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Abstract: The fraction of the world's freshwater resources that are usable each year decreases. A poll conducted by the World Economic 

Forum predicts that during the next two decades, there will be severe water shortages all across the world due to rising demand. It is 

difficult to both stop the rising demand for water and cut down on the amount of water that is wasted in transit. Cities are increasingly 

adopting IoT-enabled water distribution systems that employ smart water meters to collect real-time data on water consumption and transfer 

it either to the cloud, fog, or edge. Then it can be stored, analysed for patterns, and used to plan for future water needs and create more 

effective infrastructure. It's crucial to anticipate and analyse client demand for water use. The enhanced auto-regressive integrated moving 

average (ARIMA) method is used to analyse the trend of water consumption data and forecast future water consumption demand based on 

previous historical information. When compared to other forecasting methods, they tend to provide better results. It is important to have 

an accurate forecast of water use. Planning and building water supply systems rely heavily on accurate and dependable forecasts. The 

ARIMA model was validated using the mean absolute scaled error (MASE) and root mean square error (RMSE).   

Keywords: accurate, validated, ARIMA, consumption, forecasting     

1. Introduction 

1.1. Back ground 

Many people's health problems now stem from their 

inability to reliably get clean water. It has been reported 

by the World Health Organization (WHO) that poor water 

quality and its unequal distribution to consumers are 

important causes of health problems across the world. On 

the demand side, issues with water quality and resource 

allocation are likely to arise as a result of population 

growth, fast urbanisation, and growing demands from 

agricultural and energy production [1]. There are two 

distinct kinds of water distribution networks, 

distinguished by the orientation of the distribution pipes. 

Both an aboveground and an underground system are part 

of the water distribution network [2]. The wireless sensor 

network is selected according to whether the water 

distribution system uses underground wireless sensor 

networks (UWSN) above or below ground. Underground 

pipe monitoring Until now, the water distribution network 

has not made use of the SCADA (Supervisory Control and 

Data Acquisition) system, which is used for supervisory 

control and automation in water distribution facilities [3].  

The state of the art in water demand forecasting in water 

distribution involves the use of advanced modelling 

techniques and data analytics to improve the accuracy and 

reliability of predictions. Statistical models, such as 

autoregressive integrated moving average (ARIMA) [5], 

seasonal decomposition of time series (STL), and 

regression models, have been widely used for water 

demand forecasting. These models analyse historical 

water consumption data along with relevant explanatory 

variables like weather data and population data to identify 

patterns and trends. Machine learning algorithms, 

including artificial neural networks (ANNs) [10], support 

vector machines (SVMs), and random forests [13], have 

been applied to water consumption forecasting. These 

models can capture nonlinear relationships and complex 

interactions between various factors influencing water 

demand, leading to improved forecasting accuracy. 

1.2. Problem statement 

The traditional water distribution system typically 

involves a network of pipes, pump stations, storage tanks, 

and valves that are used to transport potable water from 

the treatment plant to consumers. Broken pipes, faulty 

demand prediction systems, inadequate monitoring, poor 

management, and insufficient distribution owing to 

leakage and theft are major problems in the water 

distribution system. A reliable and effective water 

distribution management system must be developed to 

prevent this uneven distribution. All of these problems are 

inherent in India's present water delivery infrastructure. 

The layout of a water distribution system can vary 

depending on factors such as geography, population 

density, and water demand. The conventional water 
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distribution system is shown in Fig.1. Developing an 

accurate and reliable water demand forecasting system 

that can predict future water consumption patterns for a 

given region or water supply network The primary 

objective is to provide accurate estimates of water demand 

in order to optimise water resource management, improve 

infrastructure planning, and ensure the sustainable and 

efficient allocation of water resources.

 

Fig. 1. Treditional Water Distribution System. 

