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Abstract: Cloud computing has emerged as a transformative technology that offers vast computational resources to meet the growing 

demands of modern applications. However, the efficient allocation of these resources to ensure optimal performance and scalability 

remains a critical challenge. Load balancing techniques play a pivotal role in optimizing resource utilization and improving the overall 

performance of cloud-based systems. Cloud service providers are looking for creative ways for dispersing the load across the virtual 

machines. Recent study suggests that efficient task scheduling or task-virtual machine mapping techniques can be used to achieve load 

balancing. It's also a well-known NP-Hard problem. Hence, contrary to polynomial-time algorithms, the researchers have been searching 

for meta-heuristic algorithms. In order to provide a solution to the mentioned issue, this research introduced a modified firefly swarm 

algorithm. The primary goal is to meet all deadlines while reducing the total amount of time it takes to execute all tasks. The proposed 

technique is compared to particle swarm optimization, bacteria foraging optimization, and dragonfly optimization to demonstrate its 

efficacy.   
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1. Introduction 

In cloud computing, load balancing occurs when a user's 

request is matched with available virtual machines. Hence, 

cloud computing relies heavily on job scheduling.  Two 

types of task scheduling procedures can be distinguished: 

static and dynamic. In static task scheduling, all user tasks 

are queued up at the start, and the virtual machine 

schedules them in a static fashion. In contrast, the dynamic 

scheduling mechanism maps the job to the virtual machine 

at runtime, whenever the user's task enters the system. 

Algorithms for scheduling tasks are used for the effective 

administration of virtual machines and task processing. 

Initially, customers and cloud service providers would sign 

a Service Level Agreement (SLA) when users submitted 

tasks for processing to the cloud system. Quality of service 

(QoS) requirements pertaining to job scheduling are 

specified in the Service Level Agreemen (SLA). There is a 

well-defined set of quality-of-service standards, including a 

set budget, a set timeframe within which tasks must be 

completed, and a set of security-related services. Users are 

billed based on how much they utilize the cloud's 

resources, as cloud services operate on a "pay as you go" 

basis.  The user needs to know how many virtual machines 

will be required for each operation, and they should factor 

that into their budget. When it comes to cloud computing, 

scheduling tasks is a non-deterministic NP-Hard problem 

that can be thought of as the bin-packing problem. As 

cloud computing becomes more complicated, the NP-hard 

problem gets harder to solve. The optimal solution for the 

scheduling problem in a short span of time can be obtained 

by meta-heuristic algorithms. Practical Swarm 

Optimization (PSO) and Genetic Algorithm (GA), have 

been used in recent years to solve the cloud scheduling 

problem, yielding near-optimal outcomes in a shorter 

amount of time. Researchers pay close attention to the 

outcomes produced by metaheuristic algorithms, leading to 

numerous algorithm proposals for task scheduling and load 

balancing. To provide the appropriate solution for the 

above-mentioned problem, in this paper, we proposed a 

solution by using Fireflies Swarm Optimization (FSO) 

algorithm to improve the execution cost for the user task 

submitted into the cloud infrastructure. The cost of 

execution would be determined by adding together the time 

it takes to do the operation and the price at which cloud 

resources, like virtual computers, are used. The task's 

completion time is calculated by combining the execution 

and waiting times. The completion time should be less than 

or equal to the deadline defined by the user at the time of 

task submission. The effectiveness of the proposed 

Fireflies Swarm Optimisation Task Scheduling (FSOTS) 

algorithm for task scheduling was examined through a 
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series of simulation experiments, and the outcomes were 

contrasted with those of other metaheuristic algorithms like 

PSO, Dragon Fly Optimisation (DFO), and Bacteria 

Foraging Algorithm (BFA). 

The remaining sections are organized as follows: Existing 

relevant works have been discussed in Section II. The task 

scheduling problem is formulated in Section III, Section IV 

elaborates the proposed methodology for problem solution, 

control parameters for simulation and result analysis are 

presented in Section V, and the study is concluded in 

Section VI with future scope. 

2. Related Work 

Many algorithms related to cloud computing have been 

proposed some of them have been surveyed in this paper. 

Chunlin Li et al. [1] proposed a load-balancing with 

resource optimization. In this model, the author has the 

attributes such as total cost, SLA, and user preferences to 

optimize the resource in an edge cloud environment. The 

migration strategy has been used for data movement with 

resource optimization and achieved load balancing in the 

age cloud environment. 

