

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 539

Deep Seated Neural Network Learner Model for Trust

Recommendation

Jayashree V. Agarkhed1*, Geetha Pawar2

Submitted: 24/04/2023 Revised: 26/06/2023 Accepted: 06/07/2023

Abstract: Recent and cutting-edge paradigms now used in the field of computers is pervasive computing. In comparison to traditional

computer environments, its capacity to distribute computational services within settings where people live, work, or socialise makes

problems like privacy, trust, and identification more difficult. One of the main issues with pervasive computing is the breach of security

and privacy caused by malicious nodes. This study presents the new deep seated neural network leaner which recommends the

trustworthy and unworthy transaction context in pervasive computing environment. Several models such as gaussian naive bayes,

random forest, extra tree classifier, passive aggressive classifier, support vector machine learning algorithms are built. The proposed

model out performs better compare to other machine learning models.

Keywords: Pervasive Computing, Trust Recommendation, Machine learning, Deep neural network, Optimization

1. Introduction

Information and communication technology (ICT) systems

are evolving at an ever-increasing rate, going beyond large

desktop computers to smaller and more potent devices that

offer advanced processing capabilities and a variety of

heterogeneous wireless communication interfaces. The

fundamental benefit of pervasive computing environments

is to improve quality of life by providing mobile devices

and digital infrastructures that can distribute any kind of

service in settings where people live, work, or socialize.

However, pervasive computing also poses a number of

security-related hazards and problems that raise a number

of unresolved challenges. The design is made more

difficult by the fact that pervasive systems are frequently

invisible or embedded and take part in delivering the

required service without the user's explicit or conscious

understanding, either working or interacting with others

[1]. Additionally, numerous devices operating in pervasive

settings must undertake cross-device interactions without

prior knowledge of one another and by fully autonomously

differentiating themselves from one another. Therefore, it

can be challenging for users to transmit personal

information, such as identities, preferences, roles, and

current positions, when these gadgets are present. The

connection between numerous unknown entities creates a

new issue in the aforementioned situations, mostly related

to security management [2]. The security issues in

pervasive computing are shown in Figure 1.

The introduction of adversarial and malicious entities

poses significant risks in an operational environment,

where the interacting entities are unable to learn anything

about one another 's reliability before forming links. In

such a situation, both service requesters and providers must

continuously protect themselves from potential hostile user

attacks, either by imposing certain communication

restrictions or by taking advantage of some intricate and

difficult security strategies/mechanisms. Therefore, a

crucial problem in pervasive scenarios is the ability to

autonomously discern between the trustworthy and

untrustworthy entities involved in an encounter. Trust-

based models are frequently used to assess the reliability of

the interacting entities in order to address this issue [3].

Pervasive computing, as is more widely known, is a result

of recent technological advancements in computing and

communication that have multiplied the number of devices

with embedded computational capabilities. Such devices

continuously track people and their surroundings and

gather a large amount of behavioral data [4]. Continuous

video feeds of users' surroundings are crucial to emerging

technologies, such as augmented reality [5]. Systems using

artificial intelligence (AI) can use these data to discover

more consumers. In addition to monitoring, advertising,

and the algorithmizing of behaviour, this data gathering

and analysis may be performed with the intention of

improving service quality.

1*Professor, Department of Computer Science and Engineering, Poojya

Doddappa Appa College of Engineering, Kalaburagi, Karnataka, India

1*Corresponding Author Email: jayashreeptl@yahoo.com

2Research Scholar, Department of Computer Science and Engineering,

Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

India

2Email: geetamnayak@gmail.com

mailto:jayashreeptl@yahoo.com
mailto:geetamnayak@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 540

Fig 1: Security and Trust Issues in Pervasive Computing

In this work, the contribution is made by developing an

efficient customized deep neural network, stacking deep

learning models to ensure security concerns and trust over

the pervasive computing. Different attributes in data set are

analyzed using feature importance technique. The

proposed model gives 100% accuracy and comparative

study is carried out. The work presented in paper as

follows. The background and associated works are covered

in Section 2. The work flow and techniques employed in

this research are described in Section 3. The results and

implementation discussions are provided in Section 4.

