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Abstract: An alternative model is presented for the early detection of coffee leaf rust disease, since this disease usually causes yield losses 

of up to 30% during the pandemic season, considering that the traditional detection method known as direct observation requires monetary 

resources that the farmer does not have. There are several technological alternatives to detect plant diseases in a short time, which are 

accurate but not very interpretable, therefore a supervised image analysis model is generated at pixel level according to the EG and GCC 

color indices to detect coffee leaf rust based on a fuzzy inference system, being this developed under experimental and prototype-based 

methodologies. The model obtained an accuracy of 93.75%, being considered effective and ready to be tested in uncontrolled environments, 

where the GCC color index presents a better discrimination of the state of a plant against the EG. 
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1. Introduction 

The identification of plant diseases is one of the most 

important activities in the agricultural sector, since this 

action, developed early, allows the application of a 

treatment adapted to the crop, the disease and its stage [1]. 

The importance of this activity is related to the economic 

loss that can occur if the necessary measures are not taken 

to prevent and treat the diseases that affect the sector 

worldwide, considering that, according to the FAO, US$ 

220 billion are lost annually [2].  

One way to reduce the costs associated with crop yield loss 

is to use mechanisms or techniques that allow early 

detection of diseases that occur in a given crop [3]. The most 

common mechanism for disease detection is direct 

observation, which consists of a crop expert being able to 

identify the appearance of typical characteristics of the 

disease through his visual sense; however, this technique is 

not very efficient because the verification of all the plants of 

the crop, depending on the extent of the sown field, is 

delayed and usually not performed [4][5]. In addition, for 

the farmer, the use of a crop expert represents a high 

monetary cost that most of them cannot assume, even more 

so in developing regions or countries where the presence 

and support of the State to farmers is almost nonexistent [6], 

making them rely on past experiences or rumors to identify 

and treat diseases with diagnoses that may be wrong, 

generating an environmental cost framed by the 

deterioration of arable land in the future, of nearby water 

sources and high probability of not being able to eradicate 

the disease [7]. 

The agricultural sector has been involved in the application 

of technological advances in its various fields of activity, 

among which the detection of plant diseases through 

machine learning and deep learning algorithms stands out 

[8], supported by the estimated figure corresponding to 

$5098 million in the smart agriculture market for the year 

2016 [1]. 

The automated detection of diseases has increased its 

research and use in recent years [9] for different reasons and 

consequences, one of the main ones being the depression of 

crop yields and economic losses suffered by farmers, 

regardless of the scale of the affection of the same, ranging 

from 5% to 80% depending on the plant species, type of 

disease, level of infection, climate and soil [10][11], for 

example in the strawberry crop some diseases affect the 

photosynthetic activity of the plant, which are directly 

involved in the quality of the fruit, representing a yield loss 

of 30% to 70% [12]. 

One of the challenges of precision agriculture is related to 

the lack of data, the pre-processing and processing required 

in research using digital image processing and artificial 

vision techniques, and the comparability of results by an 

expert [13]. 

Artificial intelligence models and research results focused 

on disease detection are usually implemented in machine 

learning and deep learning-type image analysis techniques, 

such as Support Vector Machines [14], KNN [15], Neural 

Networks [16], Convolutional Neural Networks [17], 

ANFIS [18], Evolutionary Algorithms [19], Correlations 

[20], Generative Neural Networks [21], among others 

[2][14]. 
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The models currently implemented usually have a low level 

of significance or interpretability and high accuracy, so this 

research seeks to have an initial model oriented to present 

high accuracy and interpretability [22][23]. The supervised 

model resulting from this research is focused on the use of 

fuzzy inference systems to detect the rust disease in the 

coffee crop, which represents up to 30% of the yield loss of 

the crops that suffer from it [24], where through digital 

image processing of the crop leaf is analyzed at the pixel 

level using color indices that determine whether the state of 

the leaf is healthy or diseased. The color indices chosen are 

EG (Extreme Green) and GCC (Green Chromatic 

Coordinates), which are proposed to differentiate the state 

of a plant using visual techniques [25]. 

The paper consists of the methodological technique 

implemented, the design and implementation of the model, 

the results obtained, and the conclusions. 

2. Methodology 

The methodological technique used for the development of 

the research has two components, as developed in [26]: the 

one related to the development of the software required for 

the functional model and the one related to its operability. 

In the case of software development, taking into account 

that it is an artificial intelligence model and the adaptations 

to be made, a methodology based on prototypes is 

established, which is empirical, experimental and iterative-

incremental, so that the functionalities can be analyzed, 

designed, tested and evaluated on the basis of preset 

acceptance parameters, following the phases of 

communication, rapid plan, modeling and rapid design, 

construction of the prototype and, deployment and feedback 

of the prototype [27]. 