The adaptive dragonfly algorithm (ADA) was proposed as 

a meta-heuristic task scheduling algorithm for the cloud by 

P. Neelima et al. [2]. This algorithm is the hybrid approach 

of the dragonfly and Firefly algorithm. To get the 

optimized result, the author has considered multiple 

parameters such as Processing Cost, Completion Time, and 

Load in the virtual machine. 

Wenwei Cai et al. [3] proposed a massively cost-effective 

and load-balancing scheduling mechanism to maximize 

system throughput. The average waiting time and job 

response time are determined by modeling the entire 

cluster of computers as a queueing system and applying the 

principles of queuing theory to the problem. The theory of 

convex optimization is then applied to the problem of 

assigning tasks to workers in order to create a system for 

distributing workloads fairly. 

S. Peer Mohamed et al. [4] proposed another meta heuristic 

approach to address load balancing for cloud. Author 

proposed the load balancing algorithm for optimized and 

enhanced cloud infrastructure and showing the issues 

regarding the scheduling. this technique is illustrating static 

and dynamic condition based on the virtual memory 

parameters that will be fixed or chosen runtime. It deals 

with both static and dynamic properties of submitted tasks.

 

 

Fig 1: Framework of Cloud Computing with Physical Memory and Task Schedular  
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Fig 2: Time line of the Completion Time of the Task.  

Mirza Mohamed et al. [5] proposed a technique that 

support real time applications to reduce the resource cost 

and delay for fog cloud environment. In this an optimised 

model For load balancing and three layer cooperative for 

computing environment has been proposed. in the proposed 

model link bandwidth and virtual machines processing 

capacity has been considered. The load balancing 

algorithm proposed by Muhammad Junaid et al. [6] is a 

modified version of Cat Swarm Optimization (MCSO) that 

integrates SVM and popularly known as Data File Type 

Formatting (DFTF ). this algorithm is algorithm. The SVM 

classifier differentiate between various sources such as 

audio video images and text. The task is divided up among 

the virtual machines using MCSO. The enhanced efficient 

strategy for the cloud computing environment was 

presented by Rajagopal et al. [7] to distribute the dynamic 

load over multiple Virtual Machines (VMs). It allocates the 

task to the virtual machine Based on the makes pain time 

off each virtual machine and it's assigned task. Author also 

claim that the improved efficient scheme (IES) gives better 

completion time then other schemes. 

Shanchen Pang et al. [8] proposed a hybrid load balancing 

technique that combines Estimation of Distribution 

Algorithm (EDA) and GA to enhance cloud computing's 

load balancing capabilities and speed up work completion. 

Assigning tasks to virtual machines is best accomplished 

by first using the probability and sampling approach of 

EDA to develop a workable solution, and then expanding 

the search space through mutation and crossover operation 

in a genetic algorithm. Authors also claim that it has fast 

coverage speed and efficient search capabilities. Altaf 

Hussain et al. [9] presented the load Balancing scheduler 

based on SLA for the heterogeneous cloud computing 

architecture to decrease the execution time and exaction 

cost of each submitted work. This method is cost-effective 

and helps cloud users meet their SLAs. It took into account 

the task's execution cost while deciding which virtual 

machine to assign it to. Amrita Jyoti et al. [10] present a 

new method for dynamic load balancing in the cloud 

computing environment to improve QoS performance in 

areas such as energy, time delay, reaction time, and so on. 

For dynamic resource allocation, we used a multi-agent 

best deep reinforce meant learning approach. In this 

situation, a virtual machine is selected to perform the task 

based on its relative importance. A second dynamic 

approach is described for scheduling the task days, and it is 

based on the dynamic optimal load aware service broker 

and the global user agent. 

Lingfu Kong et al. [11] proposed Heuristic algorithm for 

heterogeneous virtual machine based cloud environment to 

provide low make-span and monetary cost with greater 

resource utilization. In the proposed approach optimal 

completion time and earlier finishing time attributes are 

used for virtual machine to achieve start scheduling and 

load balancing efficiently. The catastrophic genetic 

algorithm (CGA) was introduced by Shudong Wang et al. 

