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Abstract: Cognitive radio networks have been proposed as a feasible option for the fifth generation (5G) wireless system to address the 

different demands. These networks utilise intelligence to access a principal user's underutilised channel. Cognitive radio networks have 

developed as a potential solution to the problem that permits unlicensed users to get dynamic spectrum while licenced users remain 

inactive. One of the many critical cognitive radio processes is channel assignment to the unlicensed user. Due to the variability of 

channel propagation characteristics, sporadic availability of licenced channel, frequent hand-offs, and demand for critical user security, 

finding a viable route is more challenging. Additionally, the capability of spectrum management at all network levels is required by the 

inclusion of opportunistic spectrum access in a cognitive radio network. If there are too many levels, management costs increase. As 

additional layers are added, performance becomes slower.In cognitive radio networks, this study proposes a unique method for cross-

layer model-based power transmission management with routing optimisation. Here, the Levenshtein cross layer model is used to 

manage power transmission using a software-defined spectrum. Cross layer-enabled transceiver takes place in two separate lower layers; 

physical (PHY) and data link layer (DLL).Then, reinforced multilayer Q-graph colony optimisation is used to do the routing 

optimisation. Throughput, lifespan, jamming prediction, energy efficiency, routing delay, and packet delivery ratio are all included in the 

simulation study. Proposed technique attained throughput of 96%, lifetime of 73%, jamming prediction of 82%, energy efficiency of 

65%, routing latency of 55%, packet delivery ratio of 88%; existing LEACH attained throughput of 92%, lifetime of 68%, jamming 

prediction of 77%, energy efficiency of 59%, routing latency of 52%, PDR of 85%, CWSN attained throughput of 95%, lifetime of 72%, 

jamming prediction of 79%, energy efficiency of 63%, routing latency of 53%, packet delivery ratio of 86%.The performance of 

proposed CLM-CRN-MLT model increases the efficiency of the network and attains power consumption. 

Keywords: cross layer model, power transmission control, routing optimization, machine learning, cognitive radio networks 

1. Introduction: 

Cognitive Radio Wireless Sensor Networks (CRWSN) 

utilise battery-powered nodes. Lack of energy is a 

serious issue with CR-WSN, especially in situations like 

wartime where quick and forceful response is required. 

The performance of CR-WSN is hampered by node 

battery level. Energy consumption to send a packet is a 

major challenge that researchers must overcome in order 

to build a routing protocol for CR-WSN. In CR-WSN, a 

sizable number of nodes are present. Each node in the 

CR-WSN is limited by the battery. The foundational 

technology for next-generation wireless networks is 

cognitive radio. Each node in a cognitive radio network 

(CRN) has a cognitive radio for wireless 

communications that makes use of modern 

advancements in RF model, signal processing, and 

communications software [1]. Because such a node may 

access spectrum dynamically, a CRN has a lot of 

potential to increase spectrum efficiency. Further well-

known primary/secondary network arrangement, 

cognitive radio is a potential for many significant 

applications due to its capacity to sense, adapt, and learn. 

For the US military, public safety, and future mobile 

base stations [2], CR is, for example, the most crucial 

technology for radio interoperability. A CRN has some 

distinctive characteristics. There may be a variety of 

available frequency bands at a node, each of varying 

sizes. A node can use multiple available frequency bands 

simultaneously because CR is software-based. From the 

perspective of wireless networking, these new CRN 

features present an entirely new set of algorithm design 

and protocol implementation research issues. As a result, 

use of CR method in distributed scenarios is still in its 

infancy, and several unsolved research issues are 

discussed in [3]. In order to particularly address 

problems of end-to-end CR performance over multiple 

hops as well as challenge of shielding PU transmissions 

from interference with limited environmental knowledge, 

a CR routing protocol (CRP) for ad hoc networks is 

suggested in this research. Traditional routing algorithms 

try to optimise latency and hop count from start to finish 
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for wireless ad hoc networks. Traditional routing 

techniques either greedily route packets depending on 

target location or use limited network data spanning 

many hops to optimise choice of path [4]. Additionally, 

they employ network-wide broadcasting without 

localisation data. The literature on these protocols is 

extensive. These methods, however, are not appropriate 

for CR operation since they do not permit simultaneously 

choosing the spectrum band or taking into account the 

impact that routes may have on other licenced devices 

using spectrum. Several works on CR networks have 

recently been proposed to address these issues [5, 6].  

The paper is organized as follows: Section II lists the 

published work in relevant areas. Section III describes 

proposed design and methodology. Section IV explains 

simulation of several scenarios and provides extensive 

experimentation to investigate our approach. Sections V 

discuss flow of proposed algorithm, testing in field to 

give implication of our approach and conclusion. 

2. Related works: 

Studies have indicated that the clustering technique 

introduced by the CWSN's routing protocols can enhance 

network performance. LEACH, a common cluster 

routing protocol, is presented to CWSN. In this paper, 

LEACH and TEEN protocols were compared, as well as 

TEEN and the advanced threshold sensitive energy 

efficient sensor network (A-TEEN) protocol [7]. Work 

[8] suggested that the Internet needs a knowledge plane 

separate from data as well as control planes. According 

to author [9], constructing such a "cognitive network" 

would necessitate AI-based cognitive methods rather 

than incremental method ones. Intelligence must be 

incorporated into CRN architecture as well as protocols 

across stack in order to assist CRNs in becoming 

cognitive networks. Some obstacles that learning 

algorithms in CRNs face, as outlined in [10]. Numerous 

sensing methods have been proposed during the past ten 

years [11] and are based on matching filter, energy 

detection, cyclostationary detection, wavelet detection, 

and covariance detection [12]. Cooperative spectrum 

sensing was also suggested in [13] as a way to address 

hidden terminal issues that are inherent in wireless 

networks and improve sensing accuracy. Cooperative CR 

have also been looked at in the literature in recent years, 

as in [14]. [15] contains recent surveys on cognitive 

radios. To be genuinely cognitive, CR must be able to 

learn as well as reason in addition to being aware of its 

environment [16]. Following the trailblazing concept of 

[18], a cognitive engine, which was recognised as 

foundation of a CR [17], can offer these characteristics. 