On the other hand, the operational methodology is proposed 

as experimental, which allows to adapt the case study 

environment to obtain an expected result, looking for the 

relevant characteristics and properties in the experiment 

[28]. Therefore, the basis of the proposed methodology is 

based on image analysis at the pixel level, showing the state 

of a coffee leaf.   

As shown in Figure 1, the procedure to be followed consists 

of a flow that starts with the respective loading of the 

images, which are then analyzed at the pixel level under the 

EG and GCC color indices, from which the characteristic 

values are extracted to identify a pixel as healthy or 

diseased, allowing to configure the input and output sets of 

a fuzzy logic system designed for early disease detection. 

The following stages are available: 

2.1. Data Loading 

The first step corresponds to the loading of images of 

healthy and rust affected coffee leaves, focused directly on 

the area of interest. The data set used corresponds to 

"BRACOL" [29], from which 96 examples were taken for 

this research. 

2.2. Pixel-level analysis 

After loading the data, 48 images are used in this phase: 24 

representing the healthy state and 24 representing the 

diseased state, in which a pixel representative of its state is 

selectively selected, from which the RGB color components 

are extracted in order to subsequently calculate the 

characteristic values of the EG and GCC color indices at 

pixel level. 

2.3. Establish independent variables and ranges 

Once the values of the indices per pixel representative of the 

48 images have been calculated, ranges are defined to define 

whether a pixel corresponds to a representation of the 

diseased leaf or to an optimal state. Defining the ranges 

selects which of the color indices best describes the state of 

a pixel. 

2.4. Parameterize the model 

A model based on a fuzzy inference system is parameterized 

from the intervals of the selected color index determined in 

the previous step, defined in the input set. In contrast, the 

output set corresponds to the resulting pixel state. 

2.5. Testing the model 

Once the structure of the fuzzy model is established, it is 

tested on the 48 examples not selected for the "pixel-level 

analysis" phase; that is, the validation is performed with 

observations the system has not seen. The test consists of 

selecting one characteristic pixel per image, feeding it to the 

model, and verifying that the resulting state matches the 

state represented by the image. 

 

Fig. 1.  Operational methodology. 

3. Design and implementation 

Taking into account the operational methodology described 

in the previous section, the images of the "BRACOL" 

dataset are first loaded into the scientific development 

environment Matlab; in Figure 2, two observations of the 
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dataset are shown; on the left a leaf infected by rust and on 

the right a healthy leaf. 

 

Fig. 2.  Leaf affected by rust vs. healthy leaf. Taken from: 

[29]. 

Then, from 48 images, one pixel characterizing the image 

type (healthy or diseased leaf) is selected to extract its R, G, 

and B color components, values necessary to calculate the 

EG and GCC color indices, which are proposed to 

differentiate a healthy leaf from a diseased one [25]. 

𝐸𝐺 = 2𝐺 − (𝑅 + 𝐵)                  (1) 

𝐺𝐶𝐶 = 𝐺/(𝑅 + 𝐺 + 𝐵)             (2) 

It should be noted that although the stages of a coffee leaf in 

the study of rust disease mentioned so far correspond to 

healthy or diseased, there are different stages of the disease 

and the state of the leaf that present color variations, so 4 

subclasses are defined to verify the state of the pixels, as 

shown in Table 1. 

Table 1. Categorization of pixels by color 

Class Color Category 

1 Dark green Health 

2 Green Medium 

light 

Health 

3 Orange Sick 

4 Coffee Sick 

 

Table 2 shows a fragment of the values corresponding to the 

pixels identified in each of the 48 reference images, 

consisting of the R, G, B color components and the EG and 

GCC color indices. 

Table 2. Characterization of pixels according to their 

category and EG and GCC color indices 

Píxel Pixel 1 Pixel 2 Pixel 3 Pixel 4 

Class 1 2 3 4 

R 127 153 255 45 

G 144 162 207 28 

B 12 35 53 10 

EG 149 136 106 1 

GCC 0,5088 0,4629 0,4019 0,3373 

Based on the characteristic values found in the 48 pixels 

parameterized in the EG and GCC color indices, the 

intervals necessary to identify a pixel as healthy or diseased 

are determined, which are necessary to define the 

membership functions in the input and output sets of the 

fuzzy inference system. 

4. Results and Discussion 

The results presented in this paper are segmented into three, 

presenting the characteristic values found to define the 

intervals of the fuzzy sets, the supervised model based on a 

fuzzy inference system obtained, and the comparison of the 

classification obtained in the test pixels resulting from the 

model versus the expected. 

