

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 598

A Novel Modified and Optimized Meta-Heuristic Load-Balancing

Technique for Cloud Computing System

D. Chandrasekhar Rao1,*, Suraj Sharma2, Sanjib Kumar Nayak3, Suresh Kumar Srichandan4, Alina

Dash5

Submitted: 25/04/2023 Revised: 28/06/2023 Accepted: 06/07/2023

Abstract: Cloud computing has emerged as a transformative technology that offers vast computational resources to meet the growing

demands of modern applications. However, the efficient allocation of these resources to ensure optimal performance and scalability

remains a critical challenge. Load balancing techniques play a pivotal role in optimizing resource utilization and improving the overall

performance of cloud-based systems. Cloud service providers are looking for creative ways for dispersing the load across the virtual

machines. Recent study suggests that efficient task scheduling or task-virtual machine mapping techniques can be used to achieve load

balancing. It's also a well-known NP-Hard problem. Hence, contrary to polynomial-time algorithms, the researchers have been searching

for meta-heuristic algorithms. In order to provide a solution to the mentioned issue, this research introduced a modified firefly swarm

algorithm. The primary goal is to meet all deadlines while reducing the total amount of time it takes to execute all tasks. The proposed

technique is compared to particle swarm optimization, bacteria foraging optimization, and dragonfly optimization to demonstrate its

efficacy.

Keywords- load balancing; task scheduling; optimization; cloud computing; virtual machine

1. Introduction

In cloud computing, load balancing occurs when a user's

request is matched with available virtual machines. Hence,

cloud computing relies heavily on job scheduling. Two

types of task scheduling procedures can be distinguished:

static and dynamic. In static task scheduling, all user tasks

are queued up at the start, and the virtual machine

schedules them in a static fashion. In contrast, the dynamic

scheduling mechanism maps the job to the virtual machine

at runtime, whenever the user's task enters the system.

Algorithms for scheduling tasks are used for the effective

administration of virtual machines and task processing.

Initially, customers and cloud service providers would sign

a Service Level Agreement (SLA) when users submitted

tasks for processing to the cloud system. Quality of service

(QoS) requirements pertaining to job scheduling are

specified in the Service Level Agreemen (SLA). There is a

well-defined set of quality-of-service standards, including a

set budget, a set timeframe within which tasks must be

completed, and a set of security-related services. Users are

billed based on how much they utilize the cloud's

resources, as cloud services operate on a "pay as you go"

basis. The user needs to know how many virtual machines

will be required for each operation, and they should factor

that into their budget. When it comes to cloud computing,

scheduling tasks is a non-deterministic NP-Hard problem

that can be thought of as the bin-packing problem. As

cloud computing becomes more complicated, the NP-hard

problem gets harder to solve. The optimal solution for the

scheduling problem in a short span of time can be obtained

by meta-heuristic algorithms. Practical Swarm

Optimization (PSO) and Genetic Algorithm (GA), have

been used in recent years to solve the cloud scheduling

problem, yielding near-optimal outcomes in a shorter

amount of time. Researchers pay close attention to the

outcomes produced by metaheuristic algorithms, leading to

numerous algorithm proposals for task scheduling and load

balancing. To provide the appropriate solution for the

above-mentioned problem, in this paper, we proposed a

solution by using Fireflies Swarm Optimization (FSO)

algorithm to improve the execution cost for the user task

submitted into the cloud infrastructure. The cost of

execution would be determined by adding together the time

it takes to do the operation and the price at which cloud

resources, like virtual computers, are used. The task's

completion time is calculated by combining the execution

and waiting times. The completion time should be less than

or equal to the deadline defined by the user at the time of

task submission. The effectiveness of the proposed

Fireflies Swarm Optimisation Task Scheduling (FSOTS)

algorithm for task scheduling was examined through a

1,4Department of Information Technology, Veer Surendra Sai University of

Technology, Burla, Odisha
2Department of Computer Science & Engineering, Guru Ghasidas

Vishwavidyalaya, Raipur, Chhatisgarh,
3Department of Computer Application, Veer Surendra Sai University of

Technology, Burla, Odisha
5Department of Computer Science & Engineering, Veer Surendra Sai

University of Technology, Burla, Odisha

Email:1dcrao_it@vssut.ac.in, 2suraj.cse@ggu.ac.in,
3sknayak_ca@vssut.ac.in, 4suresh_it@vssut.ac.in,
5alinadash_cse@vssut.ac.in

(*Corresponding author’s e-mail: dcrao_it@vssut.ac.in)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 599

series of simulation experiments, and the outcomes were

contrasted with those of other metaheuristic algorithms like

PSO, Dragon Fly Optimisation (DFO), and Bacteria

Foraging Algorithm (BFA).

The remaining sections are organized as follows: Existing

relevant works have been discussed in Section II. The task

scheduling problem is formulated in Section III, Section IV

elaborates the proposed methodology for problem solution,

control parameters for simulation and result analysis are

presented in Section V, and the study is concluded in

Section VI with future scope.