Using machine learning algorithms, a cognitive engine 

coordinates the cognitive radio's actions. However, the 

application of machine learning algorithms to cognitive 

radios has only recently received more attention [19]. 

These methods are categorized as either supervised or 

unsupervised learning. For cognitive radio applications, 

the authors of [20] have thought about using support 

vector machines and supervised learning based on NN. 

For DSS applications, unsupervised learning, such as 

reinforcement learning (RL), is considered in [21]. In 

[22], it was demonstrated that the distributed Q-learning 

algorithm works well for a specific cognitive radio 

application.  

3. System model: 

A multi-hop CRN comprising M PUs and N SUs is 

considered. The fixed spectrum allocation regulation 

dictates which spectrum bands are allotted to PUs. When 

SUs discover that the PUs do not own any frequency 

bands, they opportunistically transmit data even though 

they do not occupy any licensed channels. Data 

Transmission Channel (DTC) as well as Common 

Control Channel (CCC) are two types of channels that 

are accessible from each SU node ni. Data transmission 

relies on the DTC, which can be represented as Ci = c1, 

c2,.., for SU niDTC. cm}; SUs, on the other hand, use the 

CCC to exchange the negotiation. If at least one common 

DTCcCiCj exists, a directed communication link is 

established at any time between SU ni and nj. Figure 1 

depicts the model of the network. The two centralized 

Primary User (PU) networks and the multi-hop CRN 

coexist in the networking scenarios. Data packets are 

generated by the source SU and sent to destination node 

via intermediate SUs in a multi-hop fashion, as depicted 

in Figure 1. Each PU uses a licenced frequency to 

interact with the PU base station, while intermediate SUs 

in every hop transmit data via PU channel when 

spectrum band is not in use. 
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Fig-1. Multi-hop cognitive networking scenarios  

Additionally, each SU node has a specific queue for each 

traffic flow, and each data stream's packet arrival 

procedure runs independently of the others. The 

occupation paradigm for PUs is thought of as an 

ON/OFF process. Equation (1) depicts probability 

density function (PDF) of OFF periods, during which 

PUs do not occupy channel. 

𝑓(𝑡) = {𝜃𝑑𝑒
−𝜃𝑑𝑡 𝑡 ≥ 0
0 𝑡 < 0

,   (1) 

where θd denotes the PU's departure rate and f(t) is PU 

channel's idle probability at time step t. As a result, eq. 

(2) is used to represent the likelihood that the PU 

channel's idle period will be larger than its duration τ: 

𝑃(𝑡 ≥ 𝜏) = ∫
𝜏

∞
 𝑓(𝑡)𝑑𝑡 = 𝑒−𝜃𝑑𝜏  (2) 

where τ is the amount of time the PU channel has been 

idle. The likelihood of PU and SU colliding in the 

duration is then given by equation (3): 

𝑃collision = 1 − 𝑃(𝑡 ≥ 𝜏) = 1 − 𝑒−𝜃𝑡𝜏  (3) 

to get the predicted mean µ and variation σ for the PU 

departure rate, which is expressed as θd (µ, σ). The 

parameterized spectrum statistic is believed to be nearly 

static in this work because of how slowly it changes. 

Only a small amount of positioning technology allows 

each SU to determine its own location. 

Spectrum based energy efficient Levenshtein cross 

layer model: 

It is envisaged that centralised PU networks will coexist 

with a distributed CRN that has N stationary SUs (SU1, 

SU2,..., SUN). The transmitter and receiver of nodes A 

and B must be set up to use the same channel in order for 

them to communicate with one another. When 

employing dedicated radio interfaces to communicate 

with previous-hop and next-hop, channel switching every 

packet is not required. SU j's interface 1 is set to channel 

ch2, SU i's interface 2 is set to channel ch1, and all 

nodes' interface 0 is set to CCC for communication with 

SU k.Node j no longer needs to change the channel at its 

interfaces in order to accept, forward, and broadcast 

packets. The interface must switch from the configured 

channel to recently chosen channel if PU shows up on 

ch1 or ch2 again. In our suggested research, this channel 

change is conducted out locally between impacted 

nearby nodes without disrupting rest of route. 

Cross-layer model 

The proposed study takes into account cross-layering 

across the lowest three protocol stack levels, which are 

Network, Link, and Physical (see Fig. 2). For CRN, 

cross-layering is essential. Spectrum sensing, data or 

control packet transmission and reception, and other 

physical layer processes are important as well. The IEEE 

802.22 standard has imposed limitations on sensing 

performance rather than calling for a particular approach. 

