
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(9s), 804–821 |  804 

An Efficient Image Segmentation using Optimized Segmentation 

Network for Remote Sensing Satellite Images 

Namdeo Baban Badhe1, Vinayak Ashok Bharadi2, Nupur Giri3, Sujata Alegavi4, Shashank S. Tolye5 

Submitted: 22/04/2023         Revised: 27/06/2023           Accepted: 15/07/2023  

Abstract: Segmentation of high-resolution remote sensing images is of great importance for urban development planning. Moreover, while 

monitoring land covers through high-resolution satellite images, crops are significantly easy to be confused with the dark object’s spectra 

like, shadows, dense vegetation and asphalt roads. The previous semantic segmentation approaches do not pay enough attention to the 

location information among horizontal position and direction, which causes inaccurate segmentation of remote sensing images. To overcome 

these issues, an innovative Optimized Segmentation Network (OptSegNet) based remote sensing image segmentation is proposed which is 

a hybridization of convolutional network and dual-path UNet with Resnet_50. It consists of four stages such as, pre-processing, feature 

extraction, segmentation and post processing. Initially, the hyperspectral images which are derived from the Indian Pines dataset, Salinas, 

and Pavia University are preprocessed by using the guided box filtering technique. Secondly, the proposed method extracts the spatial and 

spectral features from the satellite images and also generates accurate segmentation results. In order to enhance the performance of proposed 

method, Enhanced Mountain Gazelle Optimization (EMGO) algorithm is used. Finally, in the post processing stage the proposed pairwise 

neural conditional random field method enhances the final segmented images into a high-resolution remote sensing image. Experimental 

outcomes illustrate that the introduced method achieves better performance when compared with the other traditional algorithms. Especially, 

the accomplished overall accuracy is 99.13%, 99.71%, and 99.34% on Indian Pines dataset, Salinas, and Pavia University dataset 

respectively. 

Keywords: Image segmentation, spectral and spatial features, semantic segmentation, remote sensing, convolutional neural 

network 

1. Introduction 

Recently, it has been possible to gather a number of remote 

sensing images. For example, Indian Pines (IP), Salinas 

Dataset (SD) (Salinas Scene), and Pavia University (PU) 

consists of huge number of satellite images along with 

maximum spatial resolution. These images have provided 

several more capability for image analysis works like 

semantic segmentation, scene classification, and change 

detection. Among these works, Remote Sensing Image’s 

(RSI) semantic segmentation is one of the most significant 

and interesting research domains because it is broadly applied 

in several applications, like city planning, environmental 

monitoring dense labeling, urban management.  Urban 

planning, RS mapping precision agriculture, landscape 

classification, environmental protection against climate 

change, and forest vegetation are just a few areas where 

Remote Sensing (RS) image segmentation technology is 

essential [1-3].  

As a result, it offers crucial decision assistance for everyday 

activities of people. The goal of semantic segmentation of 

RSI is to categorize each pixel's land-cover or land-use. 

Semantic segmentation has gained considerable interest in the 

remote sensing industry as one of the core visual tasks and 

has shown to be helpful for a number of applications, 

including mapping the land cover, observing traffic, and 

managing urban areas [4-7]. Convolutional Neural Network 

(CNN) plays a significant role in the semantic segmentation 

of RSIs. Various CNN systems like DeepLab and its variants 

performs the sematic image segmentation efficiently. 

Although, these systems face some challenges because this 

CNN-based structure are more sensitive to the features of 

both training and testing images. Also, the segmentation 

accuracy gets minimized severely because of the various 

distributions of input and output images. 

Semi supervised learning algorithms are suggested to employ 

additional information, such as spatial relations for semantic 

segmentation, in order to reduce the need for detailed pixel-

by-pixel annotations. However, majority of work does not 

discuss about the interpret of spatial relationships between RS 

objects, that restricts the comprehension of these objects, 
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particularly when the phenomena of several remote sensing 

objects have the same spectrum emerges.   In RS, the 

occurrence of various objects with the same spectrum is 

rather typical [8-10]. Only using an object's own textures, 

spectra, and shape information is challenging. To aid in 

making decisions, object detection involves multi-scale 

semantic data and geographically neighboring items. When 

distinct things have the same spectrum, the spatial 

relationship between remote sensing objects is crucial to their 

identification [11-13]. 

