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Abstract: Millions suffer from neurodegenerative Parkinson's disease (PD). Effective PD treatment requires early and precise diagnosis. 

MRI offers brain structural information. Machine learning has improved diagnostic accuracy in medical imaging in recent years. This paper 

presents a novel method to categorize Parkinson's disease MRI images utilizing the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

classification algorithm with optimization PSO feature Selection and image enhancement. Three main steps are proposed. First, MRI 

images are enhanced to increase quality and highlight significant features. Preprocessing includes noise removal, contrast improvement, 

and image sharpening. The next categorization phase uses improved photos. Second, this work presents illness diagnostic machine learning 

methods with optimization like PSO for feature extraction. Finally, ANFIS classifies MRI images as PD or non-PD. Parkinson's disease 

(PD) is a complex neurological ailment that needs early diagnosis and treatment. Machine learning can help diagnose PD by examining 

patient data attributes. This work provides an optimal hybrid model that classifies Parkinson's disease using numerous characteristics and 

multiclass diagnosis detection techniques. The hybrid model combines machine learning algorithms to boost classification accuracy. 

Clinical, demographic, and genetic data represent the disease. PD classification uses feature selection to find the most relevant and 

discriminative features. ANFIS fuzzy rules and parameters are designed for accurate classification. PD MRI scans are used to test the 

suggested method. Classification performance is measured by accuracy, sensitivity, specificity, and area under the curve. To prove its 

efficacy, the proposed classification method is compared to others. The findings show that ANFIS classification with image enhancement 

approaches can classify PD. The proposed MRI-based Parkinson's disease diagnostic method is accurate and sensitive. ANFIS's intelligent 

decision-making and MRI characteristics increase classification performance. 

Keywords: Parkinson's disease, MRI images, Adaptive Neuro-Fuzzy Inference Systems, PSO.  

1. Introduction  

Dopamine-producing nerve cells in the brain are the target 

of Parkinson's disease (PD), the second most prevalent [1] 

progressive neurological condition. Dopamine cells in the 

brain's Substantia Nigra, which normally serve as 

messengers to regulate movement, have begun to die. 

When the number of cells in the brain responsible for 

making dopamine drops significantly, it causes difficulties 

in regulating movement. The exact reason for this cell 

death is unknown. The breakdown of these cells has been 

linked by many researchers to both genetics and 

environmental factors. People aged 60 and up [2,] those in 

certain occupations, and those who have suffered severe 

head trauma are all at a higher risk of developing 

Parkinson's disease. Parkinson's disease symptoms don't 

appear all of a sudden. After Alzheimer's disease [3], the 

most frequent form of neurodegeneration is Parkinson's 

disease [4], often known as Shaking Palsy. After stroke, 

epilepsy, and migraine, it ranks as the fourth most 

expensive neurological disorder [5]. Dopamine-producing 

cells in the brain's Substantia Nigra die down, leading to 

the neurological illness known as Parkinson's disease. 

These cells ensure proper communication between the 

brain and the rest of the body. Walking, talking, writing, 

and even smiling are all under the strict control of these 

cells. Dopamine levels drop when these cells begin to die, 

causing disruptions in brain and body coordination. 

Patients struggle with even the most fundamental tasks of 

daily life. 
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Fig 1: Overview of PD diagnosis system 

PD is characterized by a wide range of symptoms. Patients 

may have a wide range of symptoms. This means that a 

patient's absence of some symptoms is not diagnostic [6]. 

To make a diagnosis of PD, one or more symptoms must 

be present. Symptoms may or may not be present at the 

outset, but as the condition worsens, they will change and 

become more noticeable. As the condition develops, new 

symptoms may emerge. There are two main types of 

symptoms, motor and non-motor. Parkinson's disease 

(PD) diagnosis systems are developed to aid doctors in 

making a correct diagnosis of PD using a wide range of 

available data and analysis methods [7]. Accurate and 

quick diagnoses are made possible by these systems' use 

of cutting-edge technology including machine learning, 

medical imaging, and clinical data analysis. 

Voice transmissions contain both steady-state oscillations 

and brief, non-repetitive spikes. No amount of time-

frequency analysis will ever be able to retrieve the 

information contained in these oscillations. These 

oscillations can be understood by a resonance-based non-

linear analysis of the signal. Information from long-lasting 

oscillations makes up the high-resonating components, 

while non-oscillatory transients make up the low-

resonating ones [8]. The signal is split into high- and low-

resonance sub-components so that information can be 

extracted from both. Because most of the information in a 

voice signal is contained in its sustained oscillations, the 

signal's high-resonance components are preserved. Both 

low- and high-frequency components exist in the isolated 

high-resonating parts. So as to extract information based 

on time and frequency, a time-frequency analysis of the 

highly resonant component is necessary [9]. Therefore, 

we suggest a hybrid method that draws upon the best 

features of both resonant and time-frequency data. 