1.3. The Proposed work 

To overcome the issue of traditional water distribution 

The Internet of Things (IoT)-integrated Water 

Distribution System (WDS) will be developed to meet 

customer demand. A smart water distribution system uses 

advanced technologies such as sensors, automation, and 

data analysis to monitor and control the distribution of 

water in a city or town. It allows for real-time monitoring 

of water flow, pressure, and leaks, as well as the ability to 

remotely control valves and pumps to optimise the 

distribution of water. The system also includes smart 

meters that can be used to track water consumption using 

information and communication technologies (ICT). 

Water conservation may be encouraged via the adoption 

of digital water metres, which provide for individualised 

and comprehensive user feedback on the consumption of 

water. Researchers have studied the impact of various 

water-use feedback mechanisms since the emergence of 

the digital meter [4]. And this water consumption data can 

be collected remotely without detecting potential leaks in 

homes and businesses, as depicted in fig. 2. 

 

Fig 2. Smart Water distribution System with Water demand forcast model. 

1.4. ARIMA Model 

Demand and analysis of daily water consumption in 

Austin, Texas, USA, using a deep learning algorithm 

known as ARIMA (Auto Regression Integrated Moving 

Average) have been made, including an assessment of the 

margin of error. The working model of ARIMA is shown 

in Fig 3. Comparing the ARIMA model to other 

algorithms used in water forecasting, the ARIMA model 

provides more precise forecasts with a smaller error. This 

information can be used to identify and address problems 

more quickly and efficiently, conserve water, and reduce 

costs. The ARIMA model is comprised of the 

autoregressive (AR), differencing (I), and moving average 

(MA) components. Algorithm 1 shows the general 

framework for building an ARIMA model for water 

demand forecasting.
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Fig. 3. Working of ARIMA model. 

 

2. Related Works 

The accuracy of the water distribution system is enhanced 

by the demand forecasting model. Based on data collected 

from January 1, 2010, through March 31, 2018, this Water 

Demand Study (WDS) forecasts future water demand and 

analyses daily water consumption in Austin, Texas, USA, 

using a deep learning algorithm known as LSTM (long 

short-term memory) and a time series algorithm known as 

ARIMA (Auto Regression Integrated Moving Average). 

A forecast of water use from January to March 2019 has 

been made, including an assessment of the margin of 

error. Comparing LSTM to ARIMA, LSTM is shown to 

provide more precise forecasts with smaller standard 

deviations. The 24-hour water demand was also included 

in the design of the water distribution system [5]. 

The Internet of Things (IoT) and fog computing have been 

suggested as a unified architecture for an underground 

WDS. For water distribution planning, work has been 

done on both predicting water demand and proposing an 

Internet of Things-based architecture. Three months of 

daily forecasts for water consumption have been made 

using ARIMA and regression analysis. Water supply 

design for an Internet of Things-based framework has 

been carried out, making use of hydraulic systems 

engineering for efficient water transfer with minimal 

losses to set up an intelligent system for distributing water. 

This has been accomplished with the help of the EPANET 

simulation tool. The analysis of regularity in water 

demand data led to the selection of the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) 

model as the basis for the forecast procedure. [6]. 

The Future Industrial Kitchen (FIK) project's FIKWater 

dataset is the result of two to four weeks' worth of 

collecting time series data for the two types of water needs 

from three Portuguese restaurants using the FIKWater 

framework. The samples were collected at a rate of 0.2 Hz 

using ultrasonic flow meters. Specifics about the areas 

under surveillance are also disclosed. On March 1, 2021, 

an ultrasonic flow meter, model number TUF2000M, was 

put on the primary water entry pipe to track the daily water 

use. Instantaneous flow rate, fluid velocity, active 

vibration speed, and overall consumption are only some 

of the characteristics measured by the TUF2000M  [7]. 