4.1. Characteristic values 

From the analysis of the 48 initial pixels under the EG and 

GCC color indices, intervals of values were extracted that 

determine when a pixel represents a coffee leaf with rust 

disease or in a healthy state: 

• For the EG color index, the intervals for characterizing 

the state of a pixel were established, as shown in Table 

3. 
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Table 3. Determination of the categorization intervals of a 

pixel according to the EG color index 

Observation 

/class 

1 2 3 4 

1 149 136 106 10 

2 107 112 101 1 

3 99 109 87 11 

4 226 215 160 9 

5 106 131 71 2 

6 74 91 78 7 

7 96 96 118 18 

8 91 105 72 47 

9 64 75 63 -4 

10 107 129 76 4 

11 97 108 66 2 

12 96 109 116 -6 

Minimum 64 75 63 -6 

Maximum 226 215 160 47 

 

Therefore, the healthy state of a pixel falling into categories 

1 and 2 has a defined interval between 64 and 226, while the 

sick state is set between -6 and 160. 

• For the GCC color index, the characterization intervals 

were defined in Table 4. 

Table 4. Determination of pixel categorization intervals 

according to the GCC color index 

Observation 

/class 

1 2 3 4 

1 0,5088 0,4629 0,4019 0,3373 

2 0,5272 0,4957 0,4498 0,3615 

3 0,6016 0,4977 0,434 0,3604 

4 0,7216 0,5518 0,4588 0,3391 

5 0,5857 0,4728 0,4006 0,3605 

6 0,566 0,4744 0,4209 0,369 

7 0,5814 0,4795 0,4477 0,4158 

8 0,6018 0,5816 0,4346 0,3279 

9 0,5446 0,4677 0,38 0,3415 

10 0,5605 0,4636 0,3913 0,339 

11 0,4975 0,4833 0,4019 0,2821 

12 0,4836 0,4479 0,4174 0,3244 

Minimum 0,4836 0,4479 0,38 0,2821 

Maximum 0,7216 0,5816 0,4588 0,4158 

 

The healthy state of a pixel falling into categories 1 and 2 

has a defined interval between 0.4479 and 0.7216, while the 

sick state is set between 0.2821 and 0.4588. 

4.2. Model Obtained 

Considering the results presented above, it can be inferred 

that the EG color index does not adequately discriminate 

whether a pixel is in a healthy or diseased state, while the 

GCC color index can clearly discriminate between these 

states. Therefore, the fuzzy inference system was designed 

and implemented based on the GCC index, which was taken 

as the input set of the system, with the output set defined as 

the pixel state. The fuzzy inference system is a Mamdani-

type set, as shown in Figure 3. 

 

Fig. 3.  Mamdani-type fuzzy inference system. 

The input set shown in Figure 4 was defined with two 

triangular activation functions representing a high or low 

value of the GCC index, as follows. 
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Fig. 4.  Input set of the fuzzy inference system - GCC. 

The output set of the fuzzy inference system, shown in 

Figure 5, represents the state of a pixel and presents two 

triangular activation functions set as healthy and sick. 

 

Fig. 5.  Output setting of the fuzzy inference system - state. 

The fuzzy inference system is associated with rules that 

allow establishing the relationship between the GCC 

variable and the pixel state. 

1. If (GCC is low) then (State is sick) 

2. If (GCC is high) then (State is healthy) 

4.3. Results from the model 

The resulting supervised model was tested on 48 previously 

unobserved pixels (24 with healthy and 24 with diseased 

state). Therefore, the state was defined for each pixel: 0 for 

healthy and 1 for disease, then the pixels were evaluated 

under the GCC color index. Once the color index values for 

the 48 pixels were obtained, they were passed through the 

model, which provided values between 0 and 1, 

characterized based on the fuzzy output set. The model 

evaluation results show an accuracy of 93.75%, with 45 

correct and 3 incorrect classifications, as shown in the 

confusion matrix in Figure 6. 

 

Fig. 6.  Confusion matrix. 

5. Conclusion 

The GCC color index allows a better discrimination of the 

state of the pixels defined as healthy or diseased concerning 

the EG color index, since the latter presents a significant 

overlap of values between the two states. 

The supervised model obtained represents an alternative to 

the research results found in the literature since it presents a 

high degree of interpretability based on fuzzy inference 

systems of the Mamdani type. 

The model resulting from the present research provides an 

accuracy of 93.75% in the test phase using examples not 

used in previous stages, representing a high effectiveness in 

discriminating pixels of images of coffee leaves considered 

healthy or diseased due to rust.  
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