FIGURE 1 depicts the proposed structure. The first step is 

to get subjects to record their own voices speaking. After 

manually segmenting the audio to isolate its most crucial 

components from the background noise, a noise reduction 

approach is employed.  

2. Background  

Dopamine levels and other biochemical studies confirm a 

diagnosis of PD. Biochemical unit levels also indicate the 

severity of PD and the progression of the disease. PD 

markers, such as hydroxy-2-deoxyguanosine and 8-

hydroxyguanosine, have been studied and used in 

analysis. These chemical levels and EEG activity can both 

be utilized to diagnose Parkinson's disease [10]. Few 

medical studies record EEG signals for a range of patient 

emotions (e.g., happiness, anxiety, sadness, anger, 

surprise, etc.). Rapid symptom progression can be 

identified using merely a trained PD detection system. 

The enhancement of medical technologies is aided by 

several studies that focus on biological neural 

architecture, neural functions, and neural modalities. 

There have been numerous methods developed 

throughout the years for detecting neurological disorders, 

much like those for detecting PD. The most advanced 

automatic diagnostics methods are required for disorders 

including Alzheimer's, Alcoholism, ADD/ADHD, and 

Epilepsy. Medical research tools require greater 

knowledge to analyze the spectrum of PD measures 

compared to standard pattern matching procedures [11]. 

More education and practice are required for the medical 
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data analysis tools (whether software or hardware). In the 

last few decades, many different kinds of decision-making 

systems have been incorporating artificial neural 

networks (ANN). When given data, ANN generates 

sophisticated analytical methodologies from which to 

draw conclusions. There are three primary tiers: input (for 

data collecting), processing (for analysis), and output (for 

sharing results). Researchers are more familiar with 

Machine Learning (ML) and Deep Learning (DL) 

methods. In the processing phase of medical data, these 

methods conform to a standard format [12]. Feeding in 

data, preprocessing the data, selecting features, extracting 

features, and classifying the data are the stages of ML and 

DL methods.

 

Fig 2: Block diagram of proposed methodology 

Artificial intelligence algorithms have made important 

advances in the field of medical diagnosis. The goal of this 

work is to provide the necessary machine learning 

algorithm for Parkinson's disease classification, which 

will be useful to researchers and doctors [13]. In this 

study, we evaluate several Machine algorithms for picture 

classification and compare their accuracy to one another. 

Thus, this investigation's goal is to reflect the outcomes of 

various algorithms used to diagnose Parkinson's disease 

using machine learning models and to incorporate all 

important data regarding these models. This work 

develops a PSO-like method for feature extraction using 

machine learning techniques; this can be used in the 

diagnosis of disease. T1-weighted structural magnetic 

resonance imaging (sMRI) has been used in recent years 

for automatic discrimination between people with 

Parkinson's disease (PD) or its prodromal phase (i.e. mild 

cognitive impairment (MCI)) and healthy controls (HC). 

Several high-dimensional, accurate, and effective 

classification methods have been proposed [14]. 

Classification accuracy is limited since these techniques 

focus solely on using a single feature from sMRI images 

to differentiate between PD, MCI, and HC patients. In 

order to increase the classification accuracy of PD 

pictures, a cutting-edge multimodal approach is proposed 

here. This approach combines several features from 

various sMRI analysis methods. 

3. Methodology  

The ANFIS system's efficiency was ramped up with the 

help of the PSO algorithm. To begin, a completely random 

distribution function must be used to calculate the 

beginning values and velocity vectors for the particle 

vectors. It's important to remember that computers use the 

range 0-1 to represent random numbers [15]. First, we 

generate each Particle by multiplying the parameter by a 

random number. Selecting a sequence of parameters 

outside of the allowed range causes the model to crash. 

We converge on a finding. So, while the Particles' initial 

values are chosen at random, they must be chosen so that 

the parameters are within reasonable bounds. The gains 

from the initial parameters are introduced to the model 

independently.

