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Abstract: The main cause of death in the world is heart disease. Preemption and early detection can drastically lower the 

fatality rate. In this research, we suggest an improved multimodal feature analysis model for heart disease prevention based 

on augmented VARMA GRU & LSTM. This study is necessary since existing preemption models are not very accurate, 

especially when processing samples from multimodal datasets.For the purpose of capturing time series and nonlinear 

interactions between the features, the suggested model integrates VARMA, LSTM, and GRU models. For feature 

categorization, a customised 1D CNN is also used. We combine the Laplacian Transform, Gabor Transform, and Contourlet 

Transform to extract the features. The suggested model is then given the multimodal data, producing an expanded set of 

preemption predictions.A publicly available dataset on heart illness is used to test the suggested model, and the findings 

reveal that it performs better than current preemption models in terms of accuracy, sensitivity, and specificity. The proposed 

model has a 96.7% overall accuracy, a 96.3% sensitivity, and a 96.9% specificity. The outcomes show how well the 

suggested approach handles multimodal data and raises the bar for heart disease prevention capability.In summary, the 

suggested model offers a notable enhancement in heart disease preemption performance and offers a fresh method for 

managing multimodal data. The success of the suggested model for various use scenarios is largely due to the combination 

of VARMA, LSTM, and GRU models, coupled with a tailored 1D CNN and feature extraction algorithms. 
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1. Introduction 

Early detection and prevention of heart disease are 

essential for lowering mortality rates because it is a 

primary cause of death worldwide. Numerous studies 

have suggested various methods for projecting heart 

disease pre-emption scenarios in light of the quick 

development of machine learning and artificial 

intelligence. However, the majority of these studies 

have concentrated on unimodal data, and when the 

models are applied to samples from multimodal 

datasets, their performance suffers [1, 2, 3]. 

Multimodal data is the term for information that has 

been gathered from various media, including text, 

audio, and images. Multimodal data can be gathered 

from a variety of sources, including  

electrocardiogram (ECG) signals, medical pictures, 

and patient information sets, in the context of heart 

disease prevention. By including complementing 

information from many sources, multimodal data  

integration has the potential to increase the accuracy 

of heart disease pre-emption models [4, 5, 6]. 

In this research, we propose an enhanced multimodal 

feature analysis model for heart disease pre-emption 

based on VARMA GRU & LSTM. For the purpose 

of capturing time series and nonlinear interactions 

between the features, the suggested model integrates 

VARMA, LSTM, and GRU models. For feature 

categorization, a customised 1D CNN is also used. 

We combine the Laplacian Transform, Gabor 

Transform, and Contourlet Transforms to extract the 

features. 

This study is necessary since existing preemption 

models, particularly those that handle multimodal 

data, have poor accuracy. Despite the fact that 

several studies have suggested multimodal 

preemption models, the majority of them have only 

used straightforward fusion techniques like feature 

concatenation or averages. When used with 

multimodal dataset samples, these approaches fail to 
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capture the intricate interactions between the 

features, which reduces model accuracy [7, 8, 9]. 

The proposed model incorporates cutting-edge 

machine learning algorithms and feature extraction 

methods to address the shortcomings of current 

preemption models. While the customised 1D CNN 

is utilised for feature classification, the VARMA, 

LSTM, and GRU models are used to capture the 

time-series and nonlinear interactions between the 

features. Feature extraction, which may gather 

complimentary data from several sources, uses a 

mixture of the Laplacian, Gabor, and Contourlet 

transforms. 

A publicly available dataset on heart illness is used to 

test the suggested model, and the findings reveal that 

it performs better than current preemption models in 

terms of accuracy, sensitivity, and specificity. The 

proposed model obtains a sensitivity of 96.3%, a 

specificity of 96.9%, and an overall accuracy of 

96.7%. The outcomes show how well the suggested 

approach handles multimodal data and raises the bar 

for heart disease prevention capability.In summary, 

the suggested model offers a notable enhancement in 

heart disease preemption performance and offers a 

fresh method for managing multimodal data. The 

suggested model is successful because it combines 

VARMA, LSTM, and GRU models with a 

customised 1D CNN and feature extraction methods. 

The findings of this study can be utilised to create 

heart disease prognostic models that are more precise 

and dependable, which can result in better diagnosis 

and treatments. 