Finally, the research's conclusions are presented in Section

5.

2. Related Work

Since the 1990s, the security and trust pervasive computing

research community has emphasized trust management

model building and proposed many reliable approaches.

The first decentralized trust-management Policymaker was

proposed by Blaze et al. [6]. They used secure application

policies and credential verification as the foundation of

their trust architecture to control access to resources and

services. It did not, however, employ recommendations to

select a reliable, suitable provider. Additionally, due to its

complicated processing requirements, it was not practical

for a ubiquitous environment. According to Kagal et al. [7,

8], centralised security solutions do not scale effectively in

large, open systems. As an alternative, they provide a

security solution (Centaurus) based on trust management,

which entails creating a security policy and giving entities

access credentials. Centaurus significantly relies on the

transfer of trust to third parties. For P2P environments,

Damiani et al. [9] presented a protocol. The involved peers

can maintain tabs on information about their fellow

participants and can disseminate it throughout the group.

The reliability of the other peers is evaluated by the peers

using a distributed polling mechanism. However, only the

Base Station attack is taken into account. A approach

employing the entropy to assess how a rating differs from

others was proposed by Weng et al. in [14]. The method

starts the algorithm by using local ratings. Thus, if this

initial rating differs significantly from previous ones, it

might not be able to function properly. A formal trust

model (FTM)-based control chart technique has been

published in [15]. For P2P networks. Eigen Trust [16] is a

well-liked reputation management tool. It is built on the

idea of a friend circle, which makes it possible to assess an

entity's reputation. The primary eigenvector of a matrix of

local trust values is calculated to perform the trust

evaluation. This method considers the entire history of

contacts a peer has had with the system. If a collection of

dishonest people creates a malevolent subnetwork of

friends, the strategy fails. The technique suggested in [17]

was called XRep. It is used to construct a self-policing P2P

system capable of excluding all deemed unfair nodes from

the network.

Pervasive computing trust management and security

attacks detection have evolved over time towards the

implementation of machine learning techniques in

conventional Internet intrusion detection systems.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 541

Wisanwanichthan and Thammawichai [10] employ SVM

and Naive Bayes methods for feature reduction and

normalization in their application of machine learning to

intrusion detection systems (IDS). The main drawback of

the machine learning-based intrusion detection system is

that it takes a long time to train because it needs to process

several datasets of prior data streams in the network. Dey

[11], proposed a model by combining convolutional neural

network and long short term machine model to analyses

the NSL-KDD dataset [11]. A hybrid deep neural network

(DNN) model was created by Chen et al. [12] for

categorizing and identifying unknown network threats.

According to Chen et al. [12], deep learning has attracted a

lot of interest lately. They contrasted traditional

approaches with the newest deep learning techniques. With

the aid of deep learning's intelligent capabilities, Chen et

al. [13] created an intelligent intrusion detection system.

3. Work Flow in the Study

To carry out the study systematically, the work flow was

formed. It consists of data acquisition from dishonest

internet user dataset, analyzing using data descriptive

statistics, exploratory data analysis, pre-processing of data,

model development, applying hyper parameter tuning,

finding the best robust model and recommendation of

trustworthy or untrustworthy. The data was developed

using three different assault techniques. Attacks that are

counted, timed, or context-based help the user build a

reputation. By observing how users interact with one

another on the network, the proposed approach makes it

possible to assess each user's trustworthiness [18, 19]. The

proposed work flow diagram of the study is shown in

Figure 2. Table 1 shows that the Dishonest internet user

dataset description.

Fig 2: Work flow diagram for the study.

Table 1: Dishonest internet user dataset description

Attribute Name
Attribute

Abbreviation
Description

Counting Trust CT
It is employed to determine the number of reliable transactions that follow the

final unreliable transaction (belonging to a certain context).