2. Related Work

Many algorithms related to cloud computing have been

proposed some of them have been surveyed in this paper.

Chunlin Li et al. [1] proposed a load-balancing with

resource optimization. In this model, the author has the

attributes such as total cost, SLA, and user preferences to

optimize the resource in an edge cloud environment. The

migration strategy has been used for data movement with

resource optimization and achieved load balancing in the

age cloud environment.

The adaptive dragonfly algorithm (ADA) was proposed as

a meta-heuristic task scheduling algorithm for the cloud by

P. Neelima et al. [2]. This algorithm is the hybrid approach

of the dragonfly and Firefly algorithm. To get the

optimized result, the author has considered multiple

parameters such as Processing Cost, Completion Time, and

Load in the virtual machine.

Wenwei Cai et al. [3] proposed a massively cost-effective

and load-balancing scheduling mechanism to maximize

system throughput. The average waiting time and job

response time are determined by modeling the entire

cluster of computers as a queueing system and applying the

principles of queuing theory to the problem. The theory of

convex optimization is then applied to the problem of

assigning tasks to workers in order to create a system for

distributing workloads fairly.

S. Peer Mohamed et al. [4] proposed another meta heuristic

approach to address load balancing for cloud. Author

proposed the load balancing algorithm for optimized and

enhanced cloud infrastructure and showing the issues

regarding the scheduling. this technique is illustrating static

and dynamic condition based on the virtual memory

parameters that will be fixed or chosen runtime. It deals

with both static and dynamic properties of submitted tasks.

Fig 1: Framework of Cloud Computing with Physical Memory and Task Schedular

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 600

Fig 2: Time line of the Completion Time of the Task.

Mirza Mohamed et al. [5] proposed a technique that

support real time applications to reduce the resource cost

and delay for fog cloud environment. In this an optimised

model For load balancing and three layer cooperative for

computing environment has been proposed. in the proposed

model link bandwidth and virtual machines processing

capacity has been considered. The load balancing

algorithm proposed by Muhammad Junaid et al. [6] is a

modified version of Cat Swarm Optimization (MCSO) that

integrates SVM and popularly known as Data File Type

Formatting (DFTF). this algorithm is algorithm. The SVM

classifier differentiate between various sources such as

audio video images and text. The task is divided up among

the virtual machines using MCSO. The enhanced efficient

strategy for the cloud computing environment was

presented by Rajagopal et al. [7] to distribute the dynamic

load over multiple Virtual Machines (VMs). It allocates the

task to the virtual machine Based on the makes pain time

off each virtual machine and it's assigned task. Author also

claim that the improved efficient scheme (IES) gives better

completion time then other schemes.

Shanchen Pang et al. [8] proposed a hybrid load balancing

technique that combines Estimation of Distribution

Algorithm (EDA) and GA to enhance cloud computing's

load balancing capabilities and speed up work completion.

Assigning tasks to virtual machines is best accomplished

by first using the probability and sampling approach of

EDA to develop a workable solution, and then expanding

the search space through mutation and crossover operation

in a genetic algorithm. Authors also claim that it has fast

coverage speed and efficient search capabilities. Altaf

Hussain et al. [9] presented the load Balancing scheduler

based on SLA for the heterogeneous cloud computing

architecture to decrease the execution time and exaction

cost of each submitted work. This method is cost-effective

and helps cloud users meet their SLAs. It took into account

the task's execution cost while deciding which virtual

machine to assign it to. Amrita Jyoti et al. [10] present a

new method for dynamic load balancing in the cloud

computing environment to improve QoS performance in

areas such as energy, time delay, reaction time, and so on.

For dynamic resource allocation, we used a multi-agent

best deep reinforce meant learning approach. In this

situation, a virtual machine is selected to perform the task

based on its relative importance. A second dynamic

approach is described for scheduling the task days, and it is

based on the dynamic optimal load aware service broker

and the global user agent.

Lingfu Kong et al. [11] proposed Heuristic algorithm for

heterogeneous virtual machine based cloud environment to

provide low make-span and monetary cost with greater

resource utilization. In the proposed approach optimal

completion time and earlier finishing time attributes are

used for virtual machine to achieve start scheduling and

load balancing efficiently. The catastrophic genetic

algorithm (CGA) was introduced by Shudong Wang et al.

