

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 394

Novel Approach to Abstract the Data Flow Diagram from Java

Application Program

Dr. R. N. Kulkarni1, Mr. P. Pani Rama Prasad*2

Submitted: 27/04/2023 Revised: 28/06/2023 Accepted: 08/07/2023

Abstract: During the years 1920 to 1930, business processes came into use and they used flow charts for documenting the process flow.

Further, it was developed as a flow chart to plan flow of information in computer programs. During 1960’s onwards the designer of

computer programs used algorithms and flow charts for the representation of the software design. In the year 1970, the Data Flow Diagram

(DFD) was introduced, which depict the structured analysis and the data modeling. In this paper, a methodology is proposed and a tool is

developed that is used to abstract complete DFD from given java program. The proposed abstraction is carried out with the help of following

steps. First step, restructure the input java program that is amenable for the abstraction of DFD components. Second step, Identifying the

input attributes set and output attributes set, data flow, different process, entities and data store. Third step, representing the abstracted

components in the table format. Next step, redesigning the data flow diagram from the input DFD table.

Keywords: Restructuring, DFD, entity, data store, process, data flow, java program.

1. Introduction

The Computers science field is the fastest emerging area

across the world. In particular, the Information Technology

Industry is producing various types of application or system

software’s which are useful for numerous business

organization and society across. For development of

software application, the design is the most essential thing.

Further, the design is realized with help of a suitable

programming language. The Data flow diagram (DFD) is

the important design diagram to get high level design of the

java application. DFD is an independent design diagram and

it is not a part of set of Unified Modeling Diagrams (UML).

DFD is a combination of external sources, process, data

inputs / outputs and data stores. DFDs are constructed with

help of standard notations and symbols to represent flow of

information between different components of the system.

In this paper, a new methodology is proposed and an

automated tool is developed for the abstraction of design

information from java program and further it is represented

the in a table form called as Data Flow Table [DFT].

2. Related Work

The paper [22], discuss about the use of DFD to assure

dependability. The article also explains the derivation of D-

case from DFD and discuss various aspects of this method.

The authors in paper [17] discuss about the data flow

diagram which signifies the relationships between the

process and other system components used in the software

application. The same concept is used in identifying relation

between process in java program. The authors in paper [12],

object-oriented data flow diagrams which as four

components such external entities, processes, data stores,

and classes. This work is useful in understanding the DFD

components and its usages. In paper [10], author

comprehensively discuss about the major deficiencies such

as security concepts, abstraction levels, data elements, and

deployment information in case of security threat modeling.

This work gives a comprehensive view of the DFD in design

and development of java application.

In paper [9], authors discuss about a hybrid diagram called

as ER-Flow which provides an integrated view of data and

source code with in the application. This work is useful in

knowing the concept of data flow across different entities.

Restructuring of a java program consists of multiple steps

and are explained in paper [11]. These steps are used in our

tool development. In paper [7], the author discussed about

the control flow model and data flow models along with a

brief comparison and discussion of their advantages and

drawbacks of each model. The work specified here is useful

in representation of data flow table. The authors in paper

[4], discuss about organization of the processors which is

based on whether they use the data flow execution model or

in control flow model inside the system. This study is

applied to identify the process inside the java application

system. In this paper [3], authors discuss about the new

CDESF tool which can manage the multiple data flows in

the given application. This work given java in identifying

data flow in a process for the given java application. This

article [5] provides a suitable information for visualization

1 Prof & Head, Department of Computer Science and Engineering, Ballari

Institute of Technology and Management, Ballari

ORCID ID : 0000-0002-9948-1398
2 Asst. Prof, Department of Computer Science and Engineering, Ballari

Institute of Technology and Management, Ballari

ORCID ID : 0000-0002-5129-1309
2* Corresponding Author Email: phanirama75@bitm.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 395

and modeling of input Java programs used for the static

analysis, dynamic analysis, debugging of software and also

maintenance of software application system. The work is

used for understanding of data flow inside the java

application.

In papers [16, 26], authors discussed about refinement for

both DFDs and Privacy-Aware data flow diagrams as a

distinct variety of structure - preserving map. This work is

useful in comprehend with various artifacts of DFD and is

used in our methodology. In paper [6], the authors proposed

a procedure to abstract the program behavior and represent

the same as a DFD, which involves multiple steps. This

method is applicable to our methodology in creating of DFD

from the given java application. In paper [18], discuss about

structure and model for Java application to comprehend

with the control as well as data flow analysis of execution

of java application. This methodology discussed here is

valuable in identifying entities and process in a java

application. In paper [8], authors designed a visualization

tool to extract data or control analysis from of java program.