The RS image provides a significant quantity of information 

due to the RSI improved resolution, which broadens their 

application potential and causes recognized items of interest 

to be relatively smaller in size [14, 15]. The methods for 

segmenting images are the main topic of this section. 

Partitioning remote sensing imagery into discrete earth 

surface regions and creating a labelled map are typical image 

analysis goals. The major contributions of this proposed work 

are given as follow: 

• An OptSegNet based segmentation is introduced, based on 

this method, a dual UNet with ResNet_50 sub network is 

designed to fully interpret the semantic information of RSIs. 

• Depth-wise convolution is designed in the proposed 

segmentation module to extract the joint SSF further; it 

enhances the effectiveness of the extracted global features. 

• It also enhances, semantic segmentation of RSIs by 

improving the scene-based representation in both ResNet_50 

encoder and ResNet_50 decoder stages.  

The rest of this research work is provided as follows. Part 2 

discusses about some of the state-of-art techniques that are 

related to this work. Part 3 discusses the proposed system. 

Part 4 provides the results and part 5 is the conclusion of this 

work. 

2. Literature Survey 

The sate-of-art techniques based on RSI segmentation and 

classification are discussed in this section. 

In 2023, Zhou et al., [16] had proposed a Shallow-to-Deep 

Feature Enhancement (SDFE) system with various modules 

depends on Vision Transformer (ViT) and CNN is 

introduced. Initially, Principal Component Analysis (PCA) 

was developed for selecting the significant spectral context. 

Next, the spatial and spectral correlations are preserved by 

using 3D-CNN based Shallow SSF extraction (SSSF). Then, 

the complementary information was captured by 2D-CNN. 

At last, ViT module extracts the joint SSFs for segmentation. 

The disadvantage of this model was, network structure 

enhancement is required to achieve more efficient outcomes.  

In 2022, Zhao et al., [17] had introduced a graph learning 

scheme for the classification of Hyperspectral Image (HSI). 

The choosing of improper segmentation scale greatly 

minimized by multiscale-superpixel based system. The final 

segmentation-based classification results was achieved with 

the help of pixel-level fusion approach. But the only 

drawback of this system was, the computational complexity 

is high, if the HSI is in larger size.  

In 2022, Kondal and Barpanda [18] had developed Hybrid 

3D-CNN (H3D-CNN) system for accurate HSI classification 

in supervised learning. The 2D-CNN’s HSI consists of 

hundreds of spectral dimensions which maximizes the 

computational expenses. So, there is a need for dimensional 

suppression. To overcome this issue, the proposed H3D-CNN 

system with two convolution layers provides better results. 

But the only disadvantage was, the unmarked samples may 

reduce the robustness of the introduced framework. 

In 2022, Song et al., [19] had implements Semi-Supervised 

Residual Network (SSRNet) system for classification. It 

includes two classes, SS and a self-supervised branch. By 

using HSI data perturbation through a spectral spatial shift, 

the SS branch enhances the performance. Further, the self-

supervised branch describes band reconstruction. SSRNet 

perform better on unlabeled samples which enhances the 

classification accuracy. The only disadvantage was several 

unlabeled samples are applied to enhance the performance it 

increases the training time of the process.  

In 2022, Zhang et al., [20] had introduced Superpixel 

NonLocal Weighting Joint Sparse Representation 

Classification (SNLW-JSRC). The entropy rate segmentation 

approach was used for constructing superpixel representation 

of an image. To weigh the superpixel, proposed SNLW 

strategy is constructed which is done based on its spectral and 

structural informations. At last, the superpixel based 

classification is performed with the aid of JSRC approach. 

The drawback of this system was, the inaccurate superpixel 

segmentation causes lack of spatial information. 

In 2019, Chakraborty et al., [21] had introduced an Improved 

Particle Swarm Optimization (IPSO) to solve the issue of 

premature convergence and also escapes from the local 

optima problem. It is extended further to replace the worst 

particles with the help of fitness particles. In the experimental 

scenario, it is compared with some of the optimization 

methods like, FireFly (FF), Differential Evolution (DE), and 

Cuckoo Search (CS). The drawback was, some of the 

parameters need to be modified to increase the accuracy of 

segmentation results.  

In 2020, Wang et al., [22] had proposed sequential joint DL 

model for the HSI segmentation and classification. Initially, 

hybrid the attention scheme to distribute the key feature’s 

probability weight. Then, a multiscale convolution method 

was used to obtain deep features. The Bidirectional Long 

Short-Term Memory (Bi-LSTM) classifies the multiclass 

RSIs accurately. The major disadvantage was, convergence 
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visualization analysis was performed to understand the 

training outcomes better.  