The limitation is to set the detection probability Pd at 0.9 

or false alarm rate Pf at 0.1 to safeguard PU from SU 

gearbox. Needed minimum sensing time for each 

channel as well as total number of channels to be sensed 

determine sensing length. Sensing periods per channel 

vary between different sensing techniques.
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Fig 2. Cross-layer model  

Due to the lower computational and implementation 

needs of Energy Detection (ED), cooperative sensing is 

assumed. The ED approach compares signal power to a 

threshold to assess whether transmission is occurring on 

the sensing channel. As a result, SUs are configured to 

pause transmission during sensing period to prevent false 

alerts [9]. SUs consequently switch between sensing and 

transmitting. The physical layer characteristics must be 

changed in line with selected transmission spectrum 

because these values differ for various wireless channels. 

As a result, SDB provides input to the physical layer in 

form of reconfiguration parameters. The network layer 

offers the channel list of one-hop neighbours.For the 

topology of the CRN, the existence of shared channels 

between the nodes is just as crucial as their physical 

separation. Then, SDB runs the channel choice 

calculation to select the reasonable channel at each 

bounce after receiving input from three layers. Chosen 

channel is sent into network layer during route 

construction as well as used at link layer to choose 

parameters for physical layer's reconfiguration.Wireless 

devices that are spectrum aggressive (CRs) are designed 

to operate over a broad frequency range. As a signal 

moves across a wireless channel, its strength diminishes 

with increasing distance. Theoretical maximum bit-per-

second capacity of the link between SU i and its 

neighbour SU j utilising channel l is given by 

𝐶𝑙(𝑖, 𝑗) = 𝐵𝑙 × log (1 +
𝑃𝑟(𝑖,𝑗)

𝐵𝑙×𝑁0
)where𝑃𝑟 (𝑖, 𝑗) is received 

power at SU 𝑗 located at (𝑖, 𝑗) from SU 𝑖. N0 is thermal 

noise power density, and Bl is the channel l's bandwidth. 

Equation (4) provides the non-Line of Sight (LOS) path 

between SU i and j as described by Pr (i, j) as follows: 

𝑃𝑟(𝑖, 𝑗) = 𝑃𝑓(𝑖, 𝑗) [𝑎(𝑖, 𝑗) (
𝑑(𝑖,𝑗)

𝑑𝑟𝑒𝑓
)
−𝑛

] 𝜂𝑠  (4) 

According to equation (5-7), the amount of time (Tpkt) 

needed to send a packet of length S bytes over a 

connection (i, j) depends on both link's capacity and 

distance between the nodes. 

𝑇𝑝𝑘𝑡(𝑖, 𝑗) = 𝑇𝑡𝑟,𝑙(𝑖, 𝑗) + 𝑇𝑝𝑟,𝑙(𝑖, 𝑗)  (5) 

𝑇𝑡𝑟,𝑙(𝑖, 𝑗) =
𝑆×8

𝐶𝑙(𝑖,𝑗)
  (6) 

𝑇𝑝𝑟,𝑗(𝑖, 𝑗) =
𝑑(𝑖,𝑗)

𝑉
  (7) 

Ttr,(i, j) is amount of time needed to transmit a single 

packet over link (i, j), Tpr,l(i, j) is amount of time needed 

to propagate packet's initial bit over link (i,j), and V is 

propagation velocity, which is 3 108 m/s. The 

propagation distance in ad hoc networks is typically less 

than 1 km, making Tpr(i, j) very modest compared to 

Ttr,l(i, j), and it is frequently disregarded. Theoretically, 

n data packets can be sent in nTtr seconds, but only if the 

channel is open for the entire transmission. But in case of 

CRNs, things are different since SUs transmit on PU 

channel, and length of time PU channel is open is 

determined by the PU activity pattern. 

The Levenshtein nearest centroid classification (LNCC) 

model, which is used in proposed study, uses 
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Levenshtein distance calculation to represent user 

signal's attributes before feeding it into NC classifier for 

classification. In this study, energy for forecasting users 

on spectrum band serves as starting point for LNCC 

model. As shown in eq. (8), energy received at ith CR 

user in kth sensing area is thus written: 

𝑆𝑖𝑘 =
∑𝑗=1
𝑁  𝐸𝑖𝑘(𝑗)

𝑛
  (8) 

Energy sample received by kth sensing region for 

associated ith CR user is represented by Eik(j) in 

equation above, where N is total number of samples. 

This study uses NC, an LNCC, to classify observations 

using quantitative variables using the energy detection 

function mentioned above that is given in Equation (9). 

Dis (ai,C) should represent the distance between the 

centroids represented by C C1, C2,...,Cn. Each centroid 

representing either H0 or H1 is measured in terms of 

distance. The present sensing result is classed as either 

H0or H1 based on the measured distance. Levenshtein 

distance is used to calculate distance first, followed by 

the NC classifier for classification. The exact distance 

between vectors is computed using the Levenshtein 

distance. Due of the timeframe, each collaborative virtual 

sensing method used is unique. 