A long-term water consumption forecast model has been 

created for SIBU City, Malaysia. To obtain prediction 

consumption with minimal error, we apply a model 

predicated on deep learning in neural networks (DLNN) 

 

Algorithm 1: ARIMA Model 

Input: Time series water consumption data 

Output: Water demand forecast values 

Begin: 

Step 1: Data Preparation 

Step 2: Stationarity Check on data 

Step 3: Differencing between data patterns 

Step 4: Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) 

Step 5: Model Selection and Training 

Step 6: Forecasting water demand 

Step 7: Model Evaluation and Iteration by 

measuring Errors 
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using the LSTM method, which first employs a multi-

perception layer to learn patterns from historical data. 

With the use of the RMSE (root mean squared error) 

statistic, this model is accurate [8]. 

This research recommended that Nanchang, China's 

capital city, use a new dynamic Firefly algorithm (NDFA) 

to estimate future water resource needs. There are three 

different models for making predictions: linear, 

exponential, and hybrid. In this scenario, we look at water 

use statistics from 2003 to 2015. The ideal model weights 

are determined for the years 2003–2012. The years 2013–

2015 are used in the model to test. The water use from 

2017 to 2020 has been forecast with an accuracy of up to 

97.91%. [9] 

The short-term prediction model uses a variety of machine 

learning and statistical methods to predict future water 

consumption, including artificial neural networks, deep 

neural networks, extreme learning machines, least square 

support vector machines (LSSVM), Gaussian process 

regression, random forests, and multiple regression. R-

squared, root-mean-square error, mean-square error, and 

mean-absolute error have all been used to evaluate the 

relative efficacy of the different methods. The ANN 

model had the greatest performance while making 

predictions for 1, 12, and 24-hour periods. Regarding 

processing and precision, the LSSVM is the superior 

option [10]. 

To produce accurate short-term water demand 

estimations, the authors of this work suggest a parallel 

global optimization approach to fine-tune the 

hyperparameters of a trained support vector machine for 

24 hours. four  Each SVM takes the first six hours of water 

use as input characteristics and uses the next eighteen 

hours of use to forecast a single hourly demand. Black-

box objective functions are optimised based on the mean 

average percentage error (MAPE), which is calculated via 

leave-one-out validation [11]. 

The water consumption data of South East water retail 

company from 2006 to 2015 is utilised to predict monthly 

demands in Melbourne, Australia, taking into account 

climatic factors via the use of discrete wavelet transform, 

principal component analysis, and particle-swarm 

optimisation. Efficiency, accuracy, and precision have all 

been verified by rigorous testing of this model. These 

measurements demonstrate the high efficiency and low 

error rate of the suggested approach [12]. 

Use meter readings from 90 people to make hourly 

estimates of water usage. In this research, we explore the 

use of machine learning methods including random forests 

(RFs), artificial neural networks (ANNs), and support 

vector regression (SVR) with delayed supply, periodicity, 

climate, and demographic details. RMSE is used to 

evaluate the model's efficacy. The K-means clustering 

algorithm was used to classify typical daily water 

consumption habits. The accuracy rates of RF and ANN 

are higher than those of SVR [13]. 

A method has been created to enable short-term 

projections of daily farming water consumption using a 

dynamic artificial neural network (ANN) architecture and 

the Bayesian framework, even when such data is scarce. 

To achieve this goal, the ANN design is optimised with 

the use of a genetic algorithm (GA). Specifically, the 

Bembezar MD Irrigation District used this strategy. The 

created model outperformed its predecessors by an 

increase of 3 to 11 percent in terms of accuracy of 

prediction. Standard Error Prediction (SEP) was 8.7%, 

and R2 was 96% for the ANN model [14]. 

In this study, we combine the linear model with the 

exponential model and the logarithmic model. An 

enhanced whale optimization algorithm using a social-

learning-based wavelet mutation technique is offered as a 

means of more precisely predicting future water-resource 

demands. The new method creates a new linear 

incremental probability, which boosts the algorithm's 

capacity for global search. As compared to WOA, the 

proposed algorithm achieves a more optimal balance 

between exploiting and exploring the space. Using the 

most recent CEC 2017 benchmark. Shaanxi Province, 

China's water use data from 2004–2016, is utilised for the 

study. 