[12] as a means of achieving a global optimum solution in

the work scheduling algorithm for edge devices and cloud

computing infrastructureThis algorithm's attributes are the

time it takes to finish a task and the penalty it incurs for

failing to finish a task on time. The algorithm's

performance was enhanced by employing an optimized

mutation and crossover procedure and a roulette selection

approach. Li Liu et al. [13] presented Multi objective

optimization task scheduling algorithm where unconstraint

hand time deadline constraint scenarios has been

considered. The attribute for that are scheduling algorithm

is heterogeneous earliest finish time for order preferences

and idle solution method. Vijayakumar et al. [14] proposed

another meta-heuristic approach they name the Dragonfly

Optimization algorithm. In this method, a constraint

measure is used to accomplish load balancing. The

workload and available resources of a virtual machine are

compared, and if the workload exceeds the threshold value,

the jobs are transferred to a machine with a lower

workload. Capacity and load in each virtual machine are

used to balance the load of the virtual machines.

Jean Pepe et al. [15] proposed low cost and low time

complexity load balancing algorithm based on PSO. In this

algorithm based on the completion time virtual memory is

assigned to the task in hydrogenous virtual memory

environment. the particle positioning is updated based on

the load balancing scheme. Kaushik et al. [17] also

proposed a meta-heuristic algorithm To optimize the load

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 601

balancing in cloud server with multiple virtual machines

and tasks. This algorithm is based on dominant Firefly

algorithm to enhance the accuracy and to balance the load.

In a mobile and cloud computing setting, the authors

believe their proposed technique can increase throughput

and decrease response time. Keng-Mao et al. [18] offer a

hybrid meta heuristic technique to managing the variable

workload in the cloud computing environment by

combining Ant Colony optimization (ACO) and PSO. They

will move the task to the virtual machine during runtime

after considering the task's historical performance data. To

be specific, Fahimeh Ramezani et al. [19]. It was suggested

that the meta-heuristic technique of PSO be used for task-

based load balancing. This approach is designed to reduce

the burden of virtual machine migration. By shifting the

additional workload to a virtual machine that is less

overloaded, it is possible to accomplish the reduced

migration overload.

It achieves the reduced migration overload by distributing

the additional work across the virtual machines and putting

the burden on those with less requests. Some sort of

optimization method is employed in Firefly to achieve the

best possible outcome and load distribution. the time to

complete the task, the task in queue and completion cost

are the attribute used to find the optimal result.

3. Problem Formulation

The typical cloud computing infrastructure framework is

illustrated in figure 1. Here we assume that the cloud

computing infrastructure consist of physical machines

(PMS ….), which is loaded with resource manager (RM),

who's responsibility is to monitor the utilization of

resources off physical machine and gather the statistics of

every physical machine such as availability of physical

machine utilization of resources and the status of virtual

machine. each physical machine can have many virtual

machines which is taken care by virtual machine monitor

(VMm). The virtual machine employs the virtual machine

scheduler to map the Physical Machine (PM) using the

Resource Manager (RM). In the diagram a sequence of

actions has been shown in the Figure 1. (1) M number of

tasks are available (such as T1 T2 T3…TM) for the

scheduling. Task scheduler gets the M number of users task

initially. (2) Resource manager gives the feedback to the

task scheduler For the status Of the physical machine hand

it's remaining resources. (3) The task scheduler initiate the

scheduling of the user task based on the feedback received

by the resource manager and the user request received by

the service provider. (4) The Virtual Machine Scheduler

(VM Scheduler) allocates the VMs on the selected PM. In

the proposed task scheduling algorithm, initially it

calculates the completion time for executing the task. The

completion time is calculated using execution time as well

as the waiting time of the user task. The waiting time of the

user task is the time duration when the task is not allotted

the CPU. Feedback from the RM on the capacity of the

VM used to perform the tasks and the number of

instructions in each task can be used to estimate the total

execution time. The task has been executed has been

executed into the virtual machine if the executing task’s

completion time is within the deadline define by the user.

After the execution of the user task, the execution cost of

the task in each existing VM has been calculated by the

task scheduler. By allocating the most appropriate virtual

machine to run the user's work, the task scheduler can

reduce the overall cost of execution. At last, the user will

get the result of the executed tasks by the task scheduler.

The following assumptions used in the proposed algorithm:

• Each user task In the virtual machine is completed

without any interrupt after initialization of execution

i.e. we apply non-preemptive scheduling.

• The execution time duration of each users task is

dependent on virtual machine’s capacity.

• All users task are independent to each other i.e. full

isolation is applied.

• Based on the assigned virtual machine which fulfil the

requirements of the user task is allowed to process.

• More than one user’s tasks are allowed in each virtual

machines.

Inputs to the Algorithm:

• The different set of Tasks T = {T1, ..., Ti, ..., TM } can be

initiate and defined, here in the task set i ∈ [1, M] and

the total number of tasks represnetd as M. Every user’s

task can be represented as following tuples, for any task

i it presnetd as Ti <insti, deadlinei, arvi>, where insti is

the task size which can be calculated by million of

instructions (Millioni), deadlinei is the deadline of the

task and arvi is the task arrival time.