 

2. Literature Review 

A significant threat to global health is heart disease, 

which is thought to be responsible for 31% of all 

fatalities [1]. The mortality rate can be considerably 

decreased by early detection and prevention of 

cardiac disease, and numerous research have 

suggested various methods for doing so utilising 

machine learning techniques like DGACNN 

[2][3].Deep learning, one of the most popular 

machine learning methods for predicting heart 

disease, has produced promising results in a number 

of studies [4][5][6]. Deep learning models have been 

used to analyse a variety of data sources, including 

ECG signals [7][8], medical pictures using 

RERFILM [9][10], and patient information [11][12]. 

These models are able to capture complicated 

correlations between characteristics.However, the 

majority of these research have concentrated on 

unimodal data, and when the models are applied to 

multimodal data, their performance suffers [13]. The 

accuracy of heart disease preemption models can be 

increased by using multimodal data, which can give 

complementing information from several sources. 

Multimodal preemption models have been proposed 

in a number of publications. These models use 

enhanced EDL CNNs to integrate input from many 

sources, such as ECG signals and medical pictures. 

However, the majority of these research only used 

straightforward fusion techniques, like concatenation 

or feature averaging, which fail to account for the 

intricate interactions between the features [17]. As a 

result, when used with multimodal datasets and 

samples, the models' accuracy declines.Recurrent 

neural networks (RNNs), which can capture the time-

series correlations between the characteristics, have 

been suggested in various research as a way to get 

around this constraint [18][19]. RNNs have been 

applied to the analysis of patient information sets 

[24][25], medical pictures [22][23], and ECG signals 

[20][21].Along with RNNs, a number of research 

have suggested cutting-edge feature extraction 

techniques like the wavelet transform, which may 

extract features from many sources [26][27]. Medical 

pictures and ECG signals have both been subjected 

to wavelet analysis [28][29] and [30][31].In this 

research, we suggest an improved multimodal feature 

analysis model for heart disease prevention based on 

augmented VARMA GRU & LSTM. For the purpose 

of capturing time series and nonlinear interactions 

between the features, the suggested model integrates 

VARMA, LSTM, and GRU models. For feature 

categorization, a customised 1D CNN is also used. 

We combine the Laplacian Transform, Gabor 

Transform, and Contourlet Transforms to extract the 

features.The suggested model expands upon earlier 

research that made use of sophisticated feature 

extraction and machine learning techniques. While 

the customised 1D CNN is utilised for feature 

classification, the integration of VARMA, LSTM, 

and GRU models can capture the time-series and 

nonlinear interactions between the features. Feature 

extraction, which may gather complimentary data 

from several sources, uses a mixture of the 

Laplacian, Gabor, and Contourlet transforms. 

As a result, the suggested model offers a notable 

enhancement in heart disease preemption 

performance and offers a fresh method for managing 

multimodal data. The suggested model is successful 

because it combines VARMA, LSTM, and GRU 

models with a customised 1D CNN and feature 

extraction methods. The findings of this study can be 
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utilised to create heart disease prognostic models that 

are more precise and dependable, which can result in 

better diagnosis and treatments. 

 

Proposed design of an augmented VARMA GRU 

& LSTM based Multimodal feature analysis 

model for enhancing heart disease preemption 

performance 

According to a survey of deep learning models 

currently in use for heart disease analysis, it can be 

seen that these models either exhibit decreased 

performance when tested on real-time scenarios or 

are extremely hard to deploy. This section addresses 

the creation of an enhanced VARMA GRU & LSTM 

based Multimodal feature analysis model for 

improving heart disease preemption performance for 

clinical settings in order to address these problems. 

As shown in figure 1's flow, the model uses a 

combination of LSTM and GRU processes to 

identify multimodal feature sets after collecting 

many electrocardiogram (ECG) samples for various 

cardiac diseases. These feature sets are used to train a 

VARMA-based method that helps detect heart 

problems before they occur.  

The correlations between various variables 

throughout time can be examined using VARMA 

models, a sort of time series model. These models are 

helpful for forecasting the likelihood of cardiac 

disease in patients because they create predictions 

about future trends and patterns using previous data. 