 Compared to existing algorithms, the suggested one 

performs better while solving the three water resource 

forecasting models. Up to 99.6 percent of the forecast's 

accuracy may be guaranteed [15]. 

This report recommends doing in-depth research into the 

tuning of AI neural networks to foretell the demand for 

drinkable water. Feed-forward neural networks, long 

short-term memory, simple recurrent neural networks, and 

gated recurrent units are some of the designs used, with 

prediction intervals ranging from an hour to a week. For a 

certain neural network architecture, prediction horizon, 

and dataset, the optimal number of layers and nodes may 

vary greatly. The models in the proposed research will be 

statistically evaluated using the following Values of 

MAPE that are higher than those of R2 signal that the 

model is more effective [16]. 

This research employed several statistical approaches to 

analyse and pick the model's best input variables to 

determine how effectively meteorological factors can 

predict future urban water demand. The GSA-ANN and 

BSA-ANN algorithms were employed for these 

predictions. This study showed that employing statistical 
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criteria to choose model inputs works and that the GSA-

ANN hybrid model is more accurate than other hybrid 

models [17].This research predicted near-term water 

usage using ensemble learning. Future water demands are 

predicted using the ensemble learning model and the 

equal-dimension, new-information model. The suggested 

method was compared to the single back-propagation 

neural network (BPNN) and seasonal autoregressive 

integrated moving average (SARIMA) models with the 

help of a real-world water distribution system.Water 

demand projections are more accurate and reliable using 

the suggested technique. RMSE, APE, and MAPE are 

used to assess forecast model accuracy [18]. 

The multi-stage, windowed SSA-AR model uses single-

spectrum estimates and autoregressive models with 

numerous windows to reduce noise. The SSA stages 

evaluate the original water data series. An autoregressive 

(AR) model predicts freshwater demand. The model is 

validated using 2006–2015 data from Baghdad's Al-

Wehda treatment center. SSA-AR can predict future water 

usage from incorrect historical data [19].Long-term water 

demand projections have been made for the Blue 

Mountains Water Supply System in New South Wales, 

Australia, and the results showed that different variable 

selection processes gave different collections of predictor 

characteristics. In addition, some of the selection 

strategies resulted in a number of irrational independent 

variables and regression equations. In contrast, when PCA 

was used to prepare the datasets of the variables that were 

predicted, the resulting water requirement model provided 

more precise simulation results of the water needs. [20].  

To predict future mistakes, we first use a model based on 

the Least Squares Support Vector Machine (LSSVM), 

then convert the error time series into a chaotic time series, 

and lastly, we apply the LSSVM technique. The hybrid 

approach is tested in three district metering areas in 

Beijing with various demand trends. As a result of the 

error-rectification section, the hybrid model was able to 

reduce the MAPE of the expected demand [21].The 

Backtracking Search Algorithm (BSA-ANN) optimises 

an ANN to predict monthly water requirements. South 

Africa's Gauteng province's monthly water use data was 

used to develop and validate the method between 2007 

and 2016. The BSA-ANN model has the lowest RMSE 

(0.0099 megaliters) and highest efficiency (0.979). With a 

lower error rate than the Crow Search Algorithm (CSA-

ANN), it was also more reliable [22]. 

Over the following six months, a slime mould technique 

(SMA-ANN) refined an updated artificial neural network 

(ANN) model for urban water demand forecasting. Over 

16 years, ten weather elements modelled water demand 

stochastically. SMA-ANN hybrid models outperform 

traditional neural networks in statistical testing, and this 

approach gives accurate findings with a mean absolute 

relative deviation of 0.001 and a coefficient of 0.9. This 

research may help municipal water managers better 

administer the existing water system and prepare for 

expansions to meet future needs [23]. In the first step of 

this model, the price series is decomposed using the SSA. 

Next, a nonlinear autoregressive neural network 

(NARNN) is trained using each component to predict 

prices in the future [27]. Predicting future hardware sales 

using ARIMA and a recurrent neural network-long short-

term memory (RNN-LSTM) [28] . 