The output generated from the tool is useful in knowing data

flow inside the java application. In this paper [1], authors

developed a tool to draw DFD using Natural Language

Interface (NLI) which is used to allow the consumer to

create a query and classify the system functionality and

limitations present in the system. This work is used to

identify the process present inside the system. In paper [2],

a novel tool developed to extract DFDs from the micro

services code (java) using parsing technique and presented

in table form.

In paper [13], Monolithic architecture technique is

discussed, which combines the small independent micro

services using the data flow driven approach to obtain the

unique structure. The paper [19], a practical approach to

design the system using a C++ program with help of DFD

and Entity Relationship diagram are discussed in detail.

In paper [27] tool is developed that extracts design of data

flow from the given java code. The reverse engineering

procedures are applied to identify different levels in the

DFDs. The paper [25], talks about Data Flow Sequences

(DFS) which is similar to the real life systems application

development. It proposes a tool using an extended Markup

Language for DFS implementation.

The paper [15] discuss about an object-oriented data flow

diagrams using greedy approach to calculate the similarity

score of class diagram verses DFD and also compare their

different artifacts. The comparison between DFD and use

case diagram is done to find the strengths and weakness of

each diagram. Based on the study the author in paper [21]

suggested to include the data flow in object- oriented

approach. In paper [14], for construction and engineering

problems data flow diagrams are used. A web based tool is

developed to design prototype for engineering problems

using data flow diagram. The paper [20] discuss about an

App, where user will be knowing the different stages in

which the software development activities are carried out

using the App. The DFDs are useful to the user to

understand the different steps in developing the application.

The paper [24] focuses on problems where the hardware

design and software design combined and it is called as

hardware/software code sign. This code sign can be

understood with the help of DFDs.

The paper [23] discuss about a smart hospital where

ontological description knowledge data base of the hospital

is maintained in ubiquitous computing environment using

UML and XML technology. The DFD are used to

comprehend with the high level design of the hospital

system.

In paper [28] authors presenting a Predictive Object Point

(POP) software which is useful to the software designers in

planning the high quality software. With the aid of DFD, the

software quality attributes are tested for completeness and

correctness, The POP tool is used to assess the quality of

OO software.

3. Methodology

The methodology proposed here is explained with help of a

block diagram and it is as shown in Fig 3.1, which consists

of the different components like restructuring, abstraction

and representing the output in the three column table format.

The methodology proposed is tested on different java

programs with varying lines of code and results are

tabulated in table 4.1. The results shows that the restructured

programs are more efficient,

Fig 3.1 Block diagram to generate Data Flow Table

Initially, the executable java program is taken as an input for

restructuring process. The basic purpose of restructuring the

program is to remove the unnecessary things from the

program without changing the its functionality. The

restructured program is used for abstracting the different

components of DFD such as process, entities, data store and

data flows. Further, the abstracted components are stored

and represented in a tabular format. The detailed description

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 396

is given below:

3.1. Restructuring of program.

3.2. Abstraction of Data flow components.

3.3. Generate a three column data flow table.

3.1. Restructuring of program.

Restructuring of a program is the process of making changes

to the program without altering its functionality. The

restructuring process involves the following steps:

 (i) Reading the executable java program.

 (ii) Eliminate the blank lines and comment lines.

 (iii) Transforms multi statement lines to single statement

line and multiline statements to single statement.

 (iv) Assign physical line number to each statement.

3.2. Representation of data flow table

In this step, the restructured java program is taken as a input,

further, the components required for the design of DFD such

as entities, data flow, process and data store are abstracted

and then stored in a text file.

3.3. Generate a three column data flow table

In this step, the abstracted features which are stored in the

file is taken as input and then it is represented in a table

format called as DFD table. The purpose of representing in

tabular form is to easily generate the DFD from the table.

This section discuss about two algorithms first one,

restructuring of java program. Second one, abstraction of

DFD and representing the same in a three column tabular

format. These two algorithms are as shown in fig 3.2.