• The different set of Vitural Machines VM

={VM1,...,VMj,...,VMV} can be defined and initialted

with j ∈ [1,V] here, the total number of Vitrual

Machines are V . Every Virtual Machine VMj can be

reperented by the tuples is described as VMj

<Cj,Pricej>. The values of Cj here stand in for the VM's

storage capacity. The capacity, expressed in “million

instructions per second” (MIPS), is merely the

processing speed. The Pricej per hour could be used to

represent the time spent on the virtual machine's task.

Output of the Algorithm:

• With the criteria fulfilled by the algorithm the

choosen Virtual Machine of each task.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 602

Objective Function of the Alorithm:

• The purpose of the FSOTS algorithm is to assign the

appropriate virtual machine to the user stars so that the

execution cost (ECij)could be minimised. The objective

function is shown in the equation below:

 Execution Cost:

• The time taken by the VM to carry out the operation is

known as its execution cost (ECij). This is determined

by the task's CTij and the cost of the virtual machine

VMj and represented by the notation Pricej. This can be

represented using the equation below:

Completion Time:

• The arrival time of the task i and the execution time of

the task in virtual machine VMj can be used to

determine the completion time (CTij) of the task that is

executed in the virtual machine. As shown in Figure 2,

the task completion time can be determined using the

following equation:

In the above equation the arrival time of the user’s take i in

to the Vitural Machine is reprented as arvi and execution

time of any user’s task i is ETij.

The execution time is the amount of time taken by the VM

to finish task execution and can be expressed as follows:

In the avove equation the number of instructions consists

of that task i that need to be exected in the virual machine

VMj is insti and the capacity of Virtual Machine VMj can be

denoted as Cj. The capacity of the VM can be calculated

using the formula shown in the quation below:

In the above equation the number or core of processor

available in the VM can be denoted as Pej and the millions

of instruction per second value by those proceesor can be

denoted as mipsj.

I. BASIC FIREFLY SWARM OPTIMIZATION

ALGORITHM

Firefly swarm optimization (FSO) is an optimization

algorithm that is based on the intelligence and population

of fireflies. It is a distributed approach to find the optimal

solution and more scalable than other metaheuristic

algorithms. FSO algorithm can be applied in dynamic VM

allocation and load balancing in cloud computing

environment. This algorithm is completely based on the

behaviour of the fireflies and how they react with different

phenomena. The fireflies move towards another Firefly if

they find more illumination then others. It is also based on

the distance and the intensity of elimination. as in the

normal phenomena Firefly attract with other fireflies based

on how much light they're detecting. in the Firefly some

optimization algorithm the basic objective function is

based on the illumination reduce by the fireflies it means

the higher the illumination the higher the chance to select

that Firefly as neighbor. It is a probabilistic algorithm and

find the estimated cost based on this objective function. we

can say that instead of global Maxima it is more towards

the local Maxima. hence we can find many clusters of

fireflies which creates the sub group based on the objective

function. The FSO algorithm initially positioned the

fireflies randomly with random elimination value this

elimination also depends on the distance between the

fireflies. FSO algorithm has four phases such as

initialization phase, illumination updation Phase and

Displacement Phase and finally Local Radial Updation

Phase. The detailed Firefly Swarm Optimization algorithm

is illustrated in Algorithm 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 603

4. Proposed Modified Firefly Swarm

Optimization algorithm

Firefly Swarm Optimization algorithm finds the virtual

machine for each task to minimize the execution cost. In

the algorithm each virtual machine can be visualised as the

fireflies and the virtual machine execution cost represents

by the illumination. Based on the basic fireflies behaviour,

they always attract towards the other fireflies having the

more illumination. In the modified proposed Firefly some

optimization algorithm unlike basic Firefly some

optimization The objective function is based on the lower

execution cost which is opposite to the characteristics of

maximum illumination. The detailed discussion on

proposed algorithm is given below:

A. Initialization Phase

In this phase Initial population has been considered which

are the number of fireflies considered as the potential

solutions. this initial population which consist of the

fireflies are randomly generated. As in the algorithm

Firefly signifies virtual machines, so each virtual machine

(VMj) Consist of its location at any time t, xj(t). This

location signifies the completion time of the task in any

virtual machine (VMj). The completion time is nothing but

the time taken by the virtual machine to execute any task t.

The illumination value of any Firefly at time t is

represented as lj(t). The illumination is equal to the

execution cost of the virtual machine. The other parameters

used in the algorithm are Maximum sensor range

represented as γs in the size of displacement step s, the

local radial range at any time t can be represented as γj
d(t),

the desired number of neighbors are nt. In the algorithm,

the illumination decade coefficient p with the range (0 < p

< 1) can be used, the illumination enhancement coefficient

can be represented as γ and the neighborhood rate of

change would be presented as β.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 604

B. Illumination updation Phase

At the initial stage, the objective function value f(xj(t+1))

of each virtual machine VMj could be converted into the

illumination value lj(t+1) With reference to the equation

shown below.

