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Abstract: The suppression of random valued impulse noise in satellite data is the main focus of this article. When it comes to decreasing 

random valued impulsive noise in images, the vector median filters are often regarded as the highest standard. The degree of aggregation 

filter is a contemporary variation of this family of filters; it works by assigning each pixel a weight that is proportional to the degree to 

which it represents the signal component in the image. This method has the potential to enhance filtering quality by giving larger weights 

to pixels that seem to be similar to one another. Nevertheless, there is a major drawback to this method: filtering must be done on all of 

the pixels in a sequential order, which results in a very high computational cost. In this paper, we suggest a faster degree of association 

method that vastly improves upon the filter in concern. It is expected that the simulation would demonstrate the effectiveness of the 

proposed strategy. Using a combined metric of time and precision, we compared the suggested technique to the state-of-the-art 

approaches. 
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1. Introduction 

There are several technical fields that rely heavily on 

digital image processing, but none more so than satellite 

imaging [1, 2]. Noise often contaminates the satellite 

camera's recorded images. In this context, noise may be 

thought of as a chance occurrence that alters the 

luminance values of a given pixel, either the red, green, 

or blue luminance values or all three [3, 4]. Pre-

processing images, in which noise reduction is the major 

focus of this article and it impulse noise model [5, 6, 7] 

that is of importance in this research. Impulse noise is a 

quick, unpredictable shift in brightness across individual 

pixels. All or part of the colour information of one 

damaged pixel might be off [8]. 

Vector median filters (VMFs) [9, 10] and variations are 

the most often used filters for reducing impulsive noise. 

The filters have been around since the 1990s, but they 

continue to be popular because of the ease with which 

they may improve aesthetic aspects like edges. The 

similarity detection concept is used inside a window is 

the basis for these filters.  

The test pixel, which is often the window's geographic 

centre, is then given an alternate result that is the 

average of all of its neighbouring pixels in the window 

with comparable data. When figuring out how closely 

related a pixel is to a certain window, many different 

distance measures are taken into account. The 

actual image is reconstructed pixel by pixel from the 

noisy one using this method. In order to function, the 

VMF and variants like the basic vector directional filter 

(BVDF) [11, 12] and the -trimmed VMF [13] swap out 

the central pixel in a chosen window with another pixel 

whose sum of an acceptable distance measure is 

lowered. It is possible to get good results using filters 

from this family when it is important to maintain colour 

correlations amongst the three inputs. the PGFs have 

recently shown great promise in the reduction of impulse 

noise. This is because the PGFs initially identify the peer 

group that most strongly suggests a potential 

replacement for the central test pixel. After that, this 

peer group is filtered. However, there are many 

thresholding strategies used in the PGF approach. The 

selection of these criteria has a significant impact on the 

PGF's performance [14, 15]. Bogdan Smolka and 

associates did much of the early pioneering work in 

eliminating noise from digital color images. Two of their 

more recent filters, the adaptive rank weighted switching 

filter (ARWSF) [16] and the adaptive switching trimmed 

(AST) [17], are effective in reducing noise in digital 

colour photographs. These techniques rank the 

combined distances such that only the highest-ranked 

pixels are used in the filtering process. 

The most current degree of aggregation filter DOAF 

[18] optimises pixel selection by weighing (or ranking) 

pixels inside the window to find those that are most like 

the chosen one. The ranking of pixels is ideal in that it 
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reduces the amount of clustering inside the window's 

individual pixels to a minimum. Thus, it is hypothesised 

that this method performs better [19]. The DOAF 

method's main flaw is that it requires sequentially 

processing each pixel. 

Problem identification: In terms of computational 

complexity, the lower constraint for this is polynomial, 

and it is equal to   with M

rows and N  column of the image identifies the image's 

row and column counts, respectively, and 
,i jF  is the 

interval of the DOAF calculation of ( , )thi j  pixel. 

Because of this heavy computing need, using VMFs in 

real-time pre-processing is challenging. For this reason, 

the fundamental contribution that this research makes is 

the proposal of a fast DOAF algorithm, which is several 

times quicker than the original DOAF. Distinctive from 

of the state-of-the-art methods, the key concept is to 

access DOAF just over the noisy pixels (anomalies) of 

the row using a predetermined set of previously filtered 

pixels, thereby limiting the effect of the impulse noise to 

the anomalous rows itself. This restricts the sequential 

operation to as few rows as possible. Moreover, 

processing over a single colour channel is sufficient due 

to the impulse noise's coherence across the colour 

channels, which eases faster filtering. 