Therefore, the Levenshtein distance, which examines the 

distance between current sensing result and sensing 

classes, is used in this work to evaluate the similarity 

between sensing outcomes. The mathematical expression 

of Levenshtein distance between the sensing results u 

and v is provided in eq. (9): 

𝐿𝑒𝑣𝑤𝑤(|𝑝||𝑞|) =

{
 
 

 
 max(𝑝, 𝑞) if min(𝑝, 𝑞) = 0

min𝐿𝑒𝑦𝑚𝑝(𝑝 − 1, 𝑞) + 1

min𝐿𝑒𝑣𝑚𝑤(𝑝, 𝑞 − 1) + 1
min𝐿𝑒𝑣𝑤𝑤(𝑝 − 1, 𝑞 − 1) + 1𝑤𝑝;𝑟𝑞

  (9) 

According to Equation (9), 1upvq is the function that 

equals 0 when up = vq and 1 otherwise. Levuv(|p||q|) on 

the other hand, is the measurement of the separation 

between first p sensing regions of u and the first q 

sensing regions of v. As previously stated, the results of 

sensing have p elements that correspond to u and q 

elements that correspond to v. The Levenshtein distance 

function is used to compare the sensing reports from the 

training and test samples. If the distance is smaller, the 

output of the classifier is robust. Otherwise, the result is 

not strong. If centroids were taken into account when 

calculating the ap, for example, the sensing report ap 

would have to fall under this category.The candidate set 

of centroids for ap is denoted as N (ap) such that N (ap) 

∈ C1, C2, … ,Cn. The N (ap) is used to evaluate the 

present sensing outcome in conjunction with every 

member of each sensing class. As M ap(l), the 

membership function is abbreviated. Additionally, define 

EV l w as circumstance in which w elements in M ap(l) 

exceed a predetermined level. After that, mathematical 

expression of per-class centroids with present sensing 

result related to class l is given in equation (10): 

𝜇𝑗 =
1

𝐶𝑙
∑𝑝∈𝐶𝑗  𝑎𝑝  (10) 

According to Equation (10), ap denotes the collection of 

sample indices that correspond to class l B. Local choice 

for pth CR user for lth class represented by Spl is given 

in eq. (11) in accordance with the projected function. 

𝑆𝑃𝑉 = argmin/∈𝐵 (𝜇𝑙 − 𝑎)  (11) 

Equation (11), which provides the expected function, 

predicts that the SUs will utilise the licenced spectrum 

whenever they are idle after monitoring PU activity and 

identifying potential attackers. 

Reinforcement multilayer Q-graph colony 

optimization: 

Assume a CRN with |N| uniformly distributed SUs and 

|M| uniformly distributed PUs, where |N| is set of SU 

nodes and |M| is set of PU nodes. Consider that there are 

numerous source SUs that are producing data packets to 

deliver in a multi-hop fashion through intermediary SUs 

to the destination SU node. 
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Fig 3 multihop routing architecture in proposed CRN networks 

Every transmitter PU can relay data streams from other 

transmitter PUs, as shown in Fig. 3. Additionally, each 

transmitter PU can generate several data streams, which 

receiver PU can receive. Because it is adapted to data 

traffic in a way that closely resembles the LRD 

behaviour by several orders of magnitude, an MMPP is a 

useful method for simulating data traffic. DT-MMPP 

time steps in the PUs and many time steps in data 

transmission structure of SUs are 

synchronised.Additionally, we presumptively can 

simulate the state change of arriving traffic from other 

SUs for every SU using Markovian models.For the 

purpose of attaining expected restricted cost capability, 

the SU hubs require state progress likely capabilities. 

Following equation is then used to update the Q-value 

for the subsequent time step. (12) 

𝑄𝑖
𝑡+1(𝑠𝑖, 𝑎𝑖) = (1 − 𝜈(𝑡))𝑄𝑖

𝑡(𝑠𝑖, 𝑎𝑖) +

𝑣(𝑡) (
∑a−𝑖   (𝑊𝑖(𝑠𝑖, 𝑎𝑖 , a𝑗𝑖) + 𝐿𝑖(𝑠𝑖, 𝑎𝑖 , a−𝑖))∏𝑘∈𝐼𝑖y,𝑡  𝜋𝑘

′ (𝑠𝑘, 𝑎𝑘) + ∑𝑏−𝑖  𝑍𝑖(𝑠𝑖, 𝑎𝑖 , b−𝑖)∏𝑗∈𝐻𝑖(h
′  𝜋𝑗

′(𝑠𝑗, 𝑏𝑗))

+𝛽min𝑐𝑖  𝑄𝑗
′(𝑠𝑖

′, 𝑐𝑖)
)

 (12) 

According to (12), since SU i's average one-hop delay is 

dependent on the actions of SUs in its neighbourhood, 

SU i needs their strategies in order to update Q-value. 

Additionally, for SU i to update Q-value, SUs in Hi's 

strategies are required. But the problem is that SU i is 

unaware of tactics used by nodes in Ii and Hi, and getting 

this knowledge from other SUs through data exchange 

violates non-cooperative aspect of routing issue by 

increasing network overhead. In following, we offer a 

conjecture-based solution to this issue that does not call 

for communication between contending SUs. 

SU i does not know values 𝑓𝑖
𝑡(𝑠𝑖 , a−𝑖) =

∏𝑘∈𝐼𝑗∖{𝑖}
 𝜋𝑘
𝑡 (𝑠𝑘 , 𝑎𝑘)  and𝑔𝑖

𝑡(𝑠𝑖 , b−𝑖) =

∏𝑗∈𝐻𝑖∖𝑖}
 𝜋𝑗
𝑡(𝑠𝑗 , 𝑏𝑗) to update Q-value, but it can evaluate 

these values. To evaluate𝑓𝑖
𝑡(𝑠𝑖 , a−𝑖) and 𝑔𝑖

𝑡(𝑠𝑖 , b−𝑖) SU i 

requires to maintain two 

functions𝑞1,𝑖(𝑠𝑖 , 𝑎𝑖) and 𝑞2,𝑖(𝑠𝑖 , 𝑎𝑖) updated utilizing 

following eq. (13,14) 