In the above equation, lj(t) is the illumination value of the

concern virtual machine (VMj)at any time t. Also in the

equation the objective function at time t + 1, represents

f(xj(t+1)). Hence the elimination value of the virtual

machines are updated according to the value given by the

objective function. In the algorithm the lower illumination

value represents the lower execution cost which is the goal

of the algorithm to minimize. the illumination value

minimized based on the time to illustrate the decay in the

basic algorithm.

C. Displacement Phase

In this phase, The Firefly decide to move towards one of its

neighbor Firefly to illustrate the displacement of virtual

machine with the task. the displacement between virtual

machine VMj and the task t, are done with the objective

function off minimum execution cost represents the lower

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 605

illumination value. The displacement is also based on task

deadline represented by Local radial range γd.

The displacement phase further divided into four steps:

Step 1. Neighbors Finding:

In this step appropriate neighbor could be found based on

the criteria such as deadline for executing the task which

can be represented as the equation below:

In the above equation an is the ID of the neighbor of the

virtual machine, ln(t) & lj(t) are the illumination values for

Virtual machine n (VMn) and Virtual machine j (VMj) and

xn(t) & xj(t) are completion time of Virtual machine n

(VMn) and Virtual machine j (VMj).

Step 2. Probability Calculation:

In this step probability of each Virtual Machine (VMj), to

displaced towards the neighbor with the lowest

illumination value can be calculated using the equation

below:

In the above question the probability of the task to displace

from virtual machine j (VMj) to virtual machine n (VMn)

can be represented as pjn(t).

Step 3. Neighbor Selection:

In this step, The users task which is located in virtual

machine J (VMj) selects a virtual machine (VMn) as

neighbor set using the highest probability than the other

neighbor virtual machine. After this phase, each task has

assigned it's optimum virtual machine, which is a

significant step to achieve load balancing in the cloud

computing environment having physical machines.

Step 4. Displacement:

In this step related to each VM the completion time of each

allocated task is calculated using the equation below:

In the above equation, the current and the new completion

time of the VMj can be represented as xj(t) & xj(t + 1). For

future selection of neighbor virtual machine the importance

of calculating the new completion time is more.

D. Local Radial Updation Phase

In this phase, the deadline of each task which is represented

as the local radial γj
d need to be updated for computing the

future task scheduling to the virtual machine. For updating

the local radial the equation is shown below:

The Algorithm 2, illustrates the proposed task scheduling

algorithm. In the algorithm the input parameter are used as

the details of taskList and vmList. In line 1 parameter are

initialised. A virtual machine is randomly initialized when

the user’s task need to process, as shown in line 3 – 4 in the

algorithm. Based on the execution cost by calculating the

illumination value in our case virtual machine gets the new

position as in the line 5 – 6. In line 7 each task Ti, from the

taskList has to schedule in the virtual machine. the

elimination value at time t, lj (t), which is the execution cost

of any virtual machine j need to be updated as shown in

line 10. In line 11 the neighbor set of any virtual machine j,

Nj(t) will be calculated based on the lower execution cost

then the current virtual machine and also that fulfil the

condition of deadline. The user predefined the size of the

neighbours set at any time t, nt. The illumination of each

firefly in the form of execution cost ln(t) using the cost and

the completion time will be calculated as depicted in line 2

of Algorithm 3. To adding the virtual machine (VMn) into

the neighbor list the execution cost of the virtual machine

along with the deadline of the task is used as written in line

3 – 8 in algorithm 3. As soon in line 12 – 15, the selection

of virtual machine would be done based on the highest

priority from the neighbor list. At last local radio γd would

be updated from the neighbours list as in line 16. As

depicted in line 18 – 19 the algorithm is terminated if no

significant improvement will be done in the execution cost.

5. Simulation Results & Discussion

The proposed technique is tested using the CloudSim

simulator. This is the widely used simulator for cloud

computing architecture provides the representation of data

centres and virtual machine. It also supports task

scheduling policies, the virtual machine placement

algorithm, selection and mapping of the task with the

virtual machine, power models and provides different

scheduling scenarios to simulate real time situations. The

task scheduling algorithm is deployed in the clouds and by

including the virtual machine detail and the task scheduling

criteria. With two type of physical machines a data centre

is created inside the simulator. Table 1 & Table 2 shows

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 606

the attributes of data centre and physical machines. The

parameter used in the proposed modified Firefly Swarm

Optimization base task Scheduling algorithm are standard

and taken from the existing papers as shown in Table 3.

The simulation experiments of the proposed FSOTS along

with three existing task scheduling algorithms using the

meta-heuristic algorithm such as PSO[15], DFO [2] and

BFA [4]. The performance of proposed FSOTS was

compared with the PSO, DFO and BFA in terms of

different matrices such as total Completion Time,

Execution Cost and Resource Utilization.