 

 

Fig 3: Flowchart for the proposed model 
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This setup is accomplished by coding in the values 

specified in one of the model's input files that contains the 

parameters. It should be emphasized that the n Particle 

count is verified at each time step. That's why it's 

important to run the ANFIS, n bar model at any given time 

epoch [16]. Inflationary time series simulations are 

introduced as output each time the model is run. The 

simulation inflation figures are compared to the constant 

inflation that has been observed. As a result, the n-bar 

model is implemented after the initial time step. One value 

for the goal function is calculated for each Particle in the 

first step [17]. First-round pbest values for all particles 

match their actual states. Finding the gbest, the best 

Particle encountered position in the swarm set, can be 

done by comparing the objective values of each Particle 

and selecting the largest quantity. Using the previous 

stage's particles' status and velocities as well as pbest and 

gbest values, the new stage speed is calculated in the 

second repetition using Eq. (1). Then, using Eq. (2), we 

can determine the most recent state of the Particle. 

𝑉𝑖𝑑
𝑛+1 = [𝑊𝑉𝑖𝑑

𝑛 + 𝐶1𝑟1
𝑛(𝑝𝑖𝑑

𝑛 − 𝑋𝑖𝑑
𝑛 ) + 𝐶2𝑟2

𝑛(𝑝𝑔𝑑
𝑛 − 𝑋𝑖𝑑

𝑛 )]

  [1] 

𝑋𝑖𝑑
𝑛+1 = 𝑋𝑖𝑑

𝑛 + 𝑉𝑖𝑑
𝑛+1      [2] 

The PSO algorithm's particle orientation plays a crucial 

role in setting the pace and trajectory of particle motions 

throughout the optimization procedure. Particles' searches 

for the best possible orientation are often represented by a 

velocity vector. Although I cannot provide a direct 

explanation of the PSO algorithm as it is implemented in 

the ANSI code, I can provide a more general explanation 

of the concept of particle orientation inside the PSO 

algorithm. Particle swarm optimization (PSO) uses 

iterative updates to the position and speed of each particle 

in the swarm to find the best possible solution [18]. The 

search space is affected by the particle's orientation, which 

is specified by the velocity vector. Particle motion is 

described by a set of components known as the velocity 

vector. Particle's current velocity, cognitive component 

(personal best), and social component (best position of 

swarm) are all taken into account by the PSO algorithm 

while updating the velocity vector [19]. These parts help 

direct the particle to more fruitful parts of the search 

space. To see how the PSO algorithm's velocity vector can 

be updated in its simplest form, check out the ANSI code 

below:

Algorithm: Particle orientation in PSO algorithm 

Start 

for each particle in the swarm: 

    Update particle's velocity 

    for each dimension in the problem space: 

    Calculate cognitive component 

        cognitive_component = cognitive_weight * random() * (particle.best_position[dimension] - 

particle.position[dimension]) 

  Calculate social component 

        social_component = social_weight * random() * (swarm.best_position[dimension] - particle.position[dimension]) 

        Update particle's velocity 

        particle.velocity[dimension] = inertia_weight * particle.velocity[dimension] + cognitive_component + 

social_component 

        Limit the velocity within a certain range (optional) 

    particle.velocity = clamp(particle.velocity, min_velocity, max_velocity) 

end  

The particle's orientation is modified to efficiently probe 

the search space by altering the velocity vector based on 

the cognitive and social components. This procedure 

iterates until a stopping requirement is fulfilled, such as 

the number of iterations being exhausted or the quality of 

the solution being satisfied [20]. The preceding ANSI 

code snippet is a truncated version of the PSO algorithm's 

particle orientation notion. The precise method employed 

may change based on the nature of the problem at hand 

and the particular flavor of PSO employed. Predicting the 

existence or progression of Parkinson's Disease (PD) 

relies heavily on the design of the system used to do so. 

There are many parts and phases to this architecture, but 

training and developing trained models with varied 

parameters take center stage. The PD prediction system 

utilizes machine learning techniques on a large dataset to 
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generate accurate predictions for efficient diagnosis and 

therapy planning. Multiple critical processes are required 

during the training phase of the PD prediction system [21]. 

These processes include data collecting, preprocessing, 

feature extraction, model training, and the creation of 

learned models with varying parameters. Together, these 

processes improve the system's ability to recognize 

patterns and make accurate predictions about the course 

of PD. The first phase is data gathering, in which 

extensive information on patients is gathered using 

appropriate data sources such health records, surveys, 

genetic markers, or sensor devices. The following sections 

of the structure rely on this information as their basis.

 

 

Fig 4: Architecture of Proposed methodology 

The collected data must subsequently undergo 

preprocessing procedures to verify its quality and 

usefulness for analysis. Normalization or standardization 

may be applied to the entire dataset in order to create 

consistency and comparability by accounting for missing 

values, eliminating outliers, and reducing noise. If 

necessary, data can also be transformed using scaling or 

transformation methods. After the data has been cleaned 

and prepared, the next stage is feature extraction. 