In 2021, He et al., [23] had introduced spectral-spatial 

segmentation-based classification by applying label 

dependence. Initially, residual network is applied to extract 

the spectral features, next the target pixels are fed into pixel 

embedding by using label dependency characteristics. 

Finally, the Spatial Information Extractor (SIE) extracts the 

spatial dependency information efficiently which provides 

better segmentation-based classification outcomes. The only 

drawback was, it requires larger training time which leads to 

imperfect features learned by the system. 

In 2022, Datta et al., [39] had introduced a hybrid Spatial-

Spectral-Superpixelwise Principle Component Analysis-

based Dense 2D-3D CNN (3SPCA-D-2D-3D-CNN) 

technique for dimensionality reduction and classification of 

HSI. It is build-up of nine enriched features with the aid of 

these features, the appropriate class labels are classified. The 

only disadvantage was, the hyperparameters are not 

optimized by using any optimization algorithm. 

In 2022, Mu et al., [40] had introduced a Two-Branch CNN 

based on Multi-spectral Entropy Rate Superpixel (TBN-

MERS) for HSI segmentation and classification. It uses the 

joint Spatial-Spectral Features (SSF) for the efficient 

classification performance. The drawback of this method 

was, to design deep neural network to enhance the 

segmentation results.  

Research motivation  

From the above-mentioned existing methods, generating 

labeled training data consumes lot of time and also limited 

amount of training samples are available which makes the 

segmentation 

more complex. Further, the existing CNN is used directly, 

however this has certain drawbacks, including poor 

segmentation of tiny objects and fuzzy boundaries. The 

shallow and deep feature map is partially combined using this 

method; however, the fusion is not selective. The capacity to 

extract features is limited even if the shallow network 

structure has more detailed information because of the small 

number of network layers and the convolutions that was 

made. The effect of segmentation is limited by the improper 

patch size, feature map's significant noise and high processing 

time. These are motivated to do this research work based on 

RSI segmentation technique.  

3. Proposed Methodology 

One of the most difficult and crucial problems in the fields of 

vision and RS has been semantic segmentation of RSIs. It is 

widely used in several disciplines, including urban 

development, environmental monitoring, and land surveying 

and mapping. RSI typically include a wealth of information 

about many categories of ground objects. Due to the 

heterogeneity of linked objects and the complicated spectrum 

in satellite images, segmenting remote sensing images 

involves a high deal of uncertainty, which severely restricts 

the effectiveness of typical segmentation techniques. In this 

research work, OptSegNet based RSI segmentation is 

proposed. Fig. 1 represents the process flow of proposed 

system. 

The proposed method contains 4 stages, (1) preprocessing, 

(2) feature extraction (3) segmentation and (4) post 

preprocessing.  

Initially the input RSIs are taken from, HSI dataset such as 

IP, SD, and PU.  Secondly, these images are preprocessed by 

guided box filtering. Then, given to the OptSegNet for feature 

extraction and segmentation.  

To enhance the OptSegNet’s performance, EMGO is utilized. 

Then the segmented image is given to Pairwise Neural 

Conditional Random Field (PNCRF) based post processing 

for improving the segmentation accuracy.  

Finally, the introduced model is compared with various 

previous models to illustrates the effectiveness of the 

introduced feature extraction-based segmentation algorithm.  

 

Fig 1. Proposed Methodology 

3.1. Guided Box Filtering (GBF) for preprocessing the 

HSIs 

It is a local linear filtering method, which smoothens the RSI 

by considering the average-of-surrounding pixels. This GBF 

technique applies summed area table and square kernel 

strategy which calculate the box filtering kernel 

independently [24]. The summation method is used to 

calculate the cumulative sum over x-axis and y-axis. It is 

mathematically written in equations (1) and (2) 

( ) ( ) ( ) ( )yvxLvxLyxSyxS ,1,1, −−−++−=                    (1) 

( ) ( ) ( ) ( )1,,1,, −−−++−= vyxSvyxSyxKyxK                   (2) 

where, LS, and K are the variables, v specifies the vector. 