The remaining sections of the paper are as follows. The 

signal model represented in section 2. This followed by 

state-of-the-art methods in section 3. The proposed 

method describes in section 4. This is followed by 

evaluation and results in section 5. Finally, we 

concluded this in section 6. 

2. The Noise Model 

Here we define several key terms, introduce the impulse 

noise model, and explain a color image. Let X  indicates 

the digital color image of the size M N  containing 

MN   pixels where M  the number of rows and  N  

denotes the number of columns in the image 

respectively. Hence, the resulting colour image will be a 

collection of vector pixels 

              (1) 

colour information is stored in a pixel as a joint vector 

including the red, green, and blue components of the 

colour, 

         (2) 

For the signal values in this study, we use a double-

precision format. 

                                                       (3) 

in the intermission (0,1)  where a 0 indicates the 

lowermost intensity and a 1 the strongest. For those who 

prefer to follow the formula in (1). 

Let Z be the color image tainted by random valued 

impulse noise (RVIN). 

                              (4) 

In this study, we focus on the random valued impulse 

noise model for the ( , )thi j  pixel, which is described as 

                            (5) 

Where  = 1,.......,  ,  1,..........,i M j N= . Within this range 

of  (0,1) , the model's variables are equally distributed. 

Here  and ( ).U  signifies a uniform 

distribution function. According to this explanation, the 

closer the value of signifies the noise probability p  of 

an image to one, the greater the noise, and the nearer the 

value of denotes the noise probability p  of an image to 

zero, the less the noise. If the pixel is uncorrupted, it will 

continue to display the value 
,xi j

 that it had before the 

corruption occurred; otherwise, the generated noise will 

manifest in each of the colour channels to produce a 

noisy pixel. 

                  (6) 

Here the noise intensities various any random value in 

(0,1)  in equation (6). When an image becomes noisy, 

noise reduction methods are used to bring it back to its 

pre-noise state. The main aim of denoising approach is 

to reconstruct the original image X  from the corrupted 

image Z . 

3. Conventional Vector Median Filtering 

Traditional noise-reduction filters are discussed here. 

According to a different description of (1), the noisy 

image Z  may be represented as a vector in the form of 

 , , ,=( , , ) 1,......,   iZ z i r i g i bz z z i MN= =                    (7)  

In order to filter this noisy image, a window W  

comprising of size n n   with n  pixels are used. 

Consider the window's  W  pixel contents a flair. The 

most common kind of window  3 3  will be utilised in 

this chapter. 

 , 1,.......,  z  iW i n= =                                                                      (8) 
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The VMF [13], by far the most used filtering method, 

swaps the test (centre) pixel in the given window W  

with one from the window W that lessens the total 

pixel-to-pixel aggregate distance. One might think of the 

average distance between each pixel to every other pixel 

in the selected W  as 

              (9) 

Here ( ).,.d  represents the Minowski’s distance of the 

order   between two joint pixels 

           (10) 

Let us consider the Euclidean distance by Setting   = 2. 

After the minimum total aggregate distance has been 

established, the index   and 

the recovered image's central pixel in the middle of the 

window is changed to 
^zc
i

y =  where  is 

denotes the reconstructed image from the noisy image. 

To do this, it uses the coherence of the signal 

components to determine which pixel should be used as 

the central test pixel. All other VMF operations are 

derived from this fundamental procedure. 

In subsequent developments of the VMF, emphasis was 

placed on establishing better distance measurements 

used in (10) and better methods in calculating the 

aggregate distance in (9); the ARWSF [13] enhances 

filtering by assigning ranking the respect to distances, 

while the DOAF [200] enhances by ranking the 

aggregates. After calculating the total distance between 

each pixel and each further pixel in the selected window 

in accordance with (8), the ARWSF reorders the series 

based on a rank weighting of the distances, as follows:  

 and assign 

relative importance to each element in the sequence 

2/ , 1,......, i iD D i i n= =                                          (11) 

zi
 is chosen that, the index minimises 

1,....,i nD =
. On the 

other hand, the DOAF assigns a value to each distance-

associated entity; in this case, we calculate the adjacency 

matrix. 

                (12) 

and set the diagonal elements to  

where 0.005  = is a small regularization value. The 

polynomial from of the normalized weighted vector 

 1:w i Nw == is calculated as 

2
,

2
,1

1/
, 1,......