[12] as a means of achieving a global optimum solution in 

the work scheduling algorithm for edge devices and cloud 

computing infrastructureThis algorithm's attributes are the 

time it takes to finish a task and the penalty it incurs for 

failing to finish a task on time.  The algorithm's 

performance was enhanced by employing an optimized 

mutation and crossover procedure and a roulette selection 

approach. Li Liu et al. [13] presented Multi objective 

optimization task scheduling algorithm where unconstraint 

hand time deadline constraint scenarios has been 

considered. The attribute for that are scheduling algorithm 

is heterogeneous earliest finish time for order preferences 

and idle solution method. Vijayakumar et al. [14] proposed 

another meta-heuristic approach they name the Dragonfly 

Optimization algorithm. In this method, a constraint 

measure is used to accomplish load balancing. The 

workload and available resources of a virtual machine are 

compared, and if the workload exceeds the threshold value, 

the jobs are transferred to a machine with a lower 

workload. Capacity and load in each virtual machine are 

used to balance the load of the virtual machines. 

Jean Pepe et al. [15] proposed low cost and low time 

complexity load balancing algorithm based on PSO. In this 

algorithm based on the completion time virtual memory is 

assigned  to the task in hydrogenous virtual memory 

environment. the particle positioning is updated based on 

the load balancing scheme. Kaushik et al. [17] also 

proposed a meta-heuristic algorithm To optimize the load 
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balancing in cloud server with multiple virtual machines 

and tasks. This algorithm is based on dominant Firefly 

algorithm to enhance the accuracy and to balance the load. 

In a mobile and cloud computing setting, the authors 

believe their proposed technique can increase throughput 

and decrease response time. Keng-Mao et al. [18] offer a 

hybrid meta heuristic technique to managing the variable 

workload in the cloud computing environment by 

combining Ant Colony optimization (ACO) and PSO. They 

will move the task to the virtual machine during runtime 

after considering the task's historical performance data. To 

be specific, Fahimeh Ramezani et al. [19]. It was suggested 

that the meta-heuristic technique of PSO  be used for task-

based load balancing. This approach is designed to reduce 

the burden of virtual machine migration. By shifting the 

additional workload to a virtual machine that is less 

overloaded, it is possible to accomplish the reduced 

migration overload. 

It achieves the reduced migration overload by distributing 

the additional work across the virtual machines and putting 

the burden on those with less requests. Some sort of 

optimization method is employed in Firefly to achieve the 

best possible outcome and load distribution. the time to 

complete the task, the task in queue and completion cost 

are the attribute used to find the optimal result.  

3. Problem Formulation 

The typical cloud computing infrastructure framework is 

illustrated in figure 1. Here we assume that the cloud 

computing infrastructure consist of physical machines 

(PMS ….), which is loaded with resource manager (RM), 

who's responsibility is to monitor the utilization of 

resources off physical machine and gather the statistics of 

every physical machine such as availability of physical 

machine utilization of resources and the status of virtual 

machine. each physical machine can have many virtual 

machines which is taken care by virtual machine monitor 

(VMm). The virtual machine employs the virtual machine 

scheduler to map the Physical Machine (PM) using the 

Resource Manager (RM). In the diagram a sequence of 

actions has been shown in the Figure 1. (1) M number of 

tasks are available (such as T1 T2 T3…TM) for the 

scheduling. Task scheduler gets the M number of users task 

initially. (2) Resource manager gives the feedback to the 

task scheduler For the status Of the physical machine hand 

it's remaining resources. (3) The task scheduler initiate the 

scheduling of the user task based on the feedback received 

by the resource manager and the user request received by 

the service provider. (4) The Virtual Machine Scheduler 

(VM Scheduler) allocates the VMs on the selected PM. In 

the proposed task scheduling algorithm, initially it 

calculates the completion time for executing the task. The 

completion time is calculated using execution time as well 

as the waiting time of the user task. The waiting time of the 

user task is the time duration when the task is not allotted 

the CPU. Feedback from the RM on the capacity of the 

VM used to perform the tasks and the number of 

instructions in each task can be used to estimate the total 

execution time. The task has been executed has been 

executed into the virtual machine if the executing task’s 

completion time is within the deadline define by the user. 

After the execution of the user task, the execution cost of 

the task in each existing VM has been calculated by the 

task scheduler. By allocating the most appropriate virtual 

machine to run the user's work, the task scheduler can 

reduce the overall cost of execution. At last, the user will 

get the result of the executed tasks by the task scheduler. 