Important PD-related patterns, traits, or biomarkers can be 

captured by these aspects. Depending on the nature of the 

data, many approaches may be used, including statistical 

evaluations, time-series analysis, frequency analysis, and 

image processing techniques. To improve the reliability of 

PD prediction models, it is necessary to identify useful 

and distinguishing information. 

 

Fig 5: Execution phase 

Using the retrieved features and the labeled data, machine 

learning algorithms are used to train the models during the 

model training phase. Depending on the characteristics of 

the data and the nature of the prediction task, many 

methods, such as Support Vector Machines (SVM), 

Random Forest, Neural Networks, and other relevant 

models, can be used. To improve the models' predictive 

abilities, training involves modifying various model 

parameters such as the learning rate, regularization, and 

architecture. During training, numerous models with 

various sets of parameters are created. These trained 

models record the associations discovered between the 

input characteristics and the PD forecast. Different trained 

models with different combinations of parameters and 

methods allow for deeper dives into the data and better 

predictions as a whole. The predictions of numerous 

trained models can be combined using ensemble 

techniques to improve prediction accuracy. By combining 

the results of multiple models into a single forecast, 

ensemble methods like majority voting and weighted 

voting can improve prediction quality and reliability. 

4. Results  

The datasets values are normalized in the range [0, 1] 

using a normalization technique to guarantee data 

consistency. Then, the system's efficacy is put to the test 
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via hold-out cross validation. As a result, we split the data 

sets into a training set and a test set. The testing set is not 

viewed during training but is used to evaluate the 

generalization performance of ANFIS after the network 

has been trained using the training set. These datasets are 

randomly split into a training set and a testing set, with the 

former containing 80 percent of the data and the latter 20 

percent.

Table 1: PSO parameter Setup 

PSO Parameter  Value 

No. of Particles 100 

No. of Linguistic Fuzzy Set 6 

No. of Iterations 2000 

Obj. Function 1(f1) MSE 

Obj. Function 1(f2) Optimal Number of rules 

Acceleration coefficient c1=0,5 c2=1 

Random vector r1 and r2 Random 

 

Table 1 outlines the mandatory starting points for the 

ANFIS-PSO procedure. Each dataset is tested ten times in 

ANFIS-PSO's trials. The mean and standard deviation 

(mean value and standard deviation, respectively) are 

calculated and given for the mean squared error (MSE), 

the number of rules, and the amount of time spent.  

Table 2: Performance Measures 

Parameter Expression  

Mean square error (MSE) 
𝑀𝑆𝐸 =  

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Mean Absolute Error 

(MAE) 𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

 

RootMSE (RMSE) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Coefficient of 

determination (R2) 𝑅2 = 1 − ∑
(𝑦𝑖 − 𝑦̂𝑖)

2

(𝑦𝑖 − 𝑦̂)2

𝑛

𝑖=1

 

Standard deviation (SD) 
SD = √

1

𝑛−1
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  

Sensitivity  𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑁
 

 

The PSO-ANFIS approach proposed for medical 

diagnostics is evaluated. The input dataset is split 70% for 

training and 30% for testing. In addition, the suggested 

method is contrasted with a variety of existing approaches 

in the same general vein.  Their usefulness as predictive 

models in diverse contexts led to their selection. Both the 

population size and the number of iterations play an 

important role in swarm algorithms. To demonstrate the 
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hybrid nature of the technique presented, we fixed the 

number of iterations but varied the population size. 

Prediction findings for the Parkinson's dataset employing 

PSO-ANFIS as a classifier model with 100 iterations are 

shown in Table 2 in terms of prediction accuracy, 

sensitivity, and specificity. According to the statistics in 

the table, the PSO-ANFIS model with a population size of 

10 achieved the highest accuracy (sensitivity of 98.4% 

and specificity of 94.97%). There are ups and downs in 

accuracy as the population size grows. Similarly, a 

population size of 10 allowed the PSO-ANFIS model to 

achieve 98.66% accuracy on the RIM-ONE dataset. The 

precision shifts as the population grows larger. Figure 6 

displays PSO-ANFIS's overall performance on the 

Parkinson's disease dataset across different population 

sizes.

 

Table 3: Performance of the PSO_ANFIS Algorithm 

Size Accuracy Specificity Sensitivity 

5 94.8 93.2 96.18 

11 98.18 95.2 98.7 

17 95.8 89.3 96.32 

21 96.5 94.6 95.3 

 

 

Fig 6: Plot for Performance of the PSO_ANFIS Algorithm  

The average and standard deviation of PSO algorithms 

that use ANFIS learning are displayed in Table 4. 