[1. RESTRUCTURING OF INPUT JAVA PROGRAM]

INPUT: Java application program

OUTPUT: Restructured java application

Pre-Condition: Executable java program

Post-Condition: Restructured Executable java program

RESTRUCTURING JAVA PROG(Exam.java)

STR[1..n] ← Exam.java

if (! (Validate (STR [1..n]==NULL))) then

 return InValid java

else

step 1.1: - [Remove comment Lines]

 initialize comment=false

 while (STR[1..n]!= NULL) do

 if (STR.contains("/*")) then

 comment = true

 end if

 if(lSTR.contains("*/")) then

 comment = false

 end if

 if(STR.contains("//")) then

 comment = true

 end if

 if(!comment) then

 printl(STR)

 end if

 end while

step 1.2: - [Remove Blank Lines]

Initialize NEW_LINE=’\n’

while (STR[1..n]!= NULL) do

 if (!STR.isEmpty()) then

 writer_to_file(STR);

 writer_to_file(NEW_LINE)

 end if

end while

step 1.3: - [Convert the multiple statements into single line]

 while (STR[1..n]!= NULL) do

 STR = STR.replaceAll(";“ , "; \n")

 writer_to_file(STR);

 writer_to_file(NEW_LINE)

 end while

step 1.4: - [Convert the multiline statements into single line]

 while (STR[1..n]!= NULL) do

 while (STR[1..n]!=’;)

 STR = STR1+STR.replaceAll(";“ , "; \n")

 end while

 writer_to_file(STR);

 writer_to_file(NEW_LINE)

 end while

step 1.5: - [Insert Line No to all the statements in the

program]

initialize line no=1

STR[1..n] ← Exam.java

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 397

while (STR.nextToken()) do

 initialize String name = STR.nextLine()

 print(lineno+name)

 lineno = lineno + 1

end while

end if

[2. ABSTRACTION OF DFD COMPONENTS]

INPUT: Restructured Java application program

OUTPUT: Data flow table in tabular format

Pre-Condition: Restructured Executable java program

Post-Condition: Tabular representation of data flow

diagram.

 DFD_JAVA_PROG(Exam.java)

 ST[1..n] ← STR[1..N]

 if (! (Validate (ST [1..n]==NULL))) then

 return InValid Restructered java program

 else

 step 2.1: - [Identify Entities]

 while (ST[1..n]!= NULL) do

 if (!ST[1..n]== Object) then

 Eentity[1..n] ← Object.name

 end if

 end while

step 2.2:- [Identify Process]

 while (ST[1..n]!= NULL) do

 if (!ST[1..n]== function) then

 Pprocess[1..n] ← function .name

 else

 Aattribites[1..n] ← {Attributes}

 end if

 end while

step 2.3: - [Identify Data store]

 while (ST[1..n]!= NULL) do

 if (ST[1..n]== “string query = “select * from ”)

 then

 Dstore[1..n] ← DB .name

 end if

end while

[3. REPRESENTING DFD COMPONENTS IN A TABLE

FORM]

while (ST[1..n]!= NULL) do

 if (ST[1..n]==Eentity[1..n])

 SOURCE[1..n] ← Eentity[1..n])

 end if

 if (ST[1..n]==Pprocess[1..n])

 DESTINATION[1..n] ← Pprocesses[1..n])

 end if

 if (ST[1..n]==Dstore[1..n])

 DESTINATION[1..n] ← Dstore[1..n])

 end if

 if (ST[1..n]==Aattributes[1..n])

 DATAFLOW[1..n] ← Aattributes[1..n])

 end if

 end while.

[4. REDESIGING THE DFD]

while (DATA_TABLE[1..n]!= NULL) do

 if (DATA_TABLE[1..n]== Eentity[1..n])

 draw_object (Eentity[1..n])

 end if

 if (DATA_TABLE[1..n]== Pprocesses[1..n])

 draw_object (Pprocesses[1..n])

 end if

 if (DATA_TABLE[1..n]== Dstore[1..n])

 draw_object (Dstore[1..n])

 end if

 if (DATA_TABLE[1..n]== Aattributes[1..n]

 draw_object (Aattributes[1..n])

 end if

 end while

Figure 3.1 Algorithm for restructuring and

abstraction of data components.

Fig 3.1 Algorithm for restructuring and abstraction of data

components

4. Results and Discussion

When the restructuring process is used, the time taken to

execute the program is reduced. The comparison between

the java programs before and after the restructuring is as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 398

given in table 4.1. The table consists of four columns where

first, second columns are Name of the program and number

of lines of code. Third and fourth columns are execution

time in milli-seconds(ms), before and after restructuring the

java program.

Tab 4.1 Execution Time Comparison Table

SN Name of

the

Program

No. of

Lines

of

Code

Time taken to execute

Before

Restructuri

ng

After

Restructur

ing

 1.

emp.java 82 43 36

2. stud.java 56 37 32

3. admissions.j

ava

349 95 84

4. atm.java 303 89 73

5. placement.j

ava

183 61 54

The corresponding graph of Execution time of Normal Vs

Restructured program is as shown in figure 4.2. The graph

indicates that time taken to execute the restructured java

program is less when it is compared with execution time of

normal program without restructuring.