Finally, the result of box filter is mentioned in equation (3), 
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( )
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=                       (3) 

where, k denotes the cardinality of K . While recovering the 

edge in both discrete and gradient region, the Guided Image 

Filter (GIF) method is highly suitable. The resultant of the 

color guidance filtering is given in equations (4-7) 
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where, I be the input image, b denotes the set of pixels, T

specifies the linear coefficient, H represents the variables, the 

average of input RSI is represented as rI
~

, the average of 

guidance RSI is denoted as rm , e  be the controlling 

parameter, the guided image’s 33  covariance  matrix in rW

is represented as r , the linear coefficient is represented as 

rq~ and rp~ , the parameter H is denoted as 33  identity matrix, 

r be the radius of 5 and e  be the epsilon value as 0.1. 

Integration of guided filtering and box provides excellent 

outcomes and also it preserves the structure information in a 

RSI. 

3.2. OptSegNet based feature extraction and 

segmentation 

The proposed OptSegNet is the hybridization of 

convolutional network based dual-path U-net with Resnet. It 

is used for feature extraction and segmentation of RSIs. This 

proposed architecture includes two UNet i.e. UNet1 and 

UNet2 and an encoder block ResNet_50 sub network. The 

dual UNet with ResNet encoder differentiate it from UNet by 

means of ResNet_50, Decoder Block (DB) and ASPP 

applications in UNet1. Among the outcomes of UNet1, an 

element by element multiplication is performed along with 

the same network’s input. In UNet2, the employ of ASPP, is 

the major difference between dual UNet with ResNet encoder 

and UNet. If the encoder in UNet2 was generated from the 

starting, in dual UNet with ResNet encoder, the very first 

encoder purposes pre-trained ResNet_50. The two 33

convolution functions are performed in the UNet2 encoder, 

each of which is followed by a batch normalization. Rectified 

Linear Unit (ReLU) is used as the activation function, it is 

achieved with the aid of excitation block and squeeze, 

enhancing the integrity of the feature maps significantly. To 

reduce the feature map’s spatial dimension, max-pooling is 

used after the application of 22  window and stride2. Set the 

depth-wise convolutional kernel size as 1313  to achieve 

appropriate result. In dual UNet with ResNet encoder, there 

are two decoders are applied. For each block, the input feature 

map is subjected to a 22  bi-linear up sampling in the 

decoder region. It greatly maximizes the input feature map’s 

dimensionality. From the encoder, the respective skip 

connections integrate the feature maps with the resultant 

feature maps. In the first decoder, only, the encoder’s skip 

connections in UNet1 is applied, while the skip connection 

from UNet1 and UNet2 encoders are applied in second DB. 

After concatenation, two 33 convolution functions are done, 

each attained by a ReLU function and batch normalization. 

Then, an excitation and squeeze block are used. Finally, a 

convolution layer with sigmoid function is used which 

produces the segmented result as the output [25]. Then, the 

EMGO algorithm minimizes the loss of dual UNet with 

ResNet_50 network which is mentioned in equation (8). 

( ) ( ) ( ) jpjxjpjxEL −−+= 1log1log                     (8) 

where, EL denotes the cross-entropy loss, jx  represents the 

ground truth label 1, the term jx−1  denotes ground truth label 

0 and the classifier probability is mentioned as jp .  Fig. 2 

illustrates the architecture of dual UNet with ResNet_50 

model. 

3.2.1. Enhanced Mountain Gazelle Optimization (EMGO) 

for improving OptSegNet performance 

In this section, an optimization approach based on life and 

social behaviors of mountain gazelles is performed. To form 

a mathematical equation for the MGO approach, the general 

concepts of group and social life of mountain gazelles are 

applied. The MGO algorithm performs optimization 

functions depends on four major factors, such as Territorial 

Solitary Males (TSM), Maternity Herds (MH), Bachelor 

Male Herds (BMH), and Migration to Search for Food 

(MSF).  

In the search space, the positions of mountain gazelle are 

distributed randomly. If there are no neighboring particles 

around the present particle, it performs random walk scheme. 