The following assumptions used in the proposed algorithm: 

• Each user task In the virtual machine is completed 

without any interrupt after initialization of execution 

i.e. we apply non-preemptive scheduling. 

• The execution time duration of each users task is 

dependent on virtual machine’s capacity. 

• All users task are independent to each other i.e. full 

isolation is applied.  

• Based on the assigned virtual machine which fulfil the 

requirements of the user task is allowed to process. 

• More than one user’s tasks are allowed in each virtual 

machines. 

Inputs to the Algorithm:  

• The different set of Tasks T = {T1, ..., Ti, ..., TM } can be 

initiate and defined, here in the task set i ∈ [1, M] and 

the total number of tasks represnetd as M. Every user’s 

task can be represented as following tuples, for any task 

i it presnetd as Ti <insti, deadlinei, arvi>, where insti is 

the task size which can be calculated by million of 

instructions (Millioni), deadlinei is the deadline of the 

task and arvi is the task arrival time.  

• The different set of Vitural Machines VM 

={VM1,...,VMj,...,VMV} can be defined and initialted 

with j ∈ [1,V] here,  the total number of Vitrual 

Machines are V . Every Virtual Machine VMj can be 

reperented by the tuples is described as VMj 

<Cj,Pricej>. The values of Cj here stand in for the VM's 

storage capacity. The capacity, expressed in “million 

instructions per second” (MIPS), is merely the 

processing speed. The Pricej per hour could be used to 

represent the time spent on the virtual machine's task.   

Output of the Algorithm:  

• With the criteria fulfilled by the algorithm the 

choosen Virtual Machine of each task. 
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Objective Function of the Alorithm:  

• The purpose of the FSOTS algorithm is to assign the 

appropriate virtual machine to the user stars so that the 

execution cost (ECij)could be minimised. The objective 

function is shown in the equation below: 

 

 Execution Cost:  

• The time taken by the VM to carry out the operation is 

known as its execution cost (ECij). This is determined 

by the task's CTij and the cost of the virtual machine 

VMj  and represented by the notation Pricej. This can be 

represented using the equation below: 

 

Completion Time: 

• The arrival time of the task i and the execution time of 

the task in virtual machine VMj can be used to 

determine the completion time (CTij) of the task that is 

executed in the virtual machine. As shown in Figure 2, 

the task completion time can be determined using the 

following equation: 

 

In the above equation the arrival time of the user’s take i in 

to the Vitural Machine is reprented as arvi and execution 

time of any user’s task i is ETij.  

The execution time is the amount of time taken by the VM 

to finish task execution and can be expressed as follows: 

 

In the avove equation the number of instructions consists 

of that task i that need to be exected in the virual machine 

VMj is insti and the capacity of Virtual Machine VMj can be 

denoted as Cj. The capacity of the VM can be calculated 

using the formula shown in the quation below: 

 

In the above equation the number or core of processor 

available in the VM can be denoted as Pej and the millions 

of instruction per second value by those proceesor can be 

denoted as mipsj. 

I. BASIC FIREFLY SWARM OPTIMIZATION 

ALGORITHM 

Firefly swarm optimization (FSO) is an optimization 

algorithm that is based on the intelligence and population 

of fireflies. It is a distributed approach to find the optimal 

solution and more scalable than other metaheuristic 

algorithms. FSO algorithm can be applied in dynamic VM 

allocation and load balancing in cloud computing 

environment. This algorithm is completely based on the 

behaviour of the fireflies and how they react with different 

phenomena. The fireflies move towards another Firefly if 

they find more illumination then others. It is also based on 

the distance and the intensity of elimination. as in the 

normal phenomena Firefly attract with other fireflies based 

on how much light they're detecting. in the Firefly some 

optimization algorithm the basic objective function is 

based on the illumination reduce by the fireflies it means 

the higher the illumination the higher the chance to select 

that Firefly as neighbor. It is a probabilistic algorithm and 

find the estimated cost based on this objective function. we 

can say that instead of global Maxima it is more towards 

the local Maxima. hence we can find many clusters of 

fireflies which creates the sub group based on the objective 

function. The FSO algorithm initially positioned the 

fireflies randomly with random elimination value this 

elimination also depends on the distance between the 

fireflies. FSO algorithm has four phases such as 

initialization phase, illumination updation Phase and 

Displacement Phase and finally Local Radial Updation 

Phase. The detailed Firefly Swarm Optimization algorithm 

is illustrated in Algorithm 1. 
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4. Proposed Modified Firefly Swarm 