Fig 4.2 Execution Time Comparison graph

The proposed automated tool restructures the input

executable program shown in fig 4.3 and the resultant

restructured program is as shown in fig 4.4. Further the

components required for the design of DFD are abstracted

and stored in the text file. The tool reads this file and then

the data flow diagram is drawn. To draw the diagram an

intermediate available tool is used.

//Student class

class Student {

String USN, name, mailed;

int sem, mobile_no;

student (String USN, String name, String mailed, int sem,

int mobile_no) {

 this.USN = USN;

 this.name = name;

 this.mailid = mailid;

 this.sem = sem;

 this.mobile_no = mobile_no;

}

void fillForm (String USN, String name, String mailed, int

sem, int mobile_no) {

 int n;

 char sub[10];

 double fees;

 Scanner in = new Scanner(System.in);

 System.out.println(“Enter No of subjects:-“);

 n = in,nextInt();

 System.out.println(“Enter subject codes:-“);

 For (i=0; i<n; i++)

 sub[i] = in.nextLine();

 System.out.println(“Enter Total fees:-“);

 fees = in,nextDouble();

}

/* Payment function */

int payFees(int n, string sub[], double fees) {

 String UPI, UTR=0; System.out.println(“Enter UPI No:-

“);

 UPI = in,nextLine();

 System.out.println(“Total fess:-“+fees);

 System.out.println(“Enter UTR No:-“);UTR =

in,nextLine();

 if(UTR > 0)

 System.out.println(“ Payment is successful”);

 else

 System.out.println(“ Payment is unsuccessful”);

return UTR;

}

}

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 399

class Proctor {

string pname, app_no;

Proctor(steing pname) {

 this.pname = pname;

}

void PfillOnline() {

 String UTR;

 fillForm (USN, name, mailed, sem, mobile_no);

 UTR = payFees(n, sub[], fees);

 System.out.println(“Enter Exam application No.:-“);

 app_no = in,nextLINE();

 string query = “select * from student”;

 class.forName(“com.mysql.cj.jdbc.Driver”);

 Connection con = DriverManager,getConnection(USN,

name, sem, n, sub, app_no, UTR);

 System.out.println(“Connection established

successfully”);

 Statement st = con.createStatment();

 ResultSet rs = st.executeQuery(query);

 st.close();

 con. close();

 System.out.println(“Data base Connection closed”);

}

void printApplication(){

 onlineexamfill();

 string query = “select * from student”;

 class.forName(“com.mysql.cj.jdbc.Driver”);

 Connection con = DriverManager,getConnection(USN,

name, sem, n, sub, app_no, UTR);

 System.out.println(“Connection established

successfully”);

 Statement st = con.createStatment();

 ResultSet rs = st.executeQuery(query);

 rs.next();

 USN = rs.getString(“USN”);

 name = rs.getString(“name”); sem = rs.getString(“sem”);

 UTR = rs.getString(“UTR”); app_no =

rs.getString(“app_no”);

 st.close();

 con. close();

}

}

//Main program

Class Test1 {

public static void main (String args[]) {

 Student st = new Student(“3BR21CS001”, “shayam”,

shyam@bitm.edu.in, 5, 8443165674);

 Proctor pt = new Proctor(“phani rama”);

 st. fillForm();

 st. payFees(8,sub, 1700);

 pt. printApplication();

 }

}

Fig 4.3 Input Executable Java program

After the restructuring process the restructured java program

of student examination online filling application as shown

in figure 4.4.

1. class Student {

2. String USN, name, mailed;

3. int sem, mobile_no;

4. student (String USN, String name, String mailed,

int sem, int mobile_no) {

5. this.USN = USN;

6. this.name = name;

7. this.mailid = mailid;

8. this.sem = sem;

9. this.mobile_no = mobile_no;

10. }

11. void fillForm (String USN, String name, String

mailed, int sem, int mobile_no) {

12. int n;

13. char sub[10];

14. double fees;

15. Scanner in = new Scanner(System.in);

16. System.out.println(“Enter No of subjects:-“);

17. n = in,nextInt();

mailto:shyam@bitm.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 400

18. System.out.println(“Enter subject codes:-“);

19. For (i=0; i<n; i++)

20. sub[i] = in.nextLine();

21. System.out.println(“Enter Total fees:-“);

22. fees = in,nextDouble();

23. }

24. int payFees(int n, string sub[], double fees) {

25. String UPI, UTR=0;

26. System.out.println(“Enter UPI No:-“);

27. UPI = in,nextLine();

28. System.out.println(“Total fess:-“+fees);

29. System.out.println(“Enter UTR No:-“);

30. UTR = in,nextLine();

31. if(UTR > 0)