𝑞1𝑗
𝑡+1(𝑠𝑖 , 𝑎𝑖) = (1 − 𝑣(𝑡))𝑞1𝑗

𝑡 (𝑠𝑖 , 𝑎𝑖) +

𝑣(𝑡) (∑  a−𝑖
  (𝑊𝑖(𝑠𝑖 , 𝑎𝑖 , a−𝑖) + 𝐿𝑖(𝑠𝑖 , 𝑎𝑖 , a−𝑖))𝑓‾𝑖

𝑡(𝑠𝑖, a−𝑖) + 𝛽min
𝑐𝑖
 𝑞1,𝑗
𝑡 (𝑠𝑖

′, 𝑐𝑖))

 (13) 

𝑞2𝑗
𝑡+1(𝑠𝑖 , 𝑎𝑖) = (1 − 𝑣(𝑡))𝑞2𝑗

𝑡 (𝑠𝑖 , 𝑎𝑖) +

𝑣(𝑡) (∑  b−𝑖
 𝑍𝑖(𝑠𝑖 , 𝑎𝑖 , b−𝑖)𝑔‾𝑖

𝑡(𝑠𝑖 , b−𝑖) + 𝛽min
𝑐𝑖
 𝑞2𝑗
𝑡 (𝑠𝑖

′, 𝑐𝑖))

 (14) 

Where f (s_i,a_(-i)) and g (s_i," " b_(-i)) are, 

respectively, estimates of f (s_i,a_(-i)) and g (s_i," " b_(-

i)). In accordance with equations (7) and (8), q_(1,i) 

(s_i,a_i) is updated utilizing average one hop delay plus 

interference cost of SU i, and q_(2,i) (s_i,a_i) is updated 

utilizing delay of a chosen next-hop to destination that 

are fed back to SU i. The following equation(15, 16) can 

be written using the Boltzmann distribution. 
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𝜓1,𝑖
𝑡 (𝑠𝑖 , 𝑎𝑖) =

e−𝑞𝑖
𝑡(𝑠𝑖,𝑎𝑖)/𝜏

∑  𝑐∈𝐴𝑖
 e
−𝑞𝑖,

𝑡 (𝑠𝑖,𝑐)/𝜏
  (15) 

𝜓2,𝑖
𝑡 (𝑠𝑖 , 𝑎𝑖) =

e
−𝑞2,𝑗

𝑡 (𝑠𝑖,𝑎𝑖)/𝜏

∑  𝑐∈𝐴𝑖
 e
−𝑞2𝑖

′ (𝑠𝑖,𝑐)/𝑡
  

 (16) 

Where  is a positive parameter. Then, evaluations of 

𝑓𝑖
𝑡(𝑠𝑖 , a−𝑖) and 𝑔𝑖

𝑡(𝑠𝑖 , b−𝑖) are updated as eq. (17,18) 

𝑓𝑖
𝑡(𝑠𝑖 , a−𝑖) = 𝑓‾𝑖

𝑡−1(𝑠𝑖 , a−𝑖) − 𝑢𝑖
𝑠𝑖,−𝑖[𝜓𝑖,𝑗

𝑡 (𝑠𝑖 , 𝑎𝑖) −

𝜓1,𝑖
𝑡−1(𝑠𝑖,, 𝑎𝑖)]  (17) 

𝑔‾𝑖
′(𝑠𝑖 , b−𝑖) = 𝑔‾𝑖

′−1(𝑠𝑖 , b−𝑖) − 𝑢𝑖
𝑠𝑖,𝑏−𝑖[𝜓2,𝑖

′ (𝑠𝑖 , 𝑎𝑖) −

𝜓2,𝑖
′−1(𝑠𝑖 , 𝑎𝑖)]  (18) 

Where 𝑢𝑖
𝑠𝑖,𝑎−𝑖 > 0 and 𝑢𝑖

𝑠𝑖,𝑏−𝑖 > 0 are conjecture belief 

factors. The formula below updates Q-value for SU i 

based on estimates derived in (19). 

𝑄𝑖
𝑖+1(𝑠𝑖 , 𝑎𝑖) = (1 −

𝑣(𝑡)𝑄𝑖
𝑡(𝑠𝑖 , 𝑎𝑖) +𝑣(𝑡) ((∑  a−𝑖

  (𝑊𝑖(𝑠𝑖 , 𝑎𝑖 , a−𝑗) +

𝐿𝑖(𝑠𝑖 , 𝑎𝑖 , a−𝑖)) 𝑓‾𝑖
′(𝑠𝑖 , a−𝑖) +

∑  b−𝑖
 𝑍𝑖(𝑠𝑖 , 𝑎𝑖 , b−𝑖)𝑔‾𝑖

𝑡(𝑠𝑖 , b−𝑖)) + 𝛽min
𝑐𝑖
 𝑄𝑖
𝑡(𝑠𝑖

′, 𝑐𝑖))

 (19) 

The Boltzmann distribution is used to derive method of 

SU i in response to methods of other SUs from the 

following equation (20). 

𝜋𝑖
𝑡(𝑆𝑖 , 𝑎𝑖) =

e−𝑄𝑖
𝑡(𝑠𝑖,𝑎𝑖)/𝜏

∑  𝑐∈𝐴𝑖
 e
−𝑄𝑖

𝑡(𝑠𝑖,𝑐)/𝑡
  (20) 

When collecting characteristics during the graph 

convolution calculation, nodes with an excessive number 

of neighbours will have a significant gap with other 

nodes. We define standardised adjacency matrix as A i,j 

= D 1/2 i,j A i,jD 1/2 i,j in order to get around this issue. 

Two graph convolutional layers later, eq. (21) yields 

output tensor H. 