Counting of

Untrust
CU

It is used to determine how many not trustworthy transactions (belonging to a

particular context) follow the last reliable transaction.

Last Time LT It is employed to account for the time at which the most recent experience in a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 542

certain situation occurred.

Transactions

Context
TC

It is used to specify the sort of transaction, such as a game, an online purchase, a

social network, and others.

Trust Score TS
It is the rating that one entity assigns to another at the conclusion of every direct

interaction.

3.1 Data Descriptive Analysis

The interacting users of pervasive computing are unable to

discover each other's level of trustworthiness. Because of

this, malicious users may behave unfairly towards others.

By observing how users interact with one another on the

network, the suggested technique makes it possible to

assess each user's trustworthiness. Tuples with important

parameters that represent these behaviour are called tuples.

The design integrates some artificial intelligence-based

technologies based on these tuples to construct a decision-

making system. The descriptive analysis carried out is

shown in table 2, table 3 shows the count of transaction,

such as a game, an online purchase, a social network, and

others. From table it shows that there are 322 records in the

dataset and mean value is 2.195 in CT (ctrust), 1.5279 CU

(cuntrust) and LT (last), similarly mean, standard

deviation, minimum and maximum values is each column

is represented.

Table 2: Data descriptive statistics analysis

Table 3: Statistics of transaction context column

3.2 Exploratory Data Analysis

Exploratory data analysis is carried out to understand the

insights of the data set. Frequency of each attributes is

represented in bar graph as shown in Figure 3. Figure 4

represents distribution of trustworthy and untrustworthy

transactions. It consists of 225 trustworthy transactions and

97 untrustworthy transactions. From we came to know that

data is imbalance and skewed. Correlation of attributes

such as CT, CU, LT, are studied to understand the

relationship between the variable. Statistical techniques

like correlation matrixes can be helpful when evaluating

relationships between two or more variables in a data set.

Figure 5 shows the correlation of attributes. Every column

in the matrix has a correlation coefficient, which is a table

where 1 indicates a strong association between variables, 0

indicates a neutral relationship, and -1 indicates a weak

relationship.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 543

(a)

(b)

(c)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 544

(d)

Fig 3: Frequency of input features (a) transaction context (b) LT (c) CT (d) CU

Fig 4: Distribution of trustworthy and untrustworthy transactions

Fig 5: Correlation graph

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 545

3.3 Pre-Processing of Data

The Data Pre-processing stage includes Feature Scaling.

The column TC the categorical values are converted into

numerical values. Assigned

'sport':1,'game':2,'ECommerce':3,'holiday':4 and for score

'untrustworthy':0,'trustworthy':1. Next step is feature

scaling, it is a technique for standardizing the variety of

features in data that is also referred to as normalization.

Feature Scaling is crucial since the input variables' scales

for the data can differ. There are numerous scalars

available in Python's sklearn module, including the

MinMax Scaler, Standard Scaler, and Robust Scalar. One

of the most well-liked scaling algorithms is the MinMax

Scalar. By scaling each feature to a predetermined range,

often [0,1] or [-1,1] in the event of negative values, it

converts the characteristics. The MinMax Scalar applies

the formula to each feature.

minimum

maximum minimum

(1)'
X X

X
X X

−
=

−

It divides by the range, max(x)-min(x), after removing the

column's mean from each value. When the standard

deviation is very tiny or when there is no Gaussian

distribution, this scaling approach performs very well. To

the column CT, CU, LT and TC minmax scalar are applied

for data normalization. In order to find the importance of

the each feature the feature importance evaluation is

carried using extreme gradient boosting technique. The

Figure 6 shows the distribution of feature score of each

attribute. From this graphs its shows that TC is having the

highest feature importance score of 46.791, next highest is

LT and CT is having the low feature importance score.

Fig 6: Feature important of each attribute

3.4 Model Development

To build the efficient recommendation of trust model, we

tried with many machine learning and deep neural network

models. The subsection explains all the model’s

description.