32. System.out.println(“ Payment is successful”);

33. else

34. System.out.println(“ Payment is unsuccessful”);

35. return UTR;

36. }

37. }

38. class Proctor {

39. string pname, app_no;

40. Proctor(steing pname) {

41. this.pname = pname;

42. }

43. void PfillOnline() {

44. String UTR;

45. fillForm (USN, name, mailed, sem, mobile_no);

46. UTR = payFees(n, sub[], fees);

47. System.out.println(“Enter Exam application

No.:-“);

48. app_no = in,nextLINE();

49. string query = “select * from student”;

50. class.forName(“com.mysql.cj.jdbc.Driver”);

51. Connection con =

DriverManager,getConnection(USN, name, sem,

n, sub, app_no, UTR);

52. System.out.println(“Connection established

successfully”);

53. Statement st = con.createStatment();

54. ResultSet rs = st.executeQuery(query);

55. st.close();

56. con. close();

57. System.out.println(“Data base Connection

closed”);

58. }

59. void printApplication(){

60. onlineexamfill();

61. string query = “select * from student”;

62. class.forName(“com.mysql.cj.jdbc.Driver”);

63. Connection con =

DriverManager,getConnection(USN, name, sem,

n, sub, app_no, UTR);

64. System.out.println(“Connectionestablished”);

65. Statement st = con.createStatment();

66. ResultSet rs = st.executeQuery(query);

67. rs.next();

68. USN = rs.getString(“USN”);

69. name = rs.getString(“name”);

70. sem = rs.getString(“sem”);

71. UTR = rs.getString(“UTR”);

72. app_no = rs.getString(“app_no”);

73. st.close();

74. con. close();

75. }

76. }

77. Class Test1 {

78. public static void main (String args[]) {

79. Student st = new Student(“3BR21CS001”,

“shayam”, shyam@bitm.edu.in, 5, 8443165674);

80. Proctor pt = new Proctor(“phani rama”);

81. st. fillForm();

82. st. payFees(8, sub, 1700);

83. pt. printApplication ();

84. }

85. }

Fig 4.4 Restructured Java program

The restructured java program as shown in figure 4.2. In this

mailto:shyam@bitm.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 401

program, Student and Proctor classes are the external

entities. This java program has several process such as

fillForm, payFees ,fillOnline and printApplication. The

program has one data store student, which maintains student

examination application details.

The table 4.5 depicts the data flow inside the given java

program. The data flow table is represented using the thee

columns source, destination and data flow. In this table

source or destination may be an entity, process or data store.

Data flow indicates the data that flows between source and

destination. Here data dataflow represents the attributes

which are either input or output from the entity or a process

or a database. From table 4.1, the first row indicates Student

entity fills the examination form using formFill process. In

this interaction data flows between entity and process is the

student details such as USN, name, mobile_no, mailed,

semester, number of subjects n, subject code, total fees to be

paid. In second row, formFill process interacts with payFees

process to pay the examination fees using UPI, fees and

UTR attributes as a data flow. In case of third, fourth and

fifth rows, fillOnline process communicates with Proctor

entity, fillform and payFees process to make online entry

using attributes USN, name, n, sub, fees, UPI, UTR and

application number app_no. Once online entry of student

examinations details is made, same details are kept inside

the student database. The similar type of information is

depicted in sixth row of the data flow table. Here the

fillOnline process interacts with student data store. In case

of seventh and eight rows, the student examination

application print out is given to Student entity. This step

involves interaction between student data store,

printAppliaction process and Student entity respectively.

Table 4.5. Data flow table

SOURC

E

DESTINATIO

N

DATAFLOW

Student fillForm USN, name, mobile_no,

mailed, sem, n, sub, fees

fillForm payFees USN, name, sem, n, sub,

UPI, UTR, fees

payFees fillOnline UPI, UTR, fees

fillForm fillOnline USN, name, sem, n, sub,

UPI, UTR, fees

Proctor fillOnline pname

fillOnlin

e

student USN, name, mobile_no,

mailed, n, sub, fees, UTR,

app_no

student printApplicatio

n

USN, name, mobile_no,

mailed, n, sub, fees, UTR,

app_no

printAp

plication

Student USN, name, mobile_no,

mailed, n, sub, fees, UTR,

app_no

A Data Flow Diagram consists of Processes (Ps), Data

Flows (Df), Data Stores (St) and External Entities (Et). The

data flow diagram shown in figure 4.7 is verified with the

DFD rules for its completeness and correctness.