TABLE I. CONFIGURATION OF THE DATA CENTRE

Parameter RAM Storage Bandwidth VM Scheduler VMM

Value 2 GB 1 TB 10 GB Time Sharing Xen

TABLE II. CONFIGURATION OF THE PHYSICAL MACHINE

Physical Machine Processor Core MIPS

PM1 Intel Core 2 Extreme X6800 2 27079

PM2 Intel Core i7 Extreme 3960X 6 177730

TABLE III. INITIAL VALUE OF THE PARAMETERS FOR THE PROPOSED (FSOTS) ALGORITHM

Parameter p R β nt s l0

Value 0.4 0.6 0.08 5 0.03 0.05

A. Total Completion Time

In a VM, the total completion time of a task is determined

based on the submission time, execution time, and waiting

time. The static and dynamic workload into the cloud

computing infrastructure has been considered. Static

workload is when the task is submitted beforehand to the

mapping with the virtual machine, whereas dynamic

workload is when the task is submitted at runtime. Apart

from that in the simulation mainly two scenario has been

considered in the first scenario number of tasks are varying

whereas VMs are fixed. In the second scenario, the number

of assignments is fixed while the number of VMs varies.

Scenario 1. Fixed Virtual Machine & Varying User’s

Tasks:

Five virtual machines are used regardless of the user's

workload growth from 100 to 600. Each virtual machine's

overall task completion time has been measured in

milliseconds. Figures 3 and 4 show the number of tasks on

the X-axis and the total time to complete the tasks on the

Y-axis in milliseconds. One case with a static workload is

explored in Figure 3, and it is found that the suggested

(FSOTS) algorithm quickly maps the task with a virtual

machine in a short amount of time. As can be shown in

Figure 4, the suggested (FSOTS) method not only performs

better than other current algorithms in the cloud computing

environment, but also handles the dynamic summation of

tasks. It shows that with both the workload condition the

proposed algorithm can give better and optimal result.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 607

Fig 3. Total Completion Time (Static Workload): With Fixed Virtual Machines & Varying Tasks

Fig 4. Total Completion Time (Dynamic Workload): With Fixed Virtual Machines & Varying Tasks

Scenario 2. Fixed User’s Tasks & varying Virtual

Machines:

In this the user’s tasks is fixed to 100 and virtual machine

is linearly increasing from 5 virtual machines to 20 virtual

machines. In Figure 5 the completion time in milliseconds

has been calculated with variable number of virtual

machines. here X-axis denotes the Number of Virtual

Machines (VMs) and Y-axis denotes the Total Completion

Time (ms). This experiment is conducted with static

workload of the tasks and found that the proposed

algorithm (FSOTS) outperformed the existing protocol in

terms of total completion time. We have also observed that

in comparison of less number of virtual machines when we

linearly increase the virtual machine the completion time is

almost constant. it indicates that if the task is limited the

completion time doesn't vary for greater number of virtual

machines.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 608

Fig 5. Total Completion Time (Static Workload): With Fixed User’s Tasks & Varying Virtual Machines

B. Execution Cost

The time required to perform the work in the VM and the

type of virtual machine can be used to determine the cost of

execution. In this case, we have considered a fixed number

of virtual machines of five, with the number of users' tasks

varying and progressively increasing from 100 to 600. The

workload into the cloud computing is fixed. In figure 6 the

total execution cost with different number of user task is

illustrated. As shown in the results, the suggested method

(FSOTS) has a lower execution cost than the present

approach, which gradually increases as the number of tasks

increases.

Fig 6. Total Execution Cost (Static Workload): With Fixed Virtual Machines & Varying User’s Tasks

C. Resource Utilization

In the physical machine the resource given to the task for

execution is virtual machine. we need to find out how the

virtual machine could be utilised during the course of the

task scheduling. The data center can calculate information

about the load applied to the virtual machine. The load of

the virtual machine can be determined using the standard

deviation using the calculation below:

In the equation σj denotes the standard deviation of the

virtual machine load, number of virtual machines can be

denoted as V. The time of completion of any task execution

Is denoted as CTij. which is already calculated in the

Equation 3. the mean completion time of virtual machine

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 609

we is denoted as μj that is calculated with the equation

below:

As shown in the equation if the μj less than the σj , then the

cloud computing system is in the imbalance state and if μj

greater than or equal to the σj, then the cloud computing

system is in the balance state. As shown in the Table 4 the

proposed protocol (FSOTS) and PSO gives the result

which shows that the cloud computing system is in the

balanced state. Whereas DFO and BFA shows the result

which takes the cloud computing system into imbalance

state. it also denotes that in the proposed algorithm the

resource utilisation is optimally achieved.

