17 - 21. 

Retrieved from 

http://ijnpme.org/index.php/IJNPME/article/view/13 