Let DFD be a data flow diagram, then

 𝐷𝐹𝐷 = {𝑃𝑠, 𝐷𝑓, 𝑆𝑡, 𝐸𝑡} -------------------(1)

where

Ps = {ps1, ps2, ps3…, psn} is a finite set of processes;

𝐷𝑓 = {df1, df2, df3…, dfn} is a finite set of data flows;

𝑆𝑡 = {st1, st2, st3…..., stn} is a finite set of data stores;

𝐸𝑡 = {et1, et2, et3...…, etn} is a finite set of external entities;

Equation (1) defines a Data flow diagram, which is a set of

consists of a set of processes, data flows, data stores and

external entities.

Let Cd be a context diagram then

𝐶𝑑 = {< 𝑒𝑡𝑖, 𝑑𝑓𝑗, 𝑝𝑠1 >, < 𝑝1 , 𝑑𝑓𝑘, 𝑒𝑡𝑖 >}

𝑗 ≠ k 1, ≤ i, j, k ≤ n--------------(2)

In equation (2), Context diagram (Cd) consists of only one

process along with the set of external entities (eti) and data

flows(dfi). Data flow can be connected from external entity

to a process and vice versa but the data flow must be a

different data flow. Note that, data store can only exist in

data flow diagram but not context diagram. From the

context level diagram as shown in fig 4.6, there is only one

process named as onlineExamFill. The external entities

named as Student and Proctor.

∀sti ,stj ∈ St, sti ≠ stj 1, ≤ i, j ≤ n --------------------------- (3)

From equation (3) the two process in a DFD should not have

same name. Duplicate process names are not allowed. The

same rules apply for data flows. The process names

represented as a set Ps = {fillForm, payFees ,fillOnline and

printApplication} which are distinct and unique.

The same rules are applied for data flows shown in equation

(4), data stores in equation (5) and external entities shown

in equation (6).

∀𝑠𝑡𝑖 , 𝑠𝑡𝑗 ∈ 𝑆𝑡, 𝑠𝑡𝑖 ≠ 𝑠𝑡𝑗 1, ≤ 𝑖, 𝑗 ≤ 𝑛 ---------------- (4)

The data flows (Df) are the attributes passed between the

process, the set of attributes are Df = {USN, name,

mobile_no, mailed, sem, n, sub, fees} are unique and

different.

 ∀𝑠𝑡𝑖 , 𝑠𝑡𝑗 ∈ 𝑆𝑡, 𝑠𝑡𝑖 ≠ 𝑠𝑡𝑗 1, ≤ 𝑖, 𝑗 ≤ 𝑛 ---------------- (5)

There is only one data store (St) in the given java program

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 402

St = {student}, which is the student data base and it is by

default unique only.

∀𝑒𝑡𝑖 , 𝑒𝑡𝑗 ∈ 𝐸𝑡, 𝑒𝑡𝑖 ≠ 𝑒𝑡𝑗 1, ≤ 𝑖, 𝑗 𝑗 ≤ 𝑛 ---------------(6)

The java program has two entities Et = {Student, Proctor},

which are not duplicate and hence are unique and distinct.

 ∀𝑒𝑡𝑖, 𝑒𝑡𝑗, 𝑠𝑡𝑖 , 𝑠𝑡𝑗 , 𝑑𝑓𝑘 ∈ 𝐷𝐹𝐷 , 𝑡ℎ𝑒𝑛 𝐷𝐹𝐷 ≠

{𝑒𝑡𝑖, 𝑑𝑓𝑘, 𝑒𝑡 >} 𝑎𝑛𝑑 𝐷𝐹𝐷 ≠ {< 𝑠𝑡𝑖, 𝑑𝑓𝑘, 𝑠𝑡𝑗 >}, 1 ≤

 𝑖, 𝑗, 𝑘 ≤ 𝑛 ------- (7)

Equation (7) indicates that for any data flow diagram, a data

flow cannot connect from one external entity to another

external entity and a data flow cannot also connect from one

data store to another data store. From the data flow table 4.5,

External entities(Et) Student and Proctor are not directly

connected. There only one Data store(St) student, hence

directly connecting with another entity does not arise.

∀𝑒𝑡𝑖, 𝑠𝑡𝑗 , 𝑠𝑡𝑗, 𝑑𝑓𝑘 ∈ 𝐷𝐹𝐷 , 𝑡ℎ𝑒𝑛 𝐷𝐹𝐷 ≠ {< 𝑒𝑡𝑖, 𝑑𝑓𝑘, >

} 𝑎𝑛𝑑 𝐷𝐹𝐷 ≠ {< 𝑠𝑡𝑗, 𝑑𝑓𝑘, 𝑒𝑡𝑖 >}, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 -------

--(8)

Equation (8) indicates that for any data flow diagram, m, a

data flow cannot connect from one external entity to data

store and a data flow cannot also connect from one data store

to external entity. From the data flow table 4.5, external

entities(Et) Student and Proctor are not directly connected

to the data store(St) student and vice versa is also not

directly connected.