TABLE IV. STANDARD DEVIATION AND MEAN COMPLETION TIME

Algorithms μ σ

Proposed (FSOTS) 41.20 23.04

PSO 41.20 33.33

DFO 41.20 55.88

BFA 41.20 91.41

6. Conclusion

The meta-heuristic approach was employed for scheduling

the tasks and load balancing among the VMs. The decision

will be taken based on the Execution Cost and the Deadline

submitted along with each user’s task. The modified FSO

algorithm is able to return the selected VM which can be

mapped with the users task. The proposed method is

implemented alongside the existing algorithm using the

CloudSim simulator, and the results reveal the efficiency of

proposed algorithm ascompared to existing protocol in

terms of completion time, execution cost, and resource

utilization. The resulting graph is constructed using several

situations, such as a fixed user task and a varied virtual

machine, as well as a varying user task and a fixed virtual

machine with static and dynamic task submission into the

cloud computing environment. The proposed approach will

function in both static and dynamic task submission

contexts. In future, further enhancement could be done and

achieve more optimum result by using some hybrid meta-

heuristic approach in a static and dynamic workload

environment.

References

[1] Chunlin Li, Jianhang Tang and Youlong Luo,

“Service Cost-based Resource Optimization and

Load Balancing for Edge and Cloud Environment,”

Knowledge and Information Systems, Springer, vol.

62, 2020, pp. 4255-4275,

doi:https://doi.org/10.1007/s10115-020-01489-6.

[2] P. Neelima and A. Rama Mohan Reddy, “An

Efficient Load Balancing System using Adaptive

Dragonfly Algorithm in cloud computing,” Cluster

Computing, Springer, vol. 23, 2020, pp. 2891-2899,

doi:https://doi.org/10.1007/s10586-020-03054-w.

[3] Wenwei Cai, Jiaxian Zhu, Weihua Bai, Weiwei Lin,

Naqin Zhou and Keqin Li, “A Cost saving and Load

balancing Task Scheduling Model for

Computational biology in Heterogeneous Cloud

Datacenters,” The Journal of Supercomputing,

Springer, vol. 76, 2020, pp. 6113-6139,

doi:https://doi.org/10.1007/s11227-020-03305-y.

[4] S. Peer Mohamed Ziyath and S. Senthilkumar,

“MHO: Meta Heuristic Optimization Applied Task

Scheduling with Load Balancing Technique for

Cloud Infrastructure Services,” Journal of Ambient

Intelligence and Humanized Computing, Springer,

July 2020, pp. 1868-5145,

doi:https://doi.org/10.1007/s12652-020-02282-7.

[5] Mirza Mohamed Shahriar Maswood , Md. Rahinur

Rahman, Abdullah G. Alharbi, and Deep Medhi, “A

Novel Strategy to Achieve Bandwidth Cost

Reduction and Load Balancing in a Cooperative

Three-Layer Fog- Cloud Computing Environment,”

IEEE Access, vol. 8, 2020, pp. 113737-113750,

doi:10.1109/ACCESS.2020.3003263.

[6] Muhammad Junaid, Adnan Sohail, Rao Naveed Bin

Rais, Adeel Ahmed, Osman Khalid, Imran Ali Khan

and Syed Sajid Hu, “Modeling an Optimized

Approach for Load Balancing in Cloud,” IEEE

Access, vol. 8, 2020, pp. 173208-173226,

doi:10.1109/ACCESS.2020.3024113.

https://doi.org/10.1109/ACCESS.2020.3024113

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 610

[7] T. K. P. Rajagopal, M. Venkatesan and A.

Rajivkannan, “An Improved Efficient Dynamic

Load Balancing Scheme Under Heterogeneous

Networks in Hybrid Cloud Environment,” Wireless

Personal Communications, Springer, vol. 111, 2020,

pp. 1837 - 1851, doi:https://doi.org/10.1007/s11277-

019-06960-4.

[8] Shanchen Pang, Wenhao Li, Hua He, Zhiguang

Shan and Xun Wang, “An EDA-GA Hybrid

Algorithm for Multi-Objective Task Scheduling in

Cloud Computing,” IEEE Access, vol. 7, oct. 2019,

pp. 146379 - 146389, doi:

10.1109/ACCESS.2019.2946216.

[9] Altaf Hussain, Muhammad Aleem, Muhammad

Azhar Iqbal, Muhammad Arshad Islam, “SLA-

RALBA: cost-efficient and resource-aware load

balancing algorithm for cloud computing,” The

Journal of Super- computing, Springer, vol. 75,

June. 2019, pp. 6777 - 6803, doi:

https://doi.org/10.1007/s11227-019-02916-4.

[10] Amrita Jyoti and Manish Shrimali, “Dynamic

provisioning of resources based on load balancing

and service broker policy in cloud computing,”

Cluster Computing, Springer, vol. 23, 2020, pp. 377

- 395, doi: https://doi.org/10.1007/s10586-019-

02928-y.

[11] Lingfu Kong, Jean Pepe Buanga Mapetu and Zhen

Chen, “Heuristic Load Balancing Based Zero

Imbalance Mechanism in Cloud Computing,”

Journal of Grid Computing, Springer, vol. 18, June

2019, pp. 123 - 148,

doi:https://doi.org/10.1007/s10723-019-09486-y.