Optimization algorithm 

Firefly Swarm Optimization algorithm finds the virtual 

machine for each task to minimize the execution cost. In 

the algorithm each virtual machine can be visualised as the 

fireflies and the virtual machine execution cost represents 

by the illumination. Based on the basic fireflies behaviour, 

they always attract towards the other fireflies having the 

more illumination. In the modified proposed Firefly some 

optimization algorithm unlike basic Firefly some 

optimization The objective function is based on the lower 

execution cost which is opposite to the characteristics of 

maximum illumination. The detailed discussion on 

proposed algorithm is given below: 

A. Initialization Phase 

In this phase Initial population has been considered which 

are the number of fireflies considered as the potential 

solutions. this initial population which consist of the 

fireflies are randomly generated. As in the algorithm 

Firefly signifies virtual machines, so each virtual machine 

(VMj) Consist of its location at any time t, xj(t). This 

location signifies the completion time of the task in any 

virtual machine (VMj). The completion time is nothing but 

the time taken by the virtual machine to execute any task t. 

The illumination value of any Firefly at time t is 

represented as lj(t). The illumination is equal to the 

execution cost of the virtual machine. The other parameters 

used in the algorithm are Maximum sensor range 

represented as γs in the size of displacement step s, the 

local radial range at any time t can be represented as γj
d(t), 

the desired number of neighbors are nt. In the algorithm, 

the illumination decade coefficient p with the range (0 < p 

< 1) can be used, the illumination enhancement coefficient 

can be represented as γ and the neighborhood rate of 

change would be presented as β. 
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B. Illumination updation Phase 

At the initial stage, the objective function value f(xj(t+1)) 

of each virtual machine VMj could be converted into the 

illumination value lj(t+1) With reference to the equation 

shown below. 

 

In the above equation, lj(t) is the illumination  value of the 

concern virtual machine (VMj)at any time t. Also in the 

equation the objective function at time t + 1, represents  

f(xj(t+1)). Hence the elimination value of the virtual 

machines are updated according to the value given by the 

objective function. In the algorithm the lower illumination 

value represents the lower execution cost which is the goal 

of the algorithm to minimize. the illumination value 

minimized based on the time to illustrate the decay in the 

basic algorithm. 

C. Displacement Phase 

In this phase, The Firefly decide to move towards one of its 

neighbor Firefly to illustrate the displacement of virtual 

machine with the task. the displacement between virtual 

machine VMj and the task t, are done with the objective 

function off minimum execution cost represents the lower 
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illumination value. The displacement is also based on task 

deadline represented by Local radial range γd.  

The displacement phase further divided into four steps: 

Step 1. Neighbors Finding: 

In this step appropriate neighbor could be found based on 

the criteria such as deadline for executing the task which 

can be represented as the equation below: 

 

In the above equation an is the ID of the neighbor of the 

virtual machine, ln(t) & lj(t) are the illumination values for 

Virtual machine n (VMn) and Virtual machine j (VMj) and 

xn(t) & xj(t) are completion time of Virtual machine n 

(VMn) and Virtual machine j (VMj). 

Step 2. Probability Calculation: 

In this step probability of each Virtual Machine (VMj), to 

displaced towards the neighbor with the lowest 

illumination value can be calculated using the equation 

below: 

 

In the above question the probability of the task to displace 

from virtual machine j (VMj) to virtual machine n (VMn) 

can be represented as pjn(t). 

Step 3. Neighbor Selection:  

In this step, The users task which is located in virtual 

machine J (VMj) selects a virtual machine (VMn) as 

neighbor set using the highest probability than the other 

neighbor virtual machine. After this phase, each task has 

assigned it's optimum virtual machine, which is a 

significant step to achieve load balancing in the cloud 

computing environment having physical machines. 

Step 4. Displacement: 

In this step related to each VM the completion time of each 

allocated task is calculated using the equation below: 

 

In the above equation, the current and the new completion 

time of the VMj can be represented as xj(t) & xj(t + 1). For 

future selection of neighbor virtual machine the importance 

of calculating the new completion time is more. 