3.4.1 Gaussian Naïve bayes

It is an algorithm that discovers each object's probability,

its characteristics, and the groups to which they belong. It

also goes by the name "probabilistic classifier." The Naive

Bayes method is built on the concept of probability. This

algorithm's design is centred on the probabilistic solutions

it can provide for issues that cannot be solved through

prediction. The Bayes Theory relies on formulating a

hypothesis (H) based on the available evidence (E). It has

to do with two things: the likelihood of the hypothesis

prior to the evidence P(H) and the likelihood of the

hypothesis following the evidence P(H|E). When the

qualities are continuous, gaussian naïve bayes algorithm to

utilise. The attributes found in the data should adhere to the

normal or gaussian distribution criterion. It significantly

speeds up the search, but under lenient circumstances, the

error will be twice as large as with Optimal Naive Bayes.

The naïve bayes formula is as follows:

()/ ((/)* ()) / (E)P H E P E H P H P= ----

(2)

where,

P(H|E) represents the behaviour of event H in the

presence of event E.

P(E|H) denotes the frequency with which event E

occurs when event H occurs first.

P(H) denotes the likelihood that event X will occur

on its own.

The likelihood that event Y will occur on its own is

represented by P(E).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 546

3.4.2 Support Vector Machine

Making a straight line between two classes is how a

straightforward linear SVM classifier functions. In other

words, the data points on one side of the line will all be

assigned to one category, while the data points on the other

side of the line will be assigned to a different category. An

SVM model is just a hyperplane in multidimensional space

that represents several classes. SVM will generate the

hyperplane in an iterative manner in order to reduce error.

The kernel used to implement the SVM algorithm changes

the input data space into the desired format. The kernel

technique is a method used by SVM, in which the kernel

converts a low-dimensional input space into a higher-

dimensional space. The SVM linear kernel function is

given by

f(x) *Tw X b= + ---- (3)

In this equation, w stands for the weight vector which

needs to be minimise, X for the data to classify, and b for

the predicted linear coefficient from the training set. The

decision boundary that the SVM returns is defined by this

equation.

 3.4.3 Random Forest

The structure of random forests (RF) is created by

combining many classifier decision trees. Each decision

tree is trained by randomly choosing features, and then the

trees are built using the optimal split values and entropy.

The major challenging task is that each decision tree will

represent characteristics differently, which may have an

impact on the classifier's performance. Co-relation issues

between decision trees that on average produce Gaussian

distributions are possible. Each decision tree's average

value will be taken into account for classification. Figure 7

shows the RF structure.

Fig 7: Structure of Random Forest Model

3.4.4 Extreme Grading Boosting

eXtreme Gradient Boosting (XGBoost) is a decision tree-

based ensemble machine learning system that employs

gradient boosting 20. Machine learning ensembles

integrate the prediction results of various learnt models.

The aggregated models may have been created using the

same process or a different algorithm. The most widely

used ensemble learning approaches are boosting and

bagging. Many decision trees are generated in parallel

from the initial learners in the bagging process.

3.4.5 Extra Trees Classifier

Extra Trees (ET) is an ensemble machine learning method

that creates predictions by combining the output of a group

of decision trees that have all been trained. To ensure that

the decision trees are sufficiently varied, Random Forest

employs bagging to choose various versions of the training

data. However, Extra Trees trains decision trees using the

complete dataset. Using the entire dataset allows Extra

Trees to reduce the bias of the model. However, the

randomization of the feature value at which to split,

increases the bias and variance

3.4.6 Passive Aggressive classifier

The passive aggressive (PA) classifier algorithm, which

belongs to the class of online learning algorithms, is

capable of handling enormous datasets and alters its model

in response to each new instance it meets. The passive

aggressive algorithm can modify its weights when new

information is received because it is an online learning

algorithm. The regularisation parameter, C, of the passive

aggressive classifier enables a trade-off between the

margin's size and the amount of misclassifications. The

passive aggressive classifier examines a new instance at

each iteration, determines whether it was correctly

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 547

classified or not, and then modifies its weights in

accordance. There is no change in weight if the case is

correctly categorised. In contrast, if it is wrongly classified,

the passive aggressive algorithm modifies its weights

based on this incorrectly classified instance to better

classify subsequent occurrences. The regularisation

parameter C and the level of confidence in the

categorization of that specific instance determine how

much the Passive Aggressive algorithm updates its

weights.