𝐻 = ReLU (�̃�𝑖,𝑗 (ReLU(�̃�𝑖,𝑗𝑋𝑊𝑔
(0)
+ 𝑏𝑔

(0)
))𝑊𝑔

(1)
+

𝑏𝑔
(1)
)  (21) 

Where 𝑊𝑔
(0)
∈ 𝑅𝐹×𝐶 , 𝑏𝑔

(0)
∈ 𝑅𝐶×1,𝑊𝑔

(1)
∈ 𝑅𝐶×𝑍 are 

weights that required to be trained in Actor method. The 

distinctive dimensions of output following graph 

convolution are C and Z. One-hot codes, which stand in 

for distinct ID of each node, are the building blocks of 

both vectors. You can use (22) to get state vector of 

current environment S. 

S =  Concatenate(Flatten (𝐻), 𝑙, 𝑑)  (22) 

Fully connected NN of Actor method will be fed state 

vector S as its input, and its output will be the matching 

action vector R N1. Action vector output by Actor fully 

connected layer must be filtered using mask vector 

because network architecture is typically not fully linked. 

Adjacency data of node where packet is situated is 

represented by the vector mask. Eq. (23) can be used to 

compute it. 

mask = 𝐴𝑖,𝑗
𝑇 𝑙  (23) 

where A T i,j is adjacency matrix's transpose. Setting 

mask vector has two main goals: to reduce the decision 

space and prevent data packets from being forwarded to 

nodes that are not neighbours. The Actor model's final 

output can be generated using equation (24) 

𝜇 = softmax(mask⨀ (𝑊𝑎𝑆 + 𝑏𝑎)) 

 (24) 

whereWa,ba are weights of completely connected layer 

and stands for the Hadamard product. The objective 

function is utilised to identify the particles by framing 

fitness value as a pop particle. Population is considered 

to be composed of PParticles, and the FParticle is utilised 

to evaluate the fitness value. The random creation of the 

target value, the FParticle, and termination in target 

condition in PSO all contribute to velocity.  

1. The particle mentions dimension with position as well 

as average length travelled and is considered to be from 

the cluster head. 2. Based on the population's size, 

random distribution is used. 3. Using the Euclidean 

distance equation (25), path distance is calculated based 

on fitness value at each node. 

PD = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
  (25) 

4. To achieve intended outcome in particle estimate with 

the least amount of aggregation, new particle is produced 

from previously determined fitness value. (i) According 

to the specified manipulation, as shown in eq. (26) 

velocity is achieved in particle location with regard to 

rate and particle position is modified correspondingly. 

VelN = 𝜌 ∗ 𝑉𝑒𝑙old 
+ 𝜌1(FParticle−CP Particle ) +

𝜌2(FParticle−CP Particle )  (26) 

According to equation (27) in the PSO node, the new 

location is calculated using old value and velocity. 

 Position N = OLDN + VelN  (27) 

So, the next particle travels with measured velocity and 

position when it arrives. 5. Fitness value is calculated 

using position's new value. 6. Comparison of the new 

and old fitness values is used to determine the next path, 

and the new position is used by equation (28), which 

specifies the measured iteration process. 
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if FNNEW < FNOLDFNOLD = FNNEW (28) 7. Best inter-cluster aggregation path is supposed to be 

iteration in which highest fitness value obtained of best 

fitness.

Proposed routing algorithm: 

Input: batch size, 𝜃𝜇
∗
 

Load weights: 𝜃𝜇
∗
 for target Actor method 

Produce data packet 𝑝, utilizing𝜃𝜇∗ and stochastic OU process to find its next hop 𝑎 

if 𝑝 has arrived at its destination then done = True 

else 

observe network to get new state, evaluate reward 𝑟 for 𝑝 → 𝑎 and append experience replay 

𝑝 → state : = newstate; 𝑝 → location : = location 

list with {𝑝 → state, 𝑝 → 𝑎, 𝑟, newstate, done } 

if not done then 

use 𝜃𝜇
∗
 to find its next hop 𝑎 

𝑝 → 𝑎 ≔ 𝑎 

send data packet 𝑝 

end if 

4. Performance analysis: 

The proposed model is implemented in the network 

simulator NS2. The simulation is performed for the 

mobile nodes in the region coverage of 1000 m × 1000 m 

with the standard distance of 1 Km for the total 

simulation time of 100 seconds. The node mobility for 

the movement is considered in the range of 10 m/sec to 

50 m/sec. Every node in the network exhibits the equal 

transmission range of 250 meters. The node count is 

varies between 50 – 100 nodes. The node transmission 

power is stated as 0.660W and receiving power of nodes 

are defined as 0.395W with the initial energy level of 

100J. 

where A is size of bounded domain G and G is a plane-

bound domain in our simulation process. Network 

topology is depicted in Figure 4. Figure 4a depicts route 

that source node, SU node n24, takes via DQN to the 

destination node, SU node n10. Figure 5b depicts SU 

node n22 as a newly joined source node that learns 

routing protocol from expert source node n24 and routes 

messages. Relay nodes n0 and n6 have both moved, and 

topology of the network has changed. Additionally, SUs 

have access to ten licensed channels and forty transmit 

power levels: 100, 120, 140, . . . , 1000 mW}

 

Fig 4. Network topology consisting of 30 SUs: (a) Route establishment by self-learning, and (b) route establishment by 

apprenticeship learning. 