D. Local  Radial Updation Phase 

In this phase, the deadline of each task which is represented 

as the local radial γj
d need to be updated for computing the 

future task scheduling to the virtual machine. For updating 

the local radial the equation is shown below: 

 

The Algorithm 2, illustrates the proposed task scheduling 

algorithm. In the algorithm the input parameter are used as 

the details of taskList and vmList. In line 1 parameter are 

initialised. A virtual machine is randomly initialized when 

the user’s task need to process, as shown in line 3 – 4 in the 

algorithm. Based on the execution cost by calculating the 

illumination value in our case virtual machine gets the new 

position as in the line 5 – 6. In line 7 each task Ti, from the 

taskList has to schedule in the virtual machine. the 

elimination value at time t, lj (t), which is the execution cost 

of any virtual machine j need to be updated as shown in 

line 10. In line 11 the neighbor set of any virtual machine j, 

Nj(t) will be calculated based on the lower execution cost 

then the current virtual machine and also that fulfil the 

condition of deadline. The user predefined the size of the 

neighbours set at any time t, nt. The illumination of each 

firefly in the form of execution cost ln(t) using the cost and 

the completion time will be calculated as depicted in line 2 

of Algorithm 3. To adding the virtual machine (VMn) into 

the neighbor list the execution cost of the virtual machine 

along with the deadline of the task is used as written in line 

3 – 8 in algorithm 3. As soon in line 12 – 15, the selection 

of virtual machine would be done based on the highest 

priority from the neighbor list. At last local radio γd would 

be updated from the neighbours list as in line 16. As 

depicted in line 18 – 19 the algorithm is terminated if no 

significant improvement will be done in the execution cost. 

5. Simulation Results & Discussion 

The proposed technique is tested using the CloudSim 

simulator. This is the widely used simulator for cloud 

computing architecture provides the representation of data 

centres and virtual machine. It also supports task 

scheduling policies, the virtual machine placement 

algorithm, selection and mapping of the task with the 

virtual machine, power models and provides different 

scheduling scenarios to simulate real time situations. The 

task scheduling algorithm is deployed in the clouds and by 

including the virtual machine detail and the task scheduling 

criteria. With two type of physical machines a data centre 

is created inside the simulator. Table 1 & Table 2 shows 
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the attributes of data centre and physical machines. The 

parameter used in the proposed modified Firefly Swarm 

Optimization base task Scheduling algorithm are standard 

and taken from the existing papers as shown in Table 3. 

The simulation experiments of the proposed FSOTS along 

with three existing task scheduling algorithms using the 

meta-heuristic algorithm such as PSO[15], DFO [2] and 

BFA [4]. The performance of proposed FSOTS was 

compared with the PSO, DFO and BFA in terms of 

different matrices such as total Completion Time, 

Execution Cost and Resource Utilization. 

TABLE I. CONFIGURATION OF THE DATA CENTRE 

Parameter  RAM  Storage  Bandwidth  VM Scheduler  VMM  

Value  2 GB  1 TB  10 GB  Time Sharing  Xen  

 

TABLE II. CONFIGURATION OF THE PHYSICAL MACHINE 

Physical Machine Processor  Core  MIPS  

PM1  Intel Core 2 Extreme X6800  2  27079  

PM2  Intel Core i7 Extreme 3960X  6  177730  

 

TABLE III. INITIAL VALUE OF THE PARAMETERS FOR THE PROPOSED (FSOTS) ALGORITHM 

Parameter  p R β nt s l0 

Value  0.4 0.6 0.08 5 0.03 0.05 

A. Total Completion Time 

In a VM, the total completion time of a task is determined 

based on the submission time, execution time, and waiting 

time. The static and dynamic workload into the cloud 

computing infrastructure has been considered. Static 

workload is when the task is submitted beforehand to the 

mapping with the virtual machine, whereas dynamic 

workload is when the task is submitted at runtime. Apart 

from that in the simulation mainly two scenario has been 

considered in the first scenario number of tasks are varying 

whereas VMs are fixed. In the second scenario, the number 

of assignments is fixed while the number of VMs varies.  