This state slow down the convergence trend and minimizes 

the accuracy of convergence under some finite amount of 

iterations. An enhanced learning factor is proposed to 

overcome this problem and the relative change rate of the 

mountain gazelle’s fitness value is proposed which is mention 

in equation (9).  
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Fig 2. Architecture of proposed OSegNet 

 Pseudo Code for EMGO: 

Inputs: Population size M and the T be the maximum number 

of iterations 

Outputs: Fitness value and location of mountain gazelle 

Initialization 

Applying ( )MiiP ,,2,1 =  to form a random population 

Compute fitness levels of mountain gazelle 

( )ELonMinimizatiFunctionFitness =_         (10) 

While (termination constraint is not reached) do 

{ 

for (every gazelle ( )iP ) do 

{ 

Alone male realm 

Evaluate TSM by applying, 

( )( ) sCoeDtPsiYMsigazmaleSMT −−= 21   (11) 

Mother and child herd 

Evaluate MH by applying, 

( ) ( ) scoerandPsigazmalesiscoeYMHM ,143,1 −++=   (12) 

Young male herd 

Evaluate BMH by applying, 

( )( ) ( ) scoeYMsigazmalesiFtPMHB −+−= 65  (13) 

Migration to search for food 

Evaluate MSF by applying, 

( ) LBsLBUBSFM −−= 7                         (14) 

Compute the fitness values of MH, TSM, MSF, and BMH, 

then add them to the habitat 

} 

Arrange the total population in ascending order 

Adaptive learning factor 

−+
=

e

t
ia

1

1                                          (15) 

Neighbor individual gazelle around 
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Update gazebest  

Store the M best gazelles Maximum number of populations 

} 

Return gazebestP , optimal fitness. 

+



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










−

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t
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t
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where, t
gazelle

male  denotes the thi individual of the mountain 

gazelle at the iteration t , 






 t
imaleF  is the fitness function, 








 t
best

maleF  represents the achieved optimal fitness rate of 

mountain gazelle and  signifies the constant value to 

eliminate zero-division-error. Table 1 illustrates the pseudo 

code for EMGO [26]. 

where, P signifies the random population, si  be the random 

integers ranges from (1-6), YM denotes the young male herd, 

D represents the coefficient, scoe signifies the randomly 

chosen coefficient vector, randP  is the gazelle’s vector 

position, ( )tP  is the gazelle position, LBUB −  denotes the 

upper and lower limits, and a  denotes the adaptive factor. 

3.3. Pairwise neural conditional random field-based post 

processing 

During the data transfer between the neural network layers, 

some context information may get lost, along with attaining 

high-level spatial features. Thus, the segmentation outcomes 

produced by the OSegNet approach may result in several 

flaws, particularly at the boundaries of ground objects. To 

resolve these defects, the CRF strategy is used in the 

computer vision research domain. It is performed usually in 

the post-processing step to enhance the resultant segmented 
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RSIs [27]. The mathematical model for CRF is given in 

equation (17), 

( )
( )

( )



















−=

gAa

RAP
RN

RPQ logexp
1    (17) 

where P denotes a set of random variables  Mppp ,,2,1   

where Mp  be the 
thM  pixel’s category label, R signifies a 

group of random variables  MRRR ,,2,1  , the pixel vector is 

represented as MR , the normalizing factor is represented as 

( )RN , the clique is given as a , set of cliques is represented as 

gA , and g  induces a potential a . By computing CRF 

expression, it adjusts every pixel’s category label and attains 

the objective of correcting the resultant segmented RSIs. This 

CRF post processing method is significantly efficient at 

processing RSIs which consists of small number of objects 

only. Therefore, the locations, sizes, and number of objects 

vary widely in RSIs and the conventional CRF performs a 

global optimization of the whole image. In the similar way, 

various portions of ground objects which are not shadowed or 

shadowed are processed which causes more errors in the 

outcome of CRF. Therefore, a PNCRF method is proposed 

which overcomes the disadvantages of inconsistent and noisy 

labeling from the CRF alone.  

In PNCRF, the pairwised image I  is mathematically 

mentioned in equation (18), 

( ) ( ) ( )( )

( )
  

jvivr

N

n
jvivnrnwjbiaI

,

1

,, 
=

=
                      (18) 

where, the learnable parameters are ( )nw , the number of 

kernels are denoted as N , the parameter iv be the feature 

vector of 
thi pixel and jv  be the feature vector of 

thj  pixel, 

the operation ( )jbia ,  denotes the compatibility 

transformation among the labels ia  and ja . The achieved 

post processing result is mentioned in equation (19). 


gse

IsOutcomePostProces


=              (19) 

where 


'seg
I  represents the segmented output, and   represents 

the range  ,1 . This proposed PNCRF method only uses 

shallow features which produces more effective post 

processing RSI results.  