1/

i i
i n

i ii

D
w i n

D
=

= =


            (13) 

g wD=  is used to obtained the weighted distances. The 

g  is selected as the filtered output that minimizes zi
. 

Both the ARWSF and the DOAF variations of the VMF 

enhance performance over the original by giving more 

weight to pixels that are extremely comparable to the 

window. This allows for very precise filtering. 

Nevertheless, because of its great computing cost, the 

DOAF involves filtering iteration over all the pixels. 

The workaround we suggest in the following paragraphs 

is effective in avoiding this issue. 

4. The Proposed Method 

To supress the random valued impulse noise in colour 

images efficiently, we give the solution here. Assume 

that the noisy colour image defined by (1) has M  rows 

and N  columns of MN  pixels, as 

                            (14) 

colour information is stored in a pixel as a joint vector 

including the three colours red, green, and blue 

components, 

 

Let us consider a 
thi  univariate data row of 

thk  color 

component consists of N  pixel concentrations be 

                      (15) 

Absolute differences between elements (pixel 

intensities) in a data slice and their immediate 

neighbours are then calculated. 

  (16) 

Then, the indices where the sum of the differences is 

more than a predetermined limit 
ht  are identified as 

                          (17) 

Remember that the critical understanding of this method 

is to locate the out-of-place pixels in the data slice. 

Anomaly identification requires a signature of at least 

the first index in ji
 represents the distance from the left 

clean pixel to the noise anomaly, the second represents 

the distance from the noise anomaly to the clean pixels 

(there can be more than one), and the third represents the 

distance from the noise anomaly to the right clean pixel. 
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Therefore, the ji
 will include not just the indices of the 

abnormal pixels but also the indices for the regions to 

the left and right of those regions, which are not 

anomalous. We then identify the irregular pixels using 

                (18) 

for  here .   represents cardinality 

function of given set. The vector  represents set of 1’s 

and 0’s, with a 1 at the  index for when the 

corresponding  has attained, or surpassed, the 

threshold is zero otherwise. Anomaly locations (those 

pixels where the sum of the differences exceeds a 

predetermined threshold) are represented by ones, while 

normal locations are represented by zeros. Then, we get 

the anomaly indices by . The non-

anomalies have been eliminated, as can be seen. 

This lays the groundwork for filtering out just the out-

of-the-ordinary pixels by leveraging two neighbouring 

ones: This is the restored output vector of  thi  data slice 

is 

                          (19) 

                                                      (20) 

for j = 1,2,…,N, where (19) compute the DOAF output 

for anomalous pixels using the 3 3 window 

   

,
,

1,1,1 1,1,1

  w z
i j

i j
i j

 

 −  −

  
=  

  

                         (21) 

Contains the neighbours of the ( ),
th

i j  pixel and (19) 

preserves the non-anomalous pixels unaffected. The 

proposed approach from (15) to (20) is recapitulated 

across all rows 1,.......,i M= and all color spaces. 

Impulse noise is consistent in all colours; hence the 

technique only has to be executed on a single colour 

channel. One of the main advantages of this approach is 

that it requires less computational capabilities to 

. The  represents the summation 

over the ith row in a calculation. This computational time 

improvement can be achieved with omitting the 

common filtering of all pixels and all colour channels. 

 

 

5. Evaluation and Results 

Here, we use two test statistics to compare the suggested 

approach termed as fast DOAF (FDOAF) with ARWSF 

& DOAF. Root mean square error (RMSE) and time-

scaled root mean square error (TRMSE) are two 

standard metrics for evaluating precision. 

                  (22) 

In which the two sets of values, X  and Y , represent the 

original data and the reconstructed version of the image, 

respectively. We want the RMSE to be modest since it 

means the difference between the filtered and original 

images is minimal. We then define the time-scaled root-

mean-squared-error (RMSE) as 

                          (23) 

Where  T  is the amount of time it takes for the filter to 

apply its transformation to the whole image in terms of 

computing time (in seconds). 

All of the techniques were written in MATLAB 2018b 

and tested in Intel Core i5 CPU with 8 GB of Memory. 

Three satellite pictures are shown as examples. Figure 1 

depicts these values: Statistics for SAT-I: M  = 128, N  

= 128, total = 16384 pixels, M  = 270, N  = 269,total = 

72630 pixels, and M  = 659, N  = 658, total = 433622. 

In our suggested FDOAF, the threshold value is th = 

0.05. 
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Fig. 1. Three satellite imagery examples used for testing. 