The assessment is done on a network that is 1000 × 1000 

m wide and has packet sizes of 2500 bytes 500 broadcast 

packets per session is the maximum allowed. Total 

spectrum will be accessible in the range of 54 to 72 
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MHz. The only available bandwidth for CRs is 2, 4, and 

6 MHz. The CCC has a 2 MHz bandwidth. The 

simulation results show that the feasible target of our 

distributed method is near to upper bound. Since the 

ideal arrangement (obscure) lies between upper bound as 

well as possible arrangement got by our circulated 

calculation, we infer that outcomes acquired by our 

appropriated calculation are significantly nearer to the 

ideal arrangement and are subsequently profoundly 

serious. 

We take into account 100 distinct network instances in 

this study. In a 100x100 area, every network has either 

|N | = 20, 30, 40, or 50 nodes distributed at random. The 

appropriate dimensions are used to normalize the 

distance, rate, and power density units. The network is 

composed of |M| = ten distinct frequency bands. 

However, only a subset of these frequency bands might 

be accessible at each node. There are |L| = 3 or 5 sessions 

among these nodes; the sessions' source and destination 

nodes are chosen at random, minimum rate needs is 

chosen at random within [1, 10]. Each node's maximum 

transmission range is assumed to be 20.  

CRN analysis based on proposed model for carious 

network scenario: 

We discovered that the model offered an optimized 

configuration to us. The model calculates these PHY 

layer output configuration parameters in accordance with 

the application's requirements. Figure 5 depicts them on 

the source node. In this case, the primary constraint 

imposed by the application is that the delay must not be 

longer than one millisecond and that the BER must be 

less than or equal to 103. The model estimates that the 

transmission power is 5 watts, so the appropriate 

modulation scheme, 16DPSK in this instance, is chosen. 

The problem is solved by the model by taking into 

account two main parameters: BER is supposed to be 

less than 103. SDR power will remain available for more 

pressing scenarios as a result of this. Method determines 

the PHY layer's output configuration parameter in 

accordance with application requirements. Table 4 shows 

them as a node. The application's fundamental restriction 

in this case is that the data rate must strictly be less than 

or equal to 8 kbps, and delay can be tolerated up to 2 

ms/2 hops. In this instance, where mobile SDRs have 

moved far apart, the PHY layer can be set up in two 

different ways depending on the application's needs. 

Table-1 Comparative analysis based on various network topology between proposed and existing technique 

Dataset Techniques Throughput Lifetime Jamming 

prediction 

Energy 

efficiency 

Routing 

latency 

PDR 

PHY 

layer 

LEACH 88 71 59 77 39 91 

CWSN 89 73 61 79 42 93 

CLM_CRN_MLT 91 75 63 81 43 95 

Peer-to-

peer 

topology 

nodes 

LEACH 91 72 62 79 45 92 

CWSN 93 75 65 83 49 94 

CLM_CRN_MLT 95 76 66 85 51 96 

Table-1 shows analysis based on various network topology. Here network topology compared are PHY layer and Peer-to-

peer topology nodes in terms of throughput, lifetime, jamming prediction, energy efficiency, routing latency, PDR. 
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(a) throughput (b) lifetime 

 

(c) jamming prediction 

 

(d) energy efficiency 

 

(e) routing latency 
 

(f) PDR 

Fig-5 analysis based on PHY layer network modelin terms of (a) throughput,(b) lifetime,(c) jamming prediction,(d) energy 

efficiency,(e) routing latency,(f) PDR 

The above figure 5 (a)- (f) shows comparison based on 

PHY layer network analysis. The proposed technique 

throughput of 91%, lifetime of 75%, jamming prediction 

of 63%, energy efficiency of 81%, routing latency of 

43%, PDR of 95%; existing LEACH throughput of 88%, 

lifetime of 71%, jamming prediction of 59%, energy 

efficiency of 77%, routing latency of 39%, PDR of 91%, 

CWSN attained throughput of 89%, lifetime of 73%, 

jamming prediction of 61%, energy efficiency of 79%, 

routing latency of 42%, packet delivery ratio of 93%.   

 

(a) throughput 

 

(b) lifetime 
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(c) jamming prediction 
 

(d) energy efficiency 

 

(e) routing latency 
 

(f) PDR 

Fig-6 analysis based on Peer-to-peer topology nodes network model in terms of (a) throughput,(b) lifetime,(c) jamming 

prediction,(d) energy efficiency,(e) routing latency,(f) PDR     

Figure 6 (a)- (f) analysis for Peer-to-peer topology nodes 

network model is shown. Here proposed technique 

attained throughput of 95%, lifetime of 76%, jamming 

prediction of 66%, energy efficiency of 85%, routing 

latency of 51%, PDR of 96%; existing LEACH attained 

throughput of 91%, lifetime of 72%, jamming prediction 

of 62%, energy efficiency of 79%, routing latency of 

45%, PDR of 92%, CWSN throughput of 93%, lifetime 

of 75%, jamming prediction of 62%, energy efficiency of 

79%, routing latency of 45%, PDR of 92%.   