Consider the context level diagram for the given java

program which is as shown in fig 4.6. The onlineExamfill

process interacts with Student entity for collecting student

data and Proctor Entity is used to fill the student data in

online mode.

Fig 4.6 context level DFD for the given java program

The Level-1 DFD which is as shown in figure 4.7 will be

generated with the help of data flow table which is as shown

in table 4.5. In this Level-1 DFD, Student and Proctor are

the external entities. There are four process in the DFD such

as fillForm, payFees, fillOnline and printApplication along

with single data store called as student.

Fig 4.7 DFD for the given java application

The DFD may be drawn using the plantUML generic tool.

The data flow table as shown in table 4.5, consists of source,

destination and data flow, by using this information

plantUML code is generated. The plantUML code to draw

context level diagram and Level-1 DFD is as shown in fig.

4.8 and fig 4.9 respectively.

Fig 4.8. Code to draw the context level diagram

Fig 4.9. Code to draw the Level-1 DFD

The output generated form the tool is as shown in the fig

4.10. The restructured java program along with the data flow

table are as shown in fig 4.10

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 403

Fig 4.10 Output Data Flow Table

5. Conclusion

In this paper, an attempt is made to abstract DFD from the

given java program. The tool proposed here first restructures

the given java application then abstracts the elements such

as entity, data store, process, data flow and attributes from

the java program. The same information is represented in

table format which has three columns. Further, DFD is

redesigned by using the data table. The tool is tested for its

correctness and completeness by taking different types of

java programs.

References

[1] Sehrish Munawar Cheema, Saman Tariq, Ivan Miguel

Pires, “A natural language interface for automatic

generation of data flow diagram using web extraction”

techniques,Journal of King Saud University -

Computer and Information Sciences, Vol 35, no

2,2023.

[2] Simon Schneider, Riccardo Scandariato, “Automatic

extraction of security-rich dataflow diagrams for

microservice applications written in Java”, Journal of

Systems and Software,Vol 202, 2023.

[3] Paolo Ceravolo, Ernesto Damiani, Emilio Francesco

Schepis, Gabriel Marques Tavares, “Real-time

probing of control-flow and data-flow in event logs”,

Procedia Computer Science, Vol 97, 2022.

[4] M. B. Khan, A. R. Khan and H. Alkahtani, "Exploring

the approaches to data flow computing," Computers,

Materials & Continua, vol. 71, no.2, 2022.

[5] Stephan Seifermann, Robert Heinrich, Dominik

Werle, Ralf Reussner, “Detecting violations of access

control and information flow policies in data flow

diagrams”, Journal of Systems and Software, Vol 184,

2022.

[6] Alshareef, Hanaa & Stucki, Sandro & Schneider,

Gerardo. (2021). “Refining Privacy Aware Data Flow

Diagrams”, Software Engineering and Formal

Methods, 19th International Conference, SEFM -2021,

2021.

[7] Lang Feng, Jiayi Huang, Jeff Huang, and Jiang Hu.

2021.” Toward Taming the Overhead Monster for

DataFlow Integrity”. ACM Trans. Des. Autom.

Electron. Syst. Vol 27, no. 3, 2021.

[8] Faily, S., Scandariato, R., Shostack, A., Sion, L., Ki-

Aries, D. “Contextualisation of Data Flow Diagrams

for Security Analysis”, Lecture Notes in Computer

Science, vol 12419. Springer, Cham. 2020.

[9] C. Ordonez, S. Tahsin Al-Amin and L. Bellatreche,

"An ER-Flow Diagram for Big Data," IEEE

International Conference on Big Data (Big Data),

Atlanta, GA, USA, 2020.

[10] Laurens Sion, Koen Yskout, Dimitri Van Landuyt,

Alexander van den Berghe, and Wouter Joosen.

“Security Threat Modeling: Are Data Flow Diagrams

Enough”, IEEE/ACM 42nd International Conference

on Software Engineering Workshops (ICSEW'20).

Association for Computing Machinery, New York,

2020.

[11] Dr. R.N. Kulkarni, P. Pani Rama Prasad,

“Restructuring of Java Program to be amenable for

Reengineering”, Journal of Engineering Science and

Technology, vol 02 no 06, 2019.

[12] F. Irhamn and D. Siahaan, "Object-Oriented Data

Flow Diagram Similarity Measurement Using Greedy

Algorithm," 2019 1st International Conference on

Cybernetics and Intelligent System (ICORIS),

Denpasar, Indonesia, 2019.