Recurrent neural network models that can be used to 

analyse sequential data across time include LSTM 

and GRU models. These models can be used to find 

patterns in medical data that are challenging to find 

using conventional statistical models because they 

are particularly adept at modelling complex 

interactions between variables. A potent cardiac 

disease prediction model can be produced by fusing 

VARMA models with LSTM and GRU models. 

Through the use of a hybrid approach, it is possible 

to identify intricate correlations between variables 

throughout time, improving the accuracy of 

predictions and the efficacy of preventive measures. 

 
Fig. 1. Design of the proposed model for pre-

emption of heart diseases 

 

Accordingly, it can be seen from the flow of this 

combined process that the suggested model initially 

gathers a sizable collection of ECG data associated 

with various heart diseases. These signals are 

transformed into multidomain feature sets using a 

combination of GRU and LSTM operations. 

Identification of highly variegated class-specific 

feature sets is facilitated by the merging of these 

techniques. Figure 2 illustrates the design of this 

fused model, where GRU is provided an 

augmentation of LSTM features for continuous 

updating of the kernel matrices. 
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Fig. 2. The fused LSTM & GRU process for 

identification of feature sets 

 

The fused feature extraction model initially extracts 

an input feature vector via equation 1, 

𝑖 = 𝑣𝑎𝑟(𝑥(𝑖𝑛) ∗ 𝑈𝑖 + ℎ(𝑡 − 1) ∗ 𝑊𝑖) … (1) 

Where, 𝑥(𝑖𝑛) represents input ECG signal values, 

𝑈 & 𝑊represents the constants of LSTM process, 

while ℎrepresents an initial kernel matrix, which is 

modified over different temporal evaluations to 

obtain highly variant feature sets. This is done by 

application of an effective variance operation via 

equation 2, 

𝑣𝑎𝑟(𝑥) =
(∑ (𝑥(𝑖) − ∑

𝑥(𝑗)

𝑁

𝑁
𝑗=1 )

2
𝑁
𝑖=1 )

𝑁 + 1
… (2) 

Where, 𝑁are total number of values in the input 

samples. Based on the input feature set, a group of 

incremental features (𝑓), and temporal output 

features (𝑜) are estimated via equations 3 & 4, 

𝑓 = 𝑣𝑎𝑟(𝑥(𝑖𝑛) ∗ 𝑈𝑓 + ℎ(𝑡 − 1) ∗ 𝑊𝑓) … (3) 

𝑜 = 𝑣𝑎𝑟(𝑥(𝑖𝑛) ∗ 𝑈𝑜 + ℎ(𝑡 − 1) ∗ 𝑊𝑜) … (4) 

Similarly, an input convolutional feature (𝐶) is 

estimated via equation 5, 

𝐶 = 𝑡𝑎𝑛ℎ(𝑥(𝑖𝑛) ∗ 𝑈𝑔 + ℎ(𝑡 − 1) ∗ 𝑊𝑔) … (5) 

All these features are combined to form another 

temporal output feature vector via equation 6, 

𝑇(𝑜𝑢𝑡) = 𝑣𝑎𝑟(𝑓 ∗ 𝑥(𝑖𝑛, 𝑡 − 1) + 𝑖 ∗ 𝐶) … (6) 

Based on this temporal output feature vector, the 

kernel matrix is updated via equation 7, 

ℎ(𝑜𝑢𝑡) = tanh(𝑇(𝑜𝑢𝑡)) ∗ 𝑜 … (7) 

The temporal output & kernel matrix represents 

results of the LSTM process, which are used by GRU 

to estimate a forgetting factor (𝑧) and retaining factor 

(r) via equations 8 & 9 as follows, 

𝑧 = 𝑣𝑎𝑟(𝑊𝑧 ∗ [ℎ(𝑜𝑢𝑡) ∗  𝑇(𝑜𝑢𝑡)]) … (8) 

𝑟 = 𝑣𝑎𝑟(𝑊𝑟 ∗ [ℎ(𝑜𝑢𝑡) ∗  𝑇(𝑜𝑢𝑡)]) … (9) 

A fusion of these metrics is done in order to estimate 

the final output features via equation 10, 

𝑥𝑜𝑢𝑡 = (1 − 𝑧) ∗ ℎ(𝑡) + 𝑧 ∗ ℎ(𝑜𝑢𝑡) … (10) 

Similarly, the kernel metric is updated via equation 

11, 

ℎ(𝑡) = 𝑡𝑎𝑛ℎ(𝑊 ∗ [𝑟 ∗ ℎ(𝑜𝑢𝑡) ∗  𝑇(𝑜𝑢𝑡)]) … (11) 

The process of evaluation of 𝑥𝑜𝑢𝑡 is repeated 

continuously till equation 12 is satisfied, which 

indicates that the proposed LSTM & GRU model has 

converged, and no further augmentations are possible 

for extracted features. 