[12] Shudong Wang, Yanqing Li, Shanchen Pang,

Qinghua Lu, Shuyu Wang and Jianli Zhao, “A Task

Scheduling Strategy in Edge-Cloud Collaborative

Scenario Based on Deadline,” Scientific

Programming, Hindawi, vol. 2020, Mar. 2020, pp.

1-9, doi: https://doi.org/10.1155/2020/3967847.

[13] Li Liu, Qi Fan, Rajkumar Buyya, “A Deadline-

Constrained Multi-Objective Task Scheduling

Algorithm in Mobile Cloud Environments,” IEEE

Access, vol. 6, Sept. 2018, pp. 52982 - 52996, doi:

10.1109/ACCESS.2018.2870915.

[14] Vijayakumar Polepally and K. Shahu Chatrapati,

“Dragonfly optimization and constraint measure-

based load balancing in cloud computing,” Cluster

Computing, Springer, vol. 22, Jan. 2019, pp. 1099–

1111, doi: https://doi.org/10.1007/s10586-017-

1056-4.

[15] Jean Pepe Buanga Mapetu, Zhen Chen and Lingfu

Kong, “Low-time complexity and low-cost binary

particle swarm optimization algorithm for task

scheduling and load balancing in cloud computing,”

Applied Intelligence, Springer, vol. 49, Sept. 2019,

pp. 3308 - 3330, doi:

https://doi.org/10.1007/s10489-019-01448-x.

[16] Sweekriti M Shettyand Sudheer Shetty, “Analysis

of Load Balancing Cloud Data Centers,” Journal of

Ambient Intelligence and Humanized Computing,

Springer, vol. 1 - 9, Jan. 2019,

doi:https://doi.org/10.1007/s12652-018-1106-7.

[17] Kaushik Sekaran, Mohammad S. Khan, Rizwan

Patan, Amir H. Gandomi, Parimala Venkata

Krishna, Suresh Kallam, “Improving the Response

Time of M-Learning and Cloud Computing

Environments Using a Dominant Firefly Approach,”

IEEE Access, vol. 7, 2019, pp. 30203 - 30212,

doi:10.1109/ACCESS.2019.2896253.

[18] Keng-Mao Cho, Pang-Wei Tsai, Chun-Wei Tsai,

Chu-Sing Yang, “A hybrid meta-heuristic algorithm

for VM scheduling with load balancing in cloud

computing,” Neural Computing and Applications,

Springer, vol. 26, Dec. 2014, pp. 1297 - 1309,

doi:https://doi.org/10.1007/s00521-014-1804-9.

[19] Fahimeh Ramezani, Jie Lu, Farookh Khadeer

Hussain, “Task-Based System Load Balancing in

Cloud Computing Using Particle Swarm

Optimization,” International Journal of Parallel

Programming, Springer, vol. 42, Oct. 2013, pp. 739

- 754, doi:https://doi.org/10.1007/s10766-013-0275-

4.

[20] Pawan Kumar and Rakesh Kumar, “Issues and

Challenges of Load Balancing Techniques in Cloud

Computing: A Survey,” ACM Computing Survey,

vol. 51, Number 6, Feb. 2019, pp. 1 - 35,

doi:https://doi.org/10.1145/3281010.

[21] Shahbaz Afzal and G. Kavitha, “Load balancing in

cloud computing – A hierarchical taxonomical

classification,” Journal of Cloud Computing:

Advances, Systems and Applications, Springer, vol.

8, Issue 22, Jan. 2019, pp. 1 - 24 ,

doi:https://doi.org/10.1186/s13677-019-0146-7.

[22] Ravanappan, P. ., Ilanchezhian, P. .,

Chandrasekaran, N. ., Prabu, S. ., & Saranya, N. N. .

(2023). Secure Blockchain Transactions for

Electronic Health Records based on an Improved

Attribute-Based Signature Scheme (IASS).

International Journal on Recent and Innovation

Trends in Computing and Communication, 11(4s),

77–83. https://doi.org/10.17762/ijritcc.v11i4s.6309

[23] Ahammad, D. S. K. H. (2022). Microarray Cancer

Classification with Stacked Classifier in Machine

https://doi.org/10.17762/ijritcc.v11i4s.6309

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 598–611 | 611

Learning Integrated Grid L1-Regulated Feature

Selection. Machine Learning Applications in

Engineering Education and Management, 2(1), 01–

10. Retrieved from

http://yashikajournals.com/index.php/mlaeem/articl

e/view/18

[24] Dhablia, D., & Timande, S. (n.d.). Ensuring Data

Integrity and Security in Cloud Storage.

[25] Dhabalia, D. (2019). A Brief Study of Windopower

Renewable Energy Sources its Importance,

Reviews, Benefits and Drwabacks. Journal of

Innovative Research and Practice, 1(1), 01–05.