 

Table-2 analysis based on number of CRN nodes and number of episodes 

Network 

parameters 

Techniques Throughput Lifetime Jamming 

prediction 

Energy 

efficiency 

Routing 

latency 

PDR 

number of 

CRN nodes 

LEACH 89 65 75 55 45 81 

CWSN 91 68 76 59 49 83 

CLM_CRN_MLT 93 71 79 61 51 85 

Number of  

episodes 

LEACH 92 68 77 59 52 85 

CWSN 95 72 79 63 53 86 

CLM_CRN_MLT 96 73 82 65 55 88 

Table-2 shows analysis based on number of CRN nodes and number episodes. Here parameters analysed are throughput, 

lifetime, jamming prediction, energy efficiency, routing latency, PDR.  
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(a) throughput 

 

(b) lifetime 

 

(c) jamming prediction 

 

(d) energy efficiency 

 

(e) routing latency 

 

(f) PDR 

Fig-7 analysis based on number of CRN nodesin terms of (a) throughput,(b) lifetime,(c) jamming prediction,(d) energy 

efficiency,(e) routing latency,(f) PDR 

Figure 7 (a) - (f) shows comparison based on number of 

CRN nodes. Proposed technique attained throughput of 

93%, lifetime of 71%, jamming prediction of 79%, 

energy efficiency of 61%, routing latency of 51%, PDR 

of 85%; existing LEACH throughput of 89%, lifetime of 

65%, jamming prediction of 75%, energy efficiency of 

55%, routing latency of 45%, PDR of 81%, CWSN 

attained throughput of 91%, lifetime of 68%, jamming 

prediction of 76%, energy efficiency of 61%, routing 

latency of 51%, PDR of 85%. 
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(a) throughput 

 

(b) lifetime 

 

(c) jamming prediction 

 

(d) energy efficiency 

 

(e) routing latency 
 

(f) PDR 

Fig-8 analysis based on number of episodesin terms of (a) throughput,(b) lifetime,(c) jamming prediction,(d) energy 

efficiency,(e) routing latency,(f) PDR 

Figure 8(a)- (f) analysis for Number of  episodes network 

model is shown. Here proposed technique attained 

throughput of 96%, lifetime of 73%, jamming prediction 

of 82%, energy efficiency of 65%, routing latency of 

55%, PDR of 88%; existing LEACH attained throughput 

of 92%, lifetime of 68%, jamming prediction of 77%, 

energy efficiency of 59%, routing latency of 52%, PDR 

of 85%, CWSN attained throughput of 95%, lifetime of 

72%, jamming prediction of 79%, energy efficiency of 

63%, routing latency of 53%, packet delivery ratio of 

86%. 

The network's parameter settings are shown in Table 3. 

In order to maximize the agent's performance in our 

problem environment, we evaluate a few 

hyperparameters of the reinforcement implementation. In 

particular, we take into account the three 

hyperparameters listed below: the ratio of actor model's 

a_lr learning rate, critic model's c_lr learning rate, and 
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the soft replacement TAU. Actor as well as Critic model are described in detail in Table 4. 

Table 3. Hyperparamaters of reinforcement learning. 

Parameters Setting 

Learning rate for Actor method 𝑎−𝑙𝑟 = 0.0001 

Reward discount gamma = 0.95 

Soft replacement TAU = 0.1 

Learning rate for Critic method 𝑐_𝑙𝑟 = 0.001 

Final random exploration rate Final_epsilin= 0.01 

Initial random exploration rate Initial_epsilon= 1.0 

Table 4. Details of method struct. 

Model Name 

Layer Name Parameter Details 

 Hidden Units Activation Trainable Weights 

Actor model 

256 ReLU   

GCN1 8 ReLU  

GCN2 64 ReLU 10,774 

Denses1 N Linear  

Denses2 1 Softmax  

Output 256 ReLU  

GCN1 8 ReLU 10,113 

 GCN2 64 ReLU  

 Dense layer 1 Linear  
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(a) Loss  

 

(b) Reward 

Fig 9. Total loss and reward trend on model training process (a) loss. (b) reward 

Method is utilized to predict transmission direction in 

simulation environment following pre-training. 

Experience pool will house the environment data as well 

as the associated reward value. Experience playback as 

well as gradient descent will be used to update the 

model's neural networks' weights. Each 100-step 

iteration of loop will be repeated 200 times. Throughout 

the training process, the loss and reward are depicted in 

Figure 9. The misfortune bend shows a descending 

pattern overall. However, during the training, the loss 

frequently rises. When a new state space with better 

reward is encountered, loss curve changes. Because 

controller doesn't know enough about network as well as 

explores environment, reward is lower at first. The 

reward quickly rises after a few training sessions. It 

demonstrates that the controller's routing policies can 

direct packet forwarding for improved returns. 

5. Conclusion: 

This research propose novel technique in transmission 

control with routing optimization using machine learning 

in cognitive radio networks using cross layer model.The 

spectrum sensing (SS) process that finds whether a PU 

signal is present or absent consumes a significant amount 

of energy and time in wireless nodes, reducing both SU 

throughput and battery power. We propose acentralised 

training and distributed execution architecture that 

separates method training as well as inference processes 

and enables intelligent routing decision-making for 

resource-constrained nodes with little computational 

complexity. In order to extract fine-grained data from our 

hybrid routing metric, we additionally develop a special 

feature creation and extraction method as well as a new 

hybrid routing measure.The recommended CDRL 

strategy, which uses a collaborative and iterative model 

optimisation technique, yields the greatest long-term 

network performance.Proposed technique attained 

throughput of 96%, lifetime of 73%, jamming prediction 

of 82%, energy efficiency of 65%, routing latency of 

55%, packet delivery ratio of 88%; existing LEACH 

attained throughput of 92%, lifetime of 68%, jamming 

prediction of 77%, energy efficiency of 59%, routing 
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latency of 52%, PDR of 85%, CWSN attained 

throughput of 95%, lifetime of 72%, jamming prediction 

of 79%, energy efficiency of 63%, routing latency of 

53%, packet delivery ratio of 86%. 
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