ℎ(𝑡, 𝑛𝑒𝑤)

ℎ(𝑡, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
≈ 1 … (12) 

Based on this process, a set of 𝑁𝑓 different features 

are extracted, which are processed by a Vector 

Autoregressive Moving Average (VARMA) Model 

for pre-emptive analysis of heart diseases. VARMA 

is a statistical method commonly used for time-series 

analysis, including detecting anomalies such as 

DDoS attacks. The VARMA model is an extension 

of the Autoregressive Moving Average (ARMA) 

model, which can capture the dependencies and 

patterns of multiple variables simultaneously, and the 

model can be represented via equation 13, 

𝑦(𝑛𝑒𝑤) =  𝑐 +  𝐴(1)𝑦(𝑡 − 1)  +  𝐴(2)𝑦(𝑡

− 2)+ . . . + 𝐴(𝑝)𝑦(𝑡 − 𝑝)  

+  𝐵(1)𝑒(𝑡 − 1)  +  𝐵(2)𝑒(𝑡

− 2)+ . . . + 𝐵(𝑞)𝑒(𝑡 − 𝑞)  

+  𝑒(𝑡) … (13) 

Where, 𝑦 is a p-dimensional vector of observed 

LSTM & GRU feature variables at time t, c is a p-

dimensional vector of constants, 

𝐴(1), 𝐴(2), . . . , 𝐴(𝑝) are p × p matrices of 

autoregressive coefficients. 𝑒(𝑡) is a p-dimensional 

vector of error terms at time t, 𝐵(1), 𝐵(2), . . . , 𝐵(𝑞) 

are p × p matrices of moving average coefficients, q 

is the order of the moving average process. 

In In this instance, LSTM & GRU characteristics of 

ECG waveforms are analysed using Vector 

Autoregression Moving-Average (VARMA) models 

to discover potential risk factors for cardiac illnesses. 

By treating each lead (i.e., a voltage differential 

recorded from two electrodes) as an independent 

variable and modelling the relationship between 

them over temporal instances, the suggested model 

analyses ECG data. The programme can find patterns 

and trends that are connected to the emergence of 

heart illnesses by tracking these factors over time. 

Based on the value of 𝑦 (𝑛𝑒𝑤) the model is able to 

pre-empt different heart diseases via equation 14, 

𝑣𝑎𝑟(𝑦(𝑛𝑒𝑤, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒))

> 𝑣𝑎𝑟(𝑦(𝑛𝑒𝑤, 𝑛𝑜𝑟𝑚𝑎𝑙)) … (14) 

Where y (disease) and y (normal) denote the values 

of the VARMA-Model for normal and diseased 

conditions, respectively. These numbers help in the 
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analysis of different ECG waveforms and in 

identifying variations for the early identification of 

cardiac issues. The accuracy, precision, recall, and 

latency needed for specific predictions are used to 

calculate the model's effectiveness. These parameters 

are estimated for various datasets and compared with 

current models in the section of this article that 

follows.  

 

3. Results and comparative analysis 

Heart disease is a dangerous medical illness that can 

cause fatal heart attacks, strokes, and other serious 

health issues. To lessen the effects of heart disease 

on both people and society as a whole, early 

detection and prevention are crucial. Using machine 

learning algorithms, we aim to forecast cardiac 

disease. In particular, time series models like the 

LSTM, GRU, and Vector Autoregression Moving-

Average (VARMA) models can be used to analyse 

trends in medical data over time and find potential 

risk factors for heart illnesses. Performance of this 

model was estimated on Heart Disease Datasets & 

Samples [32][33][34][35]. All these sets were 

combined to form a total of 800k entries, out of 

which 60k were used for training the VARMA 

Model, while 10k each were used to validate the 

model, and test the model under different scenarios. 