In Table 1, we provide the computing time T  (in sec) 

required by each of the presented approaches. It has 

been determined that for the standard ARWSF and 

DOAF approaches, T  is almost constant regardless of 

p . Nevertheless, it was discovered that T  for the 

suggested technique grows proportionately with p  due 

of the higher filtering computation caused by the greater 

number of outliers when dealing with high noise. 

Table 1: The computational time of the filter T

(seconds) corresponding to figure 1 with varying noise 

probabilities. 

 

For SAT-1 image, the suggested approach FDOAF 

displays a decrease of 76.92%, 68.81%, 57.61%, 51.52% 

& 45.41 % compared to the ARWSF and a decrease of 

69.81 %, 58.62 %, 43.81 %, 36.91 %, and 27.42 % 

compared to the DOAF at p  = 0.1, 0.2,.., 0.5. At p  = 

0.1, 0.2,., 0.5, the suggested FDOAF for SAT-2 exhibits 

a decrease of 64.10%, 57.41%, 48.42%, 34.52%, and 

52.81%, 42.51%, 30.22%, 28.01%, and 12.61% when 

compared to ARWSF and DOAF, respectively. The 

suggested FDOAF exhibits significant improvements in 

noise reduction of 81.91%, 65.12%, 54.31%, 50.11%, & 

40.91% and 66.51%, 54.32%, 39.12%, 34.12% & 

20.71% compare with ARWSF & DOAF 

correspondingly at p  = 0.1,0.2, .., 0.5. for SAT-3 

image. 

It seems to reason that MN  will have an impact on T . 

When comparing the SAT-2 having MN  = 72630 pixels 

with SAT-1 having MN  = 16384. At p  = 0.5, the 

suggested FDOAF from ARWSF and DOAF approaches 

reduces the number of false positives by roughly two 

and three times, respectively. These findings 

demonstrate the significant efficacy of the FDOAF in 

quickening the filtering process. The root-mean-square-

error (RMSE) values for the three satellite images at 

different noise probabilities are shown in Table 2. The 

suggested FDOAF, the RMSE values are similar to the 

other approaches for low values of p , as can be shown. 

Table 2: The RMSE values of the filter corresponding 

to figure 1 with varying noise probabilities. 

 

However, the method's scalability suffers significantly 

with large p  numbers. Anomaly detection may produce 

false positives or genuine negatives, which might 

account for the observed phenomenon. Fig. 2 & 3 shows 

the result of applying the filter on test images SAT-1 & 

SAT-2. 

 

Fig. 2. The filtered results of the SAT-1 image. A noisy, 

ARWSF, DOAF, and FDOAF image is shown from left 

to right. Starting at the top: p = 0.1, 0.2,., 0.5. 
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The Time scaled RMSE values of these techniques for 

different noise probabilities are shown in Table 3. 

Comparing the proposed FDOAF to the alternative 

approaches, also displays % difference in TRMSE. The 

proposed method shows a remarkable improvement in 

terms of TRMSE when applied to all three images 

collectively; the FDOAF shows a decrease of 70.10 

percent for ARWSF and of 60.71 percent for DOAF at 

p  = 0.1, 0.2,..., 0.5, respectively. 

 

Fig. 3. The results of the SAT-2 image filtering. From 

left to right, noisy, ARWSF, DOAF, and FDOAF p  = 

0.1, 0.2, .., 0.5 from top to bottom. 

Table 3: The TRMSE values of the filter corresponding 

to figure 1 for varying noise probabilities. 

 

Anomaly processing improves in high-noise conditions, 

accounting for the decrease at larger P values. Most 

importantly, the TRMSE convincingly demonstrates that 

the decreased time consumption of the suggested 

technique more than compensates for the larger RMSE. 

The ability to execute anomaly detection along a single 

colour channel and the dearth of sequential processing 

across every pixel in the image the primary reasons for 

this effectiveness. 

6. 6 Conclusion 

In this article, we looked at how to speed up the DOAF 

filter, which is often used to reduce impulsive noise in 

satellite images. Outliers (noisy pixels) in a particular 

data row will be the only ones subjected to the DOAF in 

an effort to separate the random valued impulsive noise. 

As random valued impulse noise is consistent across all 

colour channels, filtering it does not need processing the 

whole image at once. By applying the suggested 

approach to satellite images corrupted with noise, we 

demonstrate its efficacy and assess its time and accuracy 

costs.  
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