3. Research Method 

3.1. Dataset  

In order to evaluate the accuracy and precision of our 

simulation model, let's first talk about how we'd go about 

projecting future water demands in the proposed 

system.The dataset used in the experiment was compiled 

from information gathered by an IoT system in Austin TX 

,that monitors water use and weather data across many 

regions to foresee the region's future water demand. The 

system is put to work analysing the pattern of water use. 

Among the 4701 data points included in the dataset are the 

following features: date and monthly water usage (in 

gallons) at the distributor level. Consumption data from 

2012–2020 is utilized, with a monthly time step used for 

analysis. 

3.2. Pre-processing 

The unprocessed data undergoes a metamorphosis at the 

pre-processing stage. We get the month values from the 

Date variable and also retrieve and group them as numbers 

from 1 to 12. Use class() to determine whether the data is 

a time series. ts() will transform non-time series data into 

time series data by finding the minimum and maximum 

from the Date variable. Then choose monthly reports that 

are generated from the gathered information. To ensure 

the data is stable, use the ACF () and PACF () methods on 

it. If the data is steady, a P-value of 0.05 or less will be 

obtained in the Dicky-Fuller test. Data that has a P-value 

higher than 0.05 suggests instability. To use it in a 

forecasting model, it must first be transformed into a 

stationary form. 

3.3. Methodology Used 

The forecasting methods used in this study are briefly 

discussed here. Because of its reliability and low margin 

for error, the ARIMA model was chosen for this analysis. 

When 'p' is the relationship between data points and the 

number of observations, "d" is its dependency on the 

variances between subsequent observations, and "q" is an 

observation's reliance on residual errors, the ARIMA (p, 
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d, q) model with the best fit is selected using auto Arima 

is the function that automatically selects the best ARIMA 

model for a given time series dataset based on its Akaike 

information criterion (AIC) value. It has been determined 

that the best-fitting model can be used to predict water use 

up to the year 2025. ARIMA (0,0,1) is selected as the best 

model, shown below in Table 1, for the lagging data with 

a 95% confidence interval. The Ljunk-Box test is then 

used to determine whether the model has an 

autocorrelation problem and whether or not the model has 

been verified. Every lag value's p-value must be greater 

than 0.05. 

4. Results and Discussion  

To evaluate the efficacy of the model so far, it was built 

in RStudio, a statistical program, using the ARIMA 

predictive model. Water consumption forecasts have been 

made using the various evaluation criteria that have been 

incorporated into the model and are discussed in Section 

5. Water consumption patterns throughout several city 

areas in the United States are shown in Fig. 4. from 

January 2012 to September 2020. Data on water usage 

was collected from January 2015 through September 2020 

to predict water demand for the subsequent five years. i.e., 

until December 2025. Fig. 5. depicts the demand pattern 

from January 2015 to September 2020. The variations in 

data points from 2015 to 2020 consumption are shown in 

Fig. 6. should be aware of the changes in water use so that 

we can analyse the data and make accurate projections on 

demand.Before using the ARIMA (0,0,1) model that fits 

the data the best. To determine whether the data is 

stationary or not, we should run an autocorrelation test on 

it. The ACF function is used to determine the order of 

autocorrelation problems, such as pattern detection and 

noise analysis. 

Table 1. Finding the best-fit model automatically using the Autoarima function. 