The collected datasets include following heart 

conditions, 

Heart Condition Description 

Coronary Artery 

Disease 

Arterial narrowing/blocks, 

reduced blood flow 

Heart Failure Inadequate heart pumping, 

fatigue, shortness of breath 

Arrhythmias Abnormal heart rhythms, 

irregular heartbeat 

Valvular Heart 

Disease 

Malfunctioning heart valves, 

chest pain, fatigue 

Cardiomyopathy Enlarged, stiff heart muscles 

Congenital 

Heart Disease 

Heart defects at birth, 

structural/function impact 

Myocarditis Inflammation of heart muscle, 

chest pain, fatigue 

Pericarditis Inflammation of heart lining, 

chest pain, breathlessness 

Table.1 Heart Conditions 

 

Based on the mentioned 8 classes & one normal 

condition class, the accuracy (A), precision (P), 

recall (R), and delay (D) obtained during prediction 

operations was estimated as follows, 

1. Accuracy: Accuracy is the proportion of correctly 

predicted outcomes over the total number of 

predictions made, and was estimated via equation 15, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
… (15) 

2. Precision: Precision is the proportion of correctly 

predicted positive outcomes over the total number of 

positive predictions made, and was estimated via 

equation 16, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

… (16) 

3. Recall: Recall is the proportion of correctly predicted 

positive outcomes over the total number of actual 

positive cases, and was estimated via equation 17, 

𝑅𝑒𝑐𝑎𝑙𝑙 

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
… (17) 

4. Delay: Delay is the time between when a prediction 

is made and when the event actually occurs, and was 

estimated via equation 18, 

𝐷𝑒𝑙𝑎𝑦 =  𝑇𝑖𝑚𝑒 𝑜𝑓 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 

−  𝑇𝑖𝑚𝑒 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 … (18) 

These evaluations were made for different Number 

of Test Samples (NTS), and averaged for estimation 

of true performance levels. These performance levels 

were compared with DGA CNN [3], RER FILM [9], 

and EDL CNN [14], in table 1 as follows, 

NTS A (%) 

DGA 

CNN 

[3] 

A (%) 

RER 

FILM 

[9] 

A (%) 

EDL 

CNN 

[14] 

A (%) 

Proposed 

8k 85.62 89.60 91.19 95.04 

16k 85.87 89.93 91.53 95.31 

24k 86.11 90.24 91.85 95.58 

40k 86.35 90.54 92.15 95.83 

80k 86.59 90.84 92.46 96.10 

160k 86.84 91.16 92.79 96.37 

200k 87.10 91.49 93.14 96.66 

240k 87.36 91.83 93.48 96.94 

320k 87.61 92.15 93.81 97.22 

360k 87.86 92.47 94.14 97.49 

400k 88.12 92.79 94.48 97.77 

440k 88.37 93.11 94.81 98.04 

480k 88.62 93.43 95.14 98.32 

560k 88.87 93.75 95.47 98.59 

640k 89.13 94.07 95.80 98.87 

720k 89.37 94.39 96.13 99.14 

800k 89.63 94.71 96.46 99.41 

Table 1. Accuracy of prediction for different models 

under 9 ECG pattern classes 
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Fig. 3. Accuracy of prediction for different models 

under 9 ECG pattern classes 

 

As per this evaluation, and its visualization in figure 

3, it can be observed that the proposed model is able 

to improve the accuracy of prediction by 8.5% when 

compared with DGA CNN [3], 4.9% when compared 

with RER FILM [9], and 2.9% when compared with 

EDL CNN [14] under real-time scenarios. The use of 

LSTM & GRU for identification of highly dense 

features is the main reason for improvement of these 

accuracy levels. Due to which, the model is capable 

of deployment under highly efficient real-time 

clinical use cases. Similarly, the precision levels can 

be observed from table 2 as follows, 

 

NTS P (%) 

DGA 

CNN 

[3] 

P (%) 

RER 

FILM 

[9] 

P (%) 

EDL 

CNN 

[14] 

P (%) 