3.4.7 Deep Seated Neural Network Learner Model

For the purpose of classifying trustworthy and

untrustworthy, we developed a new Deep Seated Neural

Network Learner (DSNNL) model architecture. The

DSNNL model architecture is shown in Figure 8. Multiple

layers make up a neural network, and each layer is in

charge of a distinct function. A neural network's layer

count increases in direct proportion to how complex the

underlying system is. This kind of model pushes the

inputted data into a number of layers after receiving it.

Fig 8: Deep Seated Neural Network Learner (DSNNL) model architecture

Input layers use actual data as their input, therefore they

receive actual values from the data. Between the input and

output layers are the following layers, known as the hidden

layers. It is regarded as a deep neural network if it has

three or more hidden layers. Activation functions are the

method used in the various non-linear transformations that

make up deep learning. As a result, activation functions are

used prior to applying an input signal to the neural

network's next layer. A neural network may learn complex

attributes to activation functions. In deep neural network

there are many activation functions such as threshold,

sigmoid, rectifier (relu), hyperbolic tangent and cost

function. Initial design of the model we used ‘relu’

activation function. One of the most used functions in the

area of deep learning is the Rectifier Linear (ReLU)

function. The value of x is first set to 0 if the value is less

than or equal to 0, after which it steadily advances as the

input value rises. In the second and third hidden layers we

have used sigmoid activation function. The equation for

sigmoid function is as follows:

--- (4)

A logistic function is utilised in the sigmoid function.

Anything below 0 in this method will be set to 0. In the

output layer, this function is frequently utilised, especially

when attempting to determine the probability of predictive

values. The proposed DSNNL algorithm is explained

below:

Proposed DSNNL Algorithm

Let the dataset {(F,T) |1 ,1 }i jS i N i M=     , where N is the size of the training data.

The input features 1 2F {f , ,........... }i nf f= be the n features and T j be the label for the input features Fi

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 548

Compute output of each neuron
i iz w x b=  + where iw is the weights and b represent the bias and compute the a

value using z which is equal to the output layer ()a z= which is the activation function.

Initialise the model hyper parameters:

• Learning rate of the model = 0.01, 0.001, 0.0001

• Number of epochs = 50, 100, 200

• Select the best activation function:ReLu, Sigmoid, Tanh, LeakReLu

• Number of layers number of units in each neural network layer

• Optimiser: adam, adamw, RMSprop

Initialise the accuracy value best = 0.0

Create_best_dsnnl_model(test_data)

 for model in dsnnl_model_hyperparametes

 do

 for i= 1,2,…… N: units in each hidden layer

 do

 perform forward propagation i

 compute predict the output iy evaluate the function

1

1
() (, y)

p

i ii
K C y

p


=

=  -----(5)

 Execute back propagation

f(x, y,z)
df df df

T
dx dy dz

 
=  

 
---- (6)

: ()G = and compute accuracy

 if accuracy is best

 best = accuracy

 done

 done

return the best_dsnnl_model

4. Implementation and Results

In this work to conduct the experiment and implement the

models we have built with GPU enabled system on a 64-

bit Windows computer with 25.5 GB of RAM and a

graphics processor unit with 15 gigabytes of system

memory, Google's Collaboratory Pro environment was

used to conduct all experiments. The greatest amount of

storage space offered was 166.8 GB. All the scripts are

implemented using the Keras framework, a Python toolkit

for deep neural networks that is free and open-source.