Initially, the hyperspectral RSIs are pre-processed by using a 

GBF technique. Secondly, the OptSegNet extracts the spatial 

and spectral features then provides the segmentation 

outcomes. Finally, the PNCRF further enhances the 

segmented images respectively.  

4. Results and Analysis 

The experimental setup of the introduced approach and the 

obtained results comparison are discussed briefly in this 

section.  

Experimental setup 

The experiments were run on Spyder Anaconda Navigator 

with python 3.10 version with 16.0 GB and on Intel(R) Core 

(TM) i7-6700 CPU @ 3.40GHz 3.40 GHz processor, 

Windows 10 operating system. After the completion of 

network design, analyzed the various factors which affects 

the system performance and training process. These factors 

consist of number of epochs, number of iterations and 

learning rate. Set the learning rate at 0.001, and number of 

iterations at 100. The network weighs were initialized and 

trained randomly by EMGO algorithm with an entropy loss 

function. Every experiment was run for 200 epochs. For an 

efficient comparison with other existing methods, adopt a 

patch size of 1313 . The proposed OSegNet model was 

constructed using the Keras and Torch library.  

Performance analysis 

The description of three experimental databases such as IP, 

SD, and PU dataset are introduced. After that, the outcomes 

of the introduced approach and some other related techniques 

on different datasets are discussed. The existing methods 

which are compared with the proposed work are: 3D-CNN, 

and 2D-CNN [18], HybridSN [16], Spectral-CNN, IPSO, CS, 

DE, FF [21], AlexNet, ResNet, DenseNet, Pre-activation 

Residual Attention Network (PRAN), and FSSFNet [22, 23] 

respectively. 

 

(i) 

 

(ii) 

 

(iii) 
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(iv) 

 

(v) 

Fig 3. Results of the proposed approach on Indian Pines Dataset 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

Fig 4. Results of the introduced method on Salinas Scene Dataset 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

Fig 5. Results of the proposed approach on Pavia University Dataset 
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Fig. 3 illustrates the segmentation result of the proposed 

method on IP; (i) Ground truth image, (ii) RGB converted 

image (iii) Filtered image (iv) Segmented image and (v) Post-

processing image. 

Fig.4 demonstrates the segmentation result of the introduced 

model on SD; (i) Ground truth image, (ii) RGB converted 

image (iii) Filtered image (iv) Segmented image and (v) Post-

processing image. 

Fig.5 illustrates the segmentation result of the introduced 

method on PU; (i) Ground truth image, (ii) RGB converted 

image (iii) Filtered image (iv) Segmented image and (v) Post-

processing image. 

4.1. Dataset description 

Three HSI databases are chosen for analysis, such as IP, SD 

and PU. The detailed description of these three datasets are as 

follows, 

Indian Pine dataset 

The IP database contains spectral channels of 200, 145145  

pixels in the wavelength of range 0.4-2.45 m . The data’s 

spatial resolution is 20 m. The ground truth map uses 16 

various surfaces classes and 10,249 labeled pixels [28]. 

Salina dataset 

The SD consists of 217512 pixels along with a 3.7 m spatial 

resolution and 200 spectral channels (0.4-2.45 m ). It also 

consists of 16 classes and the ground truth of 54,129 labeled 

pixels [29].  

Pavia University 

The PU dataset’s spatial size and resolution is 340610  and 

pixelm /3.1  respectively. It also consists of 115 spectral 

channels ( m86.043.0 − ). The ground truth image includes 

42,776 labeled pixels and 9 classes [30]. 

4.1.1. Comparison of classification models 

Table 2 represents the various existing methods applied in IP 

and SD at the various convolution layers.  

Table 2. Classification Accuracy Based on India Pines Dataset, Salinas Dataset and Pavia University Dataset 

Class Labels Methods 

3D-CNN [18] 2D-CNN 

[18] 