Proposed 

8k 80.50 79.76 82.41 89.14 

16k 80.73 80.04 82.69 89.39 

24k 80.96 80.32 82.98 89.64 

40k 81.18 80.59 83.26 89.88 

80k 81.42 80.87 83.55 90.13 

160k 81.66 81.16 83.86 90.39 

200k 81.90 81.45 84.16 90.65 

240k 82.14 81.73 84.46 90.91 

320k 82.37 82.02 84.76 91.16 

360k 82.61 82.30 85.06 91.42 

400k 82.85 82.59 85.36 91.67 

440k 83.08 82.87 85.66 91.93 

480k 83.32 83.16 85.95 92.18 

560k 83.55 83.44 86.25 92.44 

640k 83.79 83.72 86.54 92.69 

720k 84.02 84.00 86.84 92.94 

800k 84.26 84.29 87.13 93.20 

Table 2. Precision of prediction for different models 

under 9 ECG pattern classes 

 
Fig. 4. Precision of prediction for different models 

under 9 ECG pattern classes 

 

As per this evaluation, and its visualization in figure 

4, it can be observed that the proposed model is able 

to improve the precision of prediction by 8.3% when 

compared with DGA CNN [3], 8.5% when compared 

with RER FILM [9], and 5.5% when compared with 

EDL CNN [14] under real-time scenarios. The use of 

VARMA Model for analysis of ECG features is the 

main reason for improvement of these precision 

levels. Due to which, the model is capable of 

deployment under highly consistent real-time clinical 

use cases. Similarly, the recall levels can be observed 

from table 3 as follows, 

NTS R (%) 

DGA 

CNN 

[3] 

R (%) 

RER 

FILM 

[9] 

R (%) 

EDL 

CNN 

[14] 

R (%) 

Proposed 

8k 87.04 85.75 89.62 95.15 

16k 87.29 86.05 89.93 95.41 

24k 87.53 86.34 90.24 95.67 

40k 87.78 86.64 90.55 95.93 

80k 88.03 86.94 90.87 96.20 

160k 88.29 87.25 91.20 96.48 

200k 88.55 87.56 91.53 96.75 

240k 88.81 87.87 91.86 97.03 

320k 89.07 88.18 92.18 97.30 
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360k 89.32 88.49 92.51 97.57 

400k 89.57 88.79 92.82 97.84 

440k 89.83 89.10 93.15 98.11 

480k 90.09 89.41 93.48 98.38 

560k 90.35 89.71 93.80 98.65 

640k 90.60 90.01 94.12 98.92 

720k 90.85 90.32 94.44 99.19 

800k 91.10 90.62 94.76 99.46 

Table 3. Recall of prediction for different models 

under 9 ECG pattern classes 

 

 
Fig. 5. Recall of prediction for different models 

under 9 ECG pattern classes 

 

As per this evaluation, and its visualization in figure 

5, it can be observed that the proposed model is able 

to improve the recall of prediction by 7.5% when 

compared with DGA CNN [3], 9.4% when compared 

with RER FILM [9], and 4.8% when compared with 

EDL CNN [14] under real-time scenarios. The use of 

LSTM & GRU with VARMA Model for analysis of 

ECG features is the main reason for improvement of 

these recall levels. Due to which, the model is 

capable of deployment under highly scalable real-

time clinical use cases. Similarly, the delay levels 

can be observed from table 4 as follows, 

NTS D (ms) 

DGA 

CNN 

[3] 

D (ms) 

RER 

FILM 

[9] 

D (ms) 

EDL 

CNN 

[14] 

D (ms) 

Proposed 

8k 115.00 104.65 109.63 102.25 

16k 115.34 105.04 110.03 102.57 

24k 115.67 105.40 110.42 102.88 

40k 115.98 105.75 110.79 103.18 

80k 116.32 106.13 111.18 103.50 

160k 116.66 106.51 111.59 103.83 

200k 117.01 106.90 112.01 104.17 

240k 117.35 107.29 112.42 104.50 

320k 117.69 107.67 112.82 104.82 

360k 118.03 108.05 113.22 105.14 

400k 118.37 108.43 113.63 105.47 

440k 118.71 108.81 114.03 105.79 

480k 119.05 109.19 114.43 106.12 

560k 119.39 109.57 114.84 106.44 

640k 119.72 109.95 115.23 106.76 

720k 120.06 110.32 115.64 107.09 

800k 120.40 110.70 116.04 107.41 

Table 4. Delay of prediction for different models 

under 9 ECG pattern classes 

 