Scenario 1. Fixed Virtual Machine & Varying User’s 

Tasks: 

Five virtual machines are used regardless of the user's 

workload growth from 100 to 600. Each virtual machine's 

overall task completion time has been measured in 

milliseconds. Figures 3 and 4 show the number of tasks on 

the X-axis and the total time to complete the tasks on the 

Y-axis in milliseconds. One case with a static workload is 

explored in Figure 3, and it is found that the suggested 

(FSOTS) algorithm quickly maps the task with a virtual 

machine in a short amount of time. As can be shown in 

Figure 4, the suggested (FSOTS) method not only performs 

better than other current algorithms in the cloud computing 

environment, but also handles the dynamic summation of 

tasks. It shows that with both the workload condition the 

proposed algorithm can give better and optimal result. 
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Fig 3. Total Completion Time (Static Workload): With Fixed Virtual Machines & Varying Tasks 

 

Fig 4. Total Completion Time (Dynamic Workload): With Fixed Virtual Machines & Varying Tasks 

Scenario 2. Fixed User’s Tasks & varying Virtual 

Machines: 

In this the user’s tasks is fixed to 100 and virtual machine 

is linearly increasing from 5 virtual machines to 20 virtual 

machines. In Figure 5 the completion time in milliseconds 

has been calculated with variable number of virtual 

machines. here X-axis denotes the Number of Virtual 

Machines (VMs) and Y-axis denotes the Total Completion 

Time (ms). This experiment is conducted with static 

workload of the tasks and found that the proposed 

algorithm (FSOTS) outperformed the existing protocol in 

terms of total completion time. We have also observed that 

in comparison of less number of virtual machines when we 

linearly increase the virtual machine the completion time is 

almost constant. it indicates that if the task is limited the 

completion time doesn't vary for greater number of virtual 

machines.
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Fig 5. Total Completion Time (Static Workload): With Fixed User’s Tasks & Varying Virtual Machines 

B. Execution Cost  

The time required to perform the work in the VM and the 

type of virtual machine can be used to determine the cost of 

execution. In this case, we have considered a fixed number 

of virtual machines of five, with the number of users' tasks 

varying and progressively increasing from 100 to 600. The 

workload into the cloud computing is fixed. In figure 6 the 

total execution cost with different number of user task is 

illustrated. As shown in the results, the suggested method 

(FSOTS) has a lower execution cost than the present 

approach, which gradually increases as the number of tasks 

increases. 

 

Fig 6. Total Execution Cost (Static Workload): With Fixed Virtual Machines & Varying User’s Tasks 

C. Resource Utilization 

In the physical machine the resource given to the task for 

execution is virtual machine. we need to find out how the 

virtual machine could be utilised during the course of the 

task scheduling. The data center can calculate information 

about the load applied to the virtual machine. The load of 

the virtual machine can be determined using the standard 

deviation using the calculation below: 

 

In the equation σj denotes the standard deviation of the 

virtual machine load, number of virtual machines can be 

denoted as V. The time of completion of any task execution 

Is denoted as CTij. which is already calculated in the 

Equation 3. the mean completion time of virtual machine 
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we is denoted as μj that is calculated with the equation 

below: 

 

As shown in the equation if the μj less than the σj , then the 

cloud computing system is in the imbalance state and if μj 

greater than or equal to the σj, then the cloud computing 

system is in the balance state. As shown in the Table 4 the 

proposed protocol (FSOTS) and PSO gives the result 

which shows that the cloud computing system is in the 

balanced state. Whereas DFO and BFA shows the result 

which takes the cloud computing system into imbalance 

state. it also denotes that in the proposed algorithm the 

resource utilisation is optimally achieved.   

 

TABLE IV. STANDARD DEVIATION AND MEAN COMPLETION TIME 

Algorithms  μ  σ  

Proposed (FSOTS)  41.20  23.04  

PSO  41.20  33.33  

DFO  41.20  55.88  

BFA  41.20  91.41  

 

6. Conclusion  

The meta-heuristic approach was employed for scheduling 

the tasks and load balancing among the VMs. The decision 

will be taken based on the Execution Cost and the Deadline 

submitted along with each user’s task. The modified FSO 

algorithm is able to return the selected VM which can be 

mapped with the users task. The proposed method is 

implemented alongside the existing algorithm using the 

CloudSim simulator, and the results reveal the efficiency of 

proposed algorithm ascompared to existing protocol in 

terms of completion time, execution cost, and resource 

utilization. The resulting graph is constructed using several 

situations, such as a fixed user task and a varied virtual 

machine, as well as a varying user task and a fixed virtual 

machine with static and dynamic task submission into the 

cloud computing environment. The proposed approach will 

function in both static and dynamic task submission 

contexts. In future, further enhancement could be done and 

achieve more optimum result by using some hybrid meta-

heuristic approach in a static and dynamic workload 

environment. 
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