Hybrid SN [16]  Spectral CNN Proposed 

Indian Pines Dataset 

Alfalfa 85.71 71.72 100.00 100.00 100 

Corn-notill 96.46 95.85 97.82 98.3 98.68 

Corn-mintill 97.13 95.90 95.45 96.39 98.78 

Corn 98.55 73.91 96.71 97.23 99.39 

Grass-pasture 97.90 97.20 99.54 99.50 98.20 

Grass-trees 97.68 96.31 99.85 99.85 99.80 

Grass-pasture-mowed 100 100 60 89.98 89.47 

Hay-windrowed 99.30 100 100.00 99.96 100 

Oats 100 100 100 100 71.42 

Soybean-notill 98.26 97.20 96.46 97.95 99.70 

Soybean-mintill 98.77 99.04 97.33 98.56 99.76 

Soybean-clean 97.15 95.45 96.07 97.89 97.07 

Wheat 96.72 100 97.30 99.04 100 

Woods 99.46 98.94 99.21 100 100 

Buildings-Grass-Trees-Drives 93.80 94.73 100 99.95 97.75 

Stone-Steel-Towers 100 100 79.76 97.45 95.31 

Overall Accuracy (OA)% 97.31 96.37 97.57 98.06 99.13 

Average Accuracy (AA)% 98.92 97.08 94.72 95.17 99.58 
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Kappa% - - 97.23 97.29 99.67 

Salinas scene Dataset 

Brocoli-green-weeds-1 97  100  100  100 100 

Brocoli-green-weeds-2 99.46  99.97 99.97 99.01 100 

Fallow 97.80  99.84 99.84 100 100 

Fallow-rough-plow 97.13  100.00 100.00 98.90 100 

Fallow-smooth 98.80  99.72 99.72 99.65 97.09 

Stubble 98.91 100  100  100 100 

Celery 96.55 100  100  99.67 100 

Grapes-untrained 97.28 99.15 99.15 98.43 100 

Soil-vinyard-develop 99.84 100.00 100.00 100.00 100.00 

Corn-senesced-green-weeds 98 99.10  99.10  99.45 100 

Lettuce-romaine-4wk 99 100 100 100 100 

Lettuce-romaine-5wk 99 99.78 99.78 98.99 100 

Lettuce-romaine-6wk 90.55 100 100 99.03 97.50 

Lettuce-romaine-7wk 93.46 99.21 99.21 99.34 100 

Vinyard-untrained 97.47 95.52 95.52 98.67 99.24 

Vinyard-vertical-trellis 99.06 99.24 99.24 98.3 100 

OA% 99.08 99.10 99.10 99.28 99.71 

AA% 98.65 99.47 99.47 99.48 99.61 

Kappa%   98.99 99.01 99.67 

Pavia University Dataset 

Asphalt 84.31 94 99.63 99.45 99.50 

Meadows 74.32 90 99.87 99.56 99.93 

Gravel 81.59 71 96.24 99.23 97.96 

Trees 70.64 100 93.71 98.67 99.46 

Painted metal sheets 100 26 99.84 98.45 98.94 

Bare Soil 61.93 97 100.00 100 100 

Bitumen 64.82 96 100.00 100 99.67 

Self-Blocking Bricks 90.11 46 99.86 97.85 97.14 

Shadows 99.55 35 92.78 98.45 94.56 

OA% 75.11 74 99.07 99.15 99.34 

AA% 80.81 66 97.99 98.07 98.57 

Kappa% 69.16 61 98.77 99.08 99.13 

The proposed segmentation method achieves accurate results 

than the other methods such as 3D-CNN, 2D-CNN, Hybrid 

SN, and Spectral CNN [16, 18]. Because, the implemented 

method ignores the joint features context information without 

considering the spectral information of the image. The 

proposed OSegNet based feature extraction method greatly 

reduces the dimensionality of the database without losing any 

spatial and spectral information. The accomplished OA, and 
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AA of the proposed method is 99.13% and 96.58% 

accordingly. 

Fig.6 illustrates the achieved values of different measures for 

the four systems over test data [16]. From the graph, it is 

observed that all the four methods implemented equally good. 

But among the four methods, the proposed OSegNet achieves 

excellent precision, recall and f1-score values i.e. 98.02%, 

99.56% and 99.01% respectively. This proposed method 

accomplished better classification performance than the other 

traditional classification models. 

 

 

Precision 

 

Recall 

 

 

F1-score 

Fig 6. Performance comparison of proposed method 

Table 3 provides the performance measure values of 

proposed OSegNet and some of the other state-of-art 

technique values for precision, f1-score, recall, OA, AA, 

Kappa, training and testing based on IP, PU, and SD datasets 

[16, 18]. From the table, the training time of the proposed 

approach over IP, PU, and SD datasets are 250.55 s, 600.78 

s, 700.54 s, and 27.89 s correspondingly. Also, Table 3, list 

out the comparison of proposed method’s training and testing 

time with the existing methods. From the table, it is observed 

that the running time of the introduced approach is relatively 

high, but the segmentation and classification outcomes are 

better.  