ARIMA (2,0,2) (1,0,1) [12]with non-zero 

mean 
Inf 

ARIMA (0,0,0) with non-zero mean   2502.778 

ARIMA (1,0,0) (1,0,0) [12] with non-zero 

mean  
2499.73 

ARIMA (0,0,1) (0,0,1 ) [12] with non-

zero mean  
2499.442 

ARIMA (0,0,0) with zero mean  2557.236 

ARIMA (0,0,1) with non-zero mean 2498.706 

ARIMA (0,0,1) (1,0,0) [12] with non-zero 

mean 
2499.18 

ARIMA (0,0,1) (1,0,1) [12] with non-zero 

mean  
2500.59 

ARIMA (1,0,1) with non-zero mean 2500.702 
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ARIMA (0,0,2) with non-zero mean 2500.699 

ARIMA (1,0,0) with non-zero mean 2499.669 

ARIMA (1,0,2)  with non-zero mean  2502.68 

ARIMA (0,0,1) with zero mean  2531.978 

Best model: ARIMA (0,0,1) with non-zero mean 

The order of the moving average is determined by partial 

ACF. The data has then been subjected to the Augmented 

Dickey-Fuller Test to determine whether or not the data is 

stationary by looking at the P-value. If the P-value is less 

than or equal to 0.05, then the data sample is stable. The 

P-value for the water usage data is 0.05698, as indicated 

in the ADF test results below in Fig. 7. All data points 

inside the blue line appear to provide information about 

the 95% confidence interval, which implies a significance 

threshold close to zero. 

In the statistical model, the ACF and PACF functions are 

used for visualising and analysing the autocorrelation and 

partial autocorrelation functions of the residuals of a time 

series model shown in Figures 8, 9,10, 11, and 12. The 

ACF evaluates the degree to which a time series is 

correlated with its lagging values. The residuals of a time 

series model are investigated to see whether 

autocorrelation exists. The ACF plot shows the lag on the 

x-axis and the correlation coefficient on the y-axis. To 

account for the impact of temporal delays, the PACF 

calculates the correlation between a time series and its 

delayed values. In a time series model, it is used to 

determine the relative positions of the AR and MA terms. 

The precision of a time series model's forecasts may be 

enhanced by examining the ACF and PACF plots to 

decide in which order the AR and MA components should 

be included. 

In particular, the Forecast function is used to generate 

forecasts using a statistical model called a "wavelet-based 

time series model with a non-zero mean." The argument 

specifies the level of confidence desired for the forecast, 

in this case, 95%, and another argument specifies the 

number of periods ahead to forecast, in this case, 5 years, 

and the time series has a monthly frequency.  

 

 

Fig 7. Augmented Dickey-Fuller(ADF) Test to check for data stionarity 
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Fig 8. Checks the data’s Auto correlation by ACF test. 

 

 

 Fig 9. Checks the data’s Auto correlation by  Partial ACF test 

 

 

Fig 10. The Autocorrelation of residuals using ACF 

 

 

Fig 11. The Autocorrelation of residuals using PACF 

 

 

 Fig. 4. Water Consumption pattern from 2012 to 2020 

 

 

 

Fig. 5. Water Consumption pattern from 2015 to 2020. 

  

 

Fig. 6. Difference in Water Consumption pattern from 2015 to 2020 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Difference in Water Consumption pattern from 2015 to 2020 
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The "non-zero mean" part of the model indicates that the 

time series being modelled has a non-zero average level. 

This is important to specify because it affects how the 

model generates forecasts. If the time series has a non-

zero mean, the model will need to incorporate this 

information in its forecasts to avoid predicting unrealistic 

values. The following Table 2 displays the results of an 

ARIMA model used to forecast monthly water use from 

January 2021 through December 2025. and the graphic 

depicts a plot based on the expected value highlighted in 

the shaded part of Figure 12.The Box.test() function in R 

is used to perform the Ljung-Box test for autocorrelation 

in a time series to validate the ARIMA forecasting model.  

The Ljung-Box test is a statistical test to determine if there 

is evidence of autocorrelation in a time series. The 

function takes three arguments. The residuals of the time 

series model are the errors or differences between the 

observed values and the values predicted by the model. 

The residuals are accessed through forecast1$residuals. 

The "lag" argument specifies the number of lags to include 

in the test. This lag of 5 means that the test will include 

autocorrelation up to 5 lags. The type argument specifies 

the type of test to be performed. The Ljung-Box test that 

will be run is shown in Figure 13, and if the p-value is less 

than 0.05, the data will be disregarded. The reliability of 

the model used for making predictions is also evaluated.  