[13] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng

Zhang, Jiaqi Li, Qiuya Gao, Jidong Ge, Zhihao Shan,

“ A dataflow-driven approach to identifying micro-

services from monolithic applications”, Journal of

Systems and Software ,Vol 157, 2019.

I. V. Trubnikov, O. V. Minakova and O. V. Kuripta,

"Framework for Building Data Flow Diagramm Based

Applications," IEEE International Multi-Conference

on Industrial Engineering and Modern Technologies

(FarEastCon), Vladivostok, Russia, 2019.

[14] F. Irhamn and D. Siahaan, "Object-Oriented Data

Flow Diagram Similarity Measurement Using Greedy

Algorithm," IEEE 1st International Conference on

Cybernetics and Intelligent System (ICORIS),

Denpasar, Indonesia, 2019.

[15] Bryan L. Guibijar, MSCS, “Data Flow Diagram (DFD)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 394–404 | 404

in Developing Online Product Monitoring System

(OPMS) of DTI”, International Journal of Trend in

Scientific Research and Development (IJTSRD) ISSN:

2456-6470, Vol 2, no 6, 2018.

[16] B. Yu and C. T. Silva, "VisFlow - Web-based

Visualization Framework for Tabular Data with a

Subset Flow Model," in IEEE Transactions on

Visualization and Computer Graphics, vol. 23, Jan.

2017.

[17] Soomro, Safeeullah & Alansari, Zainab & Riyaz

Belgaum, Mohammad. “Control and Data Flow

Execution of Java Program. Asian Journal of Scientific

Research, 2017.

[18] Mohammed H. S. Al Ashry,"Importance of Data Flow

Diagrams and Entity Relationships Diagrams to Data

Structures Systems Design in C++ :A Practical

Example," Journal of Management and Strategy,

Journal of Management and Strategy, Sciedu Press,

vol. Vol 8, no 4, pp 51-61, 2017.

[19] Wulandari, Wati, and Albertus Dwi Yoga Widiantoro.

"Design data flow diagram for supporting the user

experience in applications." International Journal of

the Computer, the Internet and Management Vol.25

No.2 pp. 14-20, 2017.

[20] Arwa Y. Aleryani, “Comparative Study between Data

Flow Diagram and Use Case Diagram”, International

Journal of Scientific and Research Publications,

Volume 6, Issue 3, March 2016.

[21] Mahmoud, M. S, ”Development Of HealthCare

System For Smart Hospital Using UML and XML

Technology”,International Journal of Intelligent

Systems and Applications in Engineering, 2(3), 38–45,

2014

[22] N. Olayan, V. Patu, Y. Matsuno and S. Yamamoto, "A

Dependability Assurance Method Based on Data Flow

Diagram (DFD)," 2013 European Modelling

Symposium, Manchester, UK, 2013, pp. 113-118, doi:

10.1109/EMS.2013.20.

[23] Schaumont, P.R. “Analysis of Control Flow and Data

Flow. In: A Practical Introduction to

Hardware/Software”, Codesign. Springer, Boston,

MA, 2013.

[24] James PH Coleman, “Data Flow Sequences: A

Revision of Data Flow Diagrams for Modelling

Applications using XML”, (IJACSA) International

Journal of Advanced Computer Science and

Applications, Vol. 4, No.5, 2013.

[25] Kulkarni, R.N., Aruna, T., Amrutha, N. “Abstraction

of Design Information from Procedural Program”,

High Performance Architecture and Grid Computing.

HPAGC 2011. Communications in Computer and

Information Science, Springer, Berlin, Heidelberg, vol

169, 2011.

[26] Arun Lakhotia ,”An approach to recovering data flow

oriented design of a software system”, , IEEE

Software, pages 74–81, Jan. 2000.

[27] Vijay Yadav, Raghuraj Singh, Vibhash Yadav,

“Evaluation of OO Software Quality by Using

Predictive Object Points (POP) Metric”, Int J Intell

Syst Appl Eng, vol. 11, no. 2s, pp. 328–336, Jan. 2023.

[28] Mrs. Monika Soni. (2015). Design and Analysis of

Single Ended Low Noise Amplifier. International

Journal of New Practices in Management and

Engineering, 4(01), 01 - 06. Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/33

[29] Goar, V. ., Yadav, N. S. ., & Yadav, P. S. . (2023).

Conversational AI for Natural Language Processing:

An Review of ChatGPT. International Journal on

Recent and Innovation Trends in Computing and

Communication, 11(3s), 109–117.

https://doi.org/10.17762/ijritcc.v11i3s.6161

http://ijnpme.org/index.php/IJNPME/article/view/33