Figure 9 displays an example of a hardware system

specification that is used in the backend. Table 4 shows the

parameters and corresponding values for XGBoost

classifier here.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 549

Fig 9. Hardware System Specifications in the Backend

Table 4. Parameter and Values set for XGBoost Classifier

Parameter Value

random_seed 42

n_estimators 10

n_jobs -1

max_depth 6

scoring ‘f1’

The DSNNL model is built sequentially. The sequential

model looks similar to a layer-by-layer linear stack. It is

helpful for creating basic models like encoder-decoder

models and the simple categorization network. Essentially,

it treats the layer as a feed for the following layer. The

model is built as a sequential model, and then a flatten

layer will be added. We have 100 neurons in the hidden

layer 1, 50 neurons in the hidden layer 2, and 30 neurons in

the hidden layer 3. The Rectified Linear Units (ReLU)

activation function. Due to its single neuron count and

sigmoidal function, the last layer converts logits into

probabilities that add up to one. The Adam optimiser is

used to optimise the model. Adam is built using a first-

order gradient optimizer that makes estimates using lower-

order moments. This takes up less memory, is invariant to

diagonal rescaling, and works with big input parameters.

Adam works well for non-stationary, noisy, and sparse

gradient targets. Training and validation loss are estimated

to assess the models developed. The validation loss is

assessed after each epoch while the training loss is

calculated after each batch execution. Earlier, an average

training loss was computed per epoch. In terms of

evaluating validation loss, it offers advantages over

gradient updates. To minimise the loss function while

training, the model quantity must be found. To determine

the loss in predicted and true classes, binary cross entropy

is computed in this situation. When the batch size as a

whole is used, the loss will provide the average per-sample

loss for that batch. The accurately predicted values on the

test dataset are added to the total number of input datasets

to calculate the model accuracy. Table 5 gives the equation

for calculating model correctness. Table 6 shows the

obtained model accuracy and comparison of different

model build using evaluation metrics precision, recall, f1-

score and accuracy. The proposed model DSNNL out

performs compare to other state-of-the-art models. Figure

10 shows the accuracy comparison, the DSNNL model

gives the highest score of 100% accuracy

Table 5: Evaluation metrics used

Measures Formula Description

Recall (R)
True positive (TP) /(True Positive (TP)+ False Negative

(FN))

Count of faulty modules rightly

classified

Precision (P) True positive (TP)/(True Positive (TP)+ False Positive (FP))
Count of modules rightly

classified as faulty

F1-score 2 *((P*R)/(P+R)
It combines a model's precision

and recall scores.

Accuracy (TP+TN)/(TP+FP+TN+FN) Accuracy of the model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 550

Table 6: Comparison of the build model precision, recall, f1-score and accuracy

Build Models Class Precision Recall F1-score Accuracy (%)

Gaussian NB
0 0.56 0.37 0.45

72.84
1 0.76 0.87 0.81

SVM
0 0.75 0.62 0.68

82.72
1 0.85 0.91 0.88

RF
0 0.90 0.95 0.92

89.55
1 0.88 0.79 0.83

XGBoost
0 1.00 0.98 0.99

98.45
1 0.96 0.99 0.97

ET
0 0.99 0.97 0.97

97.65
1 0.92 0.97 0.94

PA
0 0.93 0.62 0.75

87.65
1 0.86 0.98 0.91

DSNNL

(Proposed)

0 1.00 1.00 1.00
100

1 1.00 1.00 1.00

Fig 10: Comparison of accuracy of various build models.

5. Conclusion

In this study a new deep seated neural network model is

created to recommend the trust in pervasive computing

environment. The dishonest internet user dataset is

analysed using descriptive statistical analysis and

exploratory data analysis techniques. To normalise the data

min-max scaling technique is applied and converted

categorical data into numerical data. To understand the

features’ important extreme gradient boosting method is

utilised. Various machine learning models such as gaussian

naive bayes, random forest, extra tree classifier, passive

aggressive classifier, support vector machine is built and

evaluated with measuring metrics. The proposed DSNNL

model gives an accuracy score of 100 percent. The future

work will be carried out the multiple source data and will

try to fuse the dataset to understand the more insights and

build more robust trust recommendation model in

pervasive computing.