Table 3 displays the results of a validation of the enhanced 

ARIMA model to determine the precision with which the 

metrics listed below may be estimated. The mean absolute 

error (MAE) value assessed for the ARIMA model's 

projection of daily rainfall is 102.7644 [24], whereas the 

MAE value for the proposed model's projection of future 

water demand is 144.20105. The RMSE for a time series 

study of electrical energy use using an ARIMA model, 

which was shown to be valid, is 347.18 [25]; the RMSE 

for our suggested system is 169.103. The comparison of 

existing models' metrics with our model is shown in Table 

4.

 

Table 2.  Sample Forecasts (JAN 2021 to DEC 2025) by the ARIMA models for water demand of Austin. city,US

Month 

Year 

Point 

Forecast 
Lo 80 Hi 80 Lo 95 Hi 95 

Oct-20 15404379 
-

6588121 
37396878 

-

18230247 
49039004 

Nov-

20 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Dec-

20 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Jan-21 19855683 
-

3145376 
42856743 

-

15321402 
55032768 

Feb-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Mar-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Apr-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

May-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 
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Jun-21 19855683 
-

3145376 
42856743 

-

15321402 
55032768 

Jul-21 19855683 
-

3145376 
42856743 

-

15321402 
55032768 

Aug-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Sep-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Oct-21 19855683 
-

3145376 
42856743 

-

15321402 
55032768 

Nov-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Dec-

21 
19855683 

-

3145376 
42856743 

-

15321402 
55032768 

Jan-22 19855683 
-

3145376 
42856743 

-

15321402 
55032768 

 

 

Fig.12. Forecast graph from 2021 to 2025. 

 

Fig. 13. The Ljung-Box test for different lag values. 
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Table 3. ARIMA model metrics value. 

Metrics                  ME         RMSE         MAE         MASE        ACF1 

The 

training set 
-14169.74 169.10302 144.20105 0.788321 0.0010364 

 

Table 4. Comparison of our obtained RMSE with other existing analysis 

Model 

References 
Forecast 

Method 

Used 
RMSE 

 Mazwin 

Arleena 

Masngut1, 

Shuhaida 

Ismail, 

Aida 

Mustapha3 

Suhaila 

Mohd 

Yasin[24] 

Rainfall 
ARIMA 

and ANN 

 

34.674 

 Nahid 

Ferdous 

Aurna, 

Md. Tanjil 

Mostafa 

Rubel, 

Tanveer 

Ahmed 

Siddiqui, 

Tajbia 

Karim 

[25] 

   

Electrical 

Energy 

Consumption 

Holt 

Winters 

model 

184.12 

  

    

Redha Ali 

Al-

Qazzaz, 

Suhad A. 

Yousif [ 

26] 

Oil Prices 
Auto 

ARIMA 

 

12.5539 

Model we 

used to 

analyze 

Water 

Consumption 

Enhanced 

ARIMA 

Model 

169.103 

 

5. Conclusion 

This article uses the ARIMA prediction framework to 

project water use in the years 2020–2025. The mode's 

accuracy was measured using the mean absolute scaled 

error (MASE), which was calculated to be 0.788321, and 

the RMSE value of 169.103. The ARIMA model was used 

to predict since it was shown to be the most effective. To 

better plan for the expected increase in demand for water 

in the future, most water systems use forecasting 

methodologies. The system's precision is the criterion that 

must be considered when engaging in fast and accurate 

decision-making for an IoT system. The practical findings 

demonstrate that when the MASE value is less than 1, the 

ARIMA model produces better, more precise predictions 

of future water requirements. The proposed ARIMA 
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model has many advantages over other approaches, 

including its ability to handle non-stationary data by 

differencing the data to eliminate the trend and/or 

seasonality, its ability to capture trends and seasonality in 

the time series data, and its flexibility since multiple orders 

of the ARIMA model may be used to capture different 

patterns in the data.  
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