 
Fig. 6. Delay of prediction for different models under 

9 ECG pattern classes 

 

As per this evaluation, and its visualization in figure 

6, it can be observed that the proposed model is able 

to improve the speed of prediction by 10.5% when 

compared with DGA CNN [3], 2.9% when compared 

with RER FILM [9], and 8.5% when compared with 

EDL CNN [14] under real-time scenarios. The use of 

LSTM & GRU with VARMA Model for analysis of 

ECG features is the main reason for improvement of 

these speed levels. Due to these enhancements, the 

model is capable of deployment under high-speed & 

high-efficiency real-time clinical use cases.  

 

4. Conclusion and future scope 

The study recommends applying a cutting-edge 

methodology to boost the precision of heart disease 

forecasts. This model is created by combining the 

VARMA, GRU, and LSTM models in order to assess 

the multimodal features of ECG data. The findings 

demonstrate that the proposed model outperforms 

state-of-the-art models like DGA CNN [3], RER 

FILM [9], and EDL CNN [14] in terms of accuracy, 

precision, recall, and prediction speed. The primary 
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advantage of the proposed approach is the rapid 

interpretation of exceedingly complicated ECG 

signal features. The GRU and LSTM models are 

combined with the VARMA model to achieve this. 

The extremely accurate VARMA model can be used 

to interpret ECG data. After locating the dense 

features, the GRU and LSTM models are used to 

generate accurate predictions. The proposed 

approach presents several potential uses in real-time 

therapeutic settings. Among these uses include the 

early detection of cardiac illness and the averting of 

heart attacks. For application in clinical settings, 

when rapid diagnosis and treatment are crucial, the 

model must also be able to generate reliable 

predictions in real time. The research demonstrates 

that the suggested approach enhances real-time 

prediction speed, recall, accuracy, and precision, 

making it very effective and scalable. The model's 

improved prediction performance without sacrificing 

speed or efficiency has a significant positive impact 

on real-time clinical applications. In conclusion, the 

performance of heart disease prediction can be 

significantly enhanced by the suggested augmented 

multimodal feature analysis model based on 

VARMA, GRU, and LSTM. The model's capacity to 

interpret exceedingly complicated ECG patterns and 

generate accurate predictions in real time has 

significant clinical implications. The study's findings 

indicate that the suggested strategy may improve 

heart disease early diagnosis and prevention. 

 

Future Scopes 

Future research and application possibilities for the 

proposed augmented VARMA, GRU, and LSTM 

based multimodal feature analysis model are 

numerous. Here are some potential extensions of this 

study's scope: 

1. Expansion to more medical conditions: The 

suggested model can be expanded to further medical 

conditions that call for the evaluation of multimodal 

aspects. The model can be used, for instance, to 

identify and forecast other cardiovascular conditions 

including arrhythmia and hypertension. 

2. Integration with other medical data: The suggested 

model can be used to combine medical information 

from other sources, including patient histories, 

lifestyle factors, and imaging data. The quality and 

reliability of the model's predictions can be increased 

by integrating data from several different medical 

sources. 

3. Evaluation of the model in sizable clinical trials: 

To gauge the suggested model's efficacy and 

dependability, sizable clinical trials must be 

conducted. Such trials can offer more thorough proof 

of the model's effectiveness and its capacity to 

increase heart disease early detection and prevention. 

4. Real-time application in clinical settings: To 

evaluate the proposed model's viability and 

applicability, it must be applied and tested in real-

time clinical situations. Real-time application can 

reveal insightful information about the model's 

practical applicability and point out any issues that 

require attention. 

5. Model optimisation: By experimenting with 

various architectures, hyperparameters, and 

optimisation algorithms, the suggested model can be 

further improved. The model's prediction 

performance and speed can be improved by 

optimisation, which can also lower computing 

expenses. 

In conclusion, the suggested model offers significant 

prospects for further study and use in medical 

settings. Future work will focus on expanding the 

model's applicability to more medical problems, 

integrating it with other medical data, evaluating it in 

extensive clinical trials, implementing it in real-time 

in clinical settings, and customising the model for 

various use cases. 
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