Gaussia

n NB
SVM RF XGBoost ET PA DSNNL

Accuracy (%) 72.84 82.72 89.55 98.45 97.65 87.65 100

0

20

40

60

80

100

120

A
cc

u
ra

cy

Comparsion of Accuracy (%) of different built Models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 551

References

[1] F. Almenárez, A. Marín, D. Díaz, A. Cortés, C.

Campo, and C. García-Rubio, 2011. Trust

management for multimedia P2P applications in

autonomic networking. Ad Hoc Networks, 9(4),

pp.687-697. doi:10.1016/j.adhoc.2010.09.005.

[2] N. Iltaf, A. Ghafoor, and M. Hussain, 2012. Modeling

interaction using trust and recommendation in

ubiquitous computing environment. EURASIP Journal

on Wireless Communications and Networking, 2012,

pp.1-13.doi:10.1186/1687-1499-2012-119.

[3] T. Sun, M.K. Denko, 2007. A distributed trust

management scheme in the pervasive computing

environment, in: Proceedings of the Canadian

Conference on Electrical and Computer Engineering,

pp. 1219–1222. doi:10.1109/CCECE.2007.311.

[4] H. Haddadi, P. Hui, T. Henderson, and I. Brown,

Targeted advertising on the handset: Privacy and

security challenges,” in Pervasive Advertising.

Springer, 2011, pp. 119–

137.DOIhttps://doi.org/10.1007/978-0-85729-352-7_6

[5] C. Bermejo, Z. Huang, T. Braud, and P. Hui, 2017.

When augmented reality meets big data, in 2017 IEEE

37th International Conference on Distributed

Computing Systems Workshops (ICDCSW), June pp.

169–174.DOI: 10.1109/ICDCSW.2017.62

[6] M Blaze, J Feigenbaum, J Lacy, 1996. Decentralized

trust management, in 17th IEEE Symposium on

Security and Privacy, Oakland, pp. 164–

173.DOI: 10.1109/SECPRI.1996.502679

[7] L.Kagal, T.Finin, A. Joshi, 2001. trust-based security

in pervasive computing environments. IEEE Comput.

34(12), pp.154–157.DOI: 10.1109/2.970591

[8] L. Kagal, F. Perich, A.Joshi, and T. Finin, 2002,

October. A security architecture based on trust

management for pervasive computing systems.

In Grace Hopper Celebration of Women in

Computing.

[9] E. Damiani, D.C. di Vimercati, S. Paraboschi,

P.Samarati, and F. Violante, 2002, November. A

reputation-based approach for choosing reliable

resources in peer-to-peer networks. In Proceedings of

the 9th ACM conference on Computer and

communications security (pp. 207-216).

doi:10.1145/511446.511496.

[10] T.Wisanwanichthan, and M. Thammawichai, 2021. A

double-layered hybrid approach for network intrusion

detection system using combined naive bayes and

SVM. IEEE Access, 9, pp.138432-

138450.DOI: 10.1109/ACCESS.2021.3118573

[11] A. Dey, 2020, December. Deep IDS: A deep learning

approach for Intrusion detection based on IDS 2018.

In 2020 2nd International Conference on Sustainable

Technologies for Industry 4.0 (STI) (pp. 1-5).

IEEE.DOI: 10.1109/STI50764.2020.9350411

[12] P. Chen, Y. Guo, J. Zhang, Y.Wang, and H. Hu, 2020,

December. A novel preprocessing methodology for

dnn-based intrusion detection. In 2020 IEEE 6th

International Conference on Computer and

Communications (ICCC) (pp. 2059-2064).