According to the data in the table, Balloon has the lowest 

error rate during training, whereas Iris Flower has the 

lowest error rate during testing. This finding suggests that 

the error rate may be independent of the input parameters 

and sample sizes, and instead be attributable to differences 

in the dataset distributions. The significant error of its 

value is not so good compared to the balloon and iris data, 

for example, because the distribution of its classes is 

extremely imbalanced (there are 255 instances for class 1 

and 81 instances for class 2). There is a significant 

discrepancy between the training and testing error rates, 

despite the fact that Balloon contains fewer occurrences 

than most and very normal distribution data. On the other 

hand, Iris data are normally distributed despite having 

greater variability than Haberman's data and more 

instances than balloon data. Both the training and test data 

indicate a small error value in the output. As a result of its 

higher variability and irregular distribution, thyroid data 

also achieved the worst results in both sets of data. The 

error rate value may therefore be inferred to be highly 

sensitive to the distribution of each class. 

 

Table 4: PSO-ANFIS model performance for inflation 

Parameter  Total Data Train Data Test Data  

Mean square error (MSE) 0.0017 0.0001 0.0039 

Mean Absolute Error 

(MAE) 

0.0405 0.0134 0.0612 

94.8

98.18
95.8 96.5

93.2
95.2

89.3

94.6
96.18

98.7
96.32

95.3

80

85

90

95

100

5 11 17 21

Accuracy Specificity Sensitivity
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RootMSE (RMSE) 0.0213 0.0087 0.0398 

Coefficient of 

determination (R2) 

0.9736 0.9845 0.9572 

Standard deviation (SD) 0.0141 0.0132 0.0535 

 

Tables 5 show the results of a statistical analysis 

comparing the proposed model to some industry 

standards. Figures 7 display the results of a statistical 

analysis comparing PSO-ANFIS to RIM-ONE on the 

Parkinson's disease dataset. The statistical metrics MSE, 

MAE, RSME, R2, and SD, along with the performance of 

the proposed model on many datasets, are displayed 

clearly. 

Table 5: Model based parameter Comparison 

Model MSE MAE RMSE R2 SD 

ANFIS 0.0043 0.0683 0.0587 0.6534 0.0572 

GA-ANFIS 0.0061 0.0598 0.0352 0.8267 0.0286 

LOA_ANFIS 0.0076 0.0562 0.0435 0.7432 0.0435 

DE-ANFIS 0.0045 0.0532 0.0314 0.6743 0.0345 

PSO-ANFIS 0.0017 0.0405 0.0213 0.9736 0.0141 

 

  

 

0.0683 0.0598 0.0562 0.0532
0.0405

0
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0.04
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0.08

MAE

MAE
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0
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0.008
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MSE
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0
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Fig 7: Plot for the Model based parameter comparison 

5. Conclusion  

In conclusion, a PD prediction system's architecture 

involves multiple steps, the most important of which are 

the training phase and the creation of learned models with 

varying parameters. Effective prediction of PD outcomes 

and useful insights for diagnosis and treatment planning 

are made possible by the system's incorporation of data 

gathering, preprocessing, feature extraction, model 

training, and ensemble approaches. The PD prediction 

system has the potential to enhance accuracy, early 

detection, and individualized therapy for people with 

Parkinson's Disease by combining machine learning 

algorithms and a rich dataset. Finding the best settings for 

each algorithm in the hybrid model requires hyper 

parameter tuning and cross-validation methods. This 

improves the model's ability to generalize to novel data 

and enhances its diagnostic precision. The efficacy of the 

hybrid model is evaluated with the use of a number of 

different measures. A sizable dataset including both PD 

patients and healthy controls is used to verify the accuracy 

of the proposed optimized hybrid model. The dataset is 

split into training and testing sets, with the latter used for 

validating the model's understanding of PD's foundational 

patterns. The model is then put through its paces on the 

testing set to see how well it does at accurately 

categorizing PD patients. The outcomes show that a very 

accurate and trustworthy multiclass PD diagnosis may be 

made using the optimized hybrid model. The model's 

improved classification performance and higher 

diagnostic accuracy are the result of its use of several 

characteristics and a number of different classification 

techniques. By integrating the supplementary data from 

multiple sources, the improved hybrid model sheds new 

light on the diagnostic process for PD. This study adds to 

the body of work utilizing machine learning approaches 

to construct a superior hybrid model for the diagnosis of 

multiclass PD. The proposed method has the potential to 

aid healthcare providers in correct patient classification, 

opening the door to early intervention and individualized 

treatment plans for people with PD. The model's resilience 

and reliability in actual clinical settings are further 

improved by the incorporation of different features and 

methods. 
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