IEEE.DOI: 10.1109/ICCC51575.2020.9345300

[13] L. Chen, X. Kuang, A. Xu, S. Suo, and Y. Yang, 2020,

December. A novel network intrusion detection

system based on CNN. In 2020 eighth international

conference on advanced cloud and big data

(CBD) (pp. 243-247).

IEEE.DOI: 10.1109/CBD51900.2020.00051

[14] J. Weng, C.Miao, and A. Goh, 2005, August.

Protecting online rating systems from unfair ratings.

In International Conference on Trust, Privacy and

Security in Digital Business (pp. 50-59). Berlin,

Heidelberg: Springer Berlin

Heidelberg.doi:10.1007/11537878_6.

[15] S.I. Ahamed, M.M. Haque, M.E. Hoque, F.Rahman,

and N. Talukder, 2010. Design, analysis, and

deployment of omnipresent formal trust model (FTM)

with trust bootstrapping for pervasive

environments. Journal of Systems and Software, 83(2),

pp.253-270. doi:10.1016/j.jss.2009.09.040.

[16] S.D. Kamvar, M.T.Schlosser, and H. Garcia-Molina,

2003, May. The eigentrust algorithm for reputation

management in p2p networks. In Proceedings of the

12th international conference on World Wide

Web (pp. 640-651). doi:10.1145/775152.775242.

[17] E. Damiani, D.C. di Vimercati, S. Paraboschi,

P.Samarati, and F. Violante, 2002, November. A

reputation-based approach for choosing reliable

resources in peer-to-peer networks. In Proceedings of

the 9th ACM conference on Computer and

communications security (pp. 207-216).

doi:10.1145/586110.586138.

[18] G. D’Angelo, S.Rampone, and F. Palmieri, 2017.

Developing a trust model for pervasive computing

based on Apriori association rules learning and

Bayesian classification. Soft Computing, 21, pp.6297-

6315. DOI: 10.1007/s00500-016-2183-1

[19] G. DAngelo, S.Rampone, and F. Palmieri, 2015,

November. An artificial intelligence-based trust model

for pervasive computing. In 2015 10th international

conference on P2p, parallel, grid, cloud and internet

computing (3pgcic) (pp. 701-706). IEEE. DOI:

10.1109/3PGCIC.2015.94.

[20] Prof. Madhuri Zambre. (2016). Analysis and

Modeling of Physical Stratum for Power Line

Communication. International Journal of New

Practices in Management and Engineering, 5(01), 08 -

13. Retrieved from

https://doi.org/10.1109/ICDCSW.2017.62
https://doi.org/10.1109/SECPRI.1996.502679
https://doi.org/10.1109/2.970591
https://doi.org/10.1109/ACCESS.2021.3118573
https://doi.org/10.1109/STI50764.2020.9350411
https://doi.org/10.1109/ICCC51575.2020.9345300
https://doi.org/10.1109/CBD51900.2020.00051

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 539–552 | 552

http://ijnpme.org/index.php/IJNPME/article/vie

w/42

[21] Pareek, M., Gupta, S., Lanke, G. R., & Dhabliya, D.

(2023). Anamoly Detection in Very Large Scale

System using Big Data. SK Gupta, GR Lanke, M

Pareek, M Mittal, D Dhabliya, T Venkatesh,.."

Anamoly Detection in Very Large Scale System Using

Big Data. 2022 International Conference on

Knowledge Engineering and Communication Systems

(ICKES).

[22] Mohapatra, S. K. ., Patnaik, S. ., & Kumar Mohapatra,

S. . (2023). An Enhanced Automated Epileptic Seizure

Detection Using ANFIS, FFA and EPSO Algorithms .

International Journal on Recent and Innovation Trends

in Computing and Communication, 11(4s), 57–67.

https://doi.org/10.17762/ijritcc.v11i4s.6307

http://ijnpme.org/index.php/IJNPME/article/view/42
http://ijnpme.org/index.php/IJNPME/article/view/42