Fig.7 illustrates the performance measure comparison 

introduced scheme with some of the previous algorithms [16]. 

It is clear from the outcomes in Fig.7, that the achieved OA 

by the five methods maximize with the increasing number of 

learning rates. 

Furthermore, the proposed method has the better performance 

by varying learning rate step sizes. If the amount of learning 

rate step size is small, the benefits of OptSegNet is high. 

However, the achieved values are comparatively maximum 

than the other methods. 

Fig.8 shows the training and testing time complexity 

comparison of proposed method with various existing 

methods. The 3D-CNN approach uses minimum training and 

testing time because, generally the DL schemes consists of 

more parameters and larger input feature maps [16]. 

Furthermore, the major objective of the proposed method is 

to enhance the performance via applying lowest labeled 

samples and a maximum unlabeled sample, it needs further 
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training time, but testing time still has one advantage 

compared with other methods. 

Fig.9 demonstrates the performance comparison based on 

different patch size. In the OptSegNet method, the size of 

depth-wise convolutional kernel is set experimentally. It is 

recorded as DD .  

Table 3. Classification Accuracy of IP, SD, and PU Dataset Images of Proposed and Exiting Techniques 

IP   

Method Precision% F1 score% Recall% OA% AA% Kappa% Training (sec) Testing (sec) 

3D-CNN [16] 93.67 93.61 94.89 91.10 91.58 89.98 21.18  1.23  

2D-CNN [16]  90.45 92.56 94.67 89.48 86.14 87.96 83.55 1.11  

Hybrid SN [16] 94.56 94.78 95 97.57 94.72 97.23 82.85  2.92  

Spectral CNN  96.34 97.89 96.78 98.06 95.17 97.29 - - 

Proposed 98.67 98.66 99.33 99.13 96.58 99.01 250.55 0.30 

SD   

3D-CNN [16] 93.41 94.05 95.23 93.96 97.01 93.32 18.17  3.77  

2D-CNN [16] 92.58 93.61 94.89 97.38 98.84 97.08 146.91 4.95  

Hybrid SN [16] 93.45 94.56 96.20 99.10 99.47 98.99 95.37  18.58  

Spectral CNN 95.78 96.78 98.78 99.28 99.48 99.01 - - 

Proposed 98.02 99.56 99.01 99.71 99.61 99.67 600.78 3.50 

PU   

3D-CNN [16] 93.02 94.23 96.91 75.11 80.81 69.16 18.72  4.33  

2D-CNN [16] 92.67 93.67 95.89 74 66 61 202.62  3.81  

Hybrid SN [16] 94.12 95.89 96.02 99.07 97.99 98.77 83.23  13.85  

Spectral CNN 95.56 97.19 97.45 99.15 98.07 99.08 - - 

Proposed 97.80 98.56 99.78 99.34 98.57 99.13 700.54 2.01 

 

 

Average Accuracy 

 

Overall Accuracy 
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Kappa 

Fig 7. Performance analysis of proposed method on IP and Salinas dataset 

 

IP 

 

PU 

 

SD 

Fig 8. Training and testing time comparison 
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Fig 9. Performance comparison based on varying patch size 

4.1.2. Comparison of Segmentation models  

It is found that the depth-wise convolutional kernel in the 

proposed system has the highest impact over the PU database 

and has lower impact on the other three databases [19]. The 

parameter D  becomes 7, 9, 11 and 13 correspondingly, the 

segmentation outcomes are shown in Table 4. The maximum 

OAs are accomplished for all the three databases while the 

size of the kernel is 1313 . Finally, set the kernel size as 

1313 . 

 

 

 

 

Table 4. Achieved Performance Based on Different Patch 

Size 

Patch size IP% SD% PU% 

77  88.56 89.78 92.43 

99  89.90 91.45 92.90 

1111  91.45 92.56 93.78 

1313  91.90 94.67 95.67 

  

Fig.10 shows the proposed method performance with and 

without optimization over other optimization techniques such 

as IPSO, CS, DE, and FF. From the Table 5, it is observed 

that the obtained fitness value of the proposed OptSegNet is 

3% maximum than the SegNet with MGO for IP dataset. The 

proposed OptSegNet achieves 19% enhanced fitness outcome 

than the SegNet-MGO for SD. Finally, the introduced 

OptSegNet’s fitness outcome is 18% maximum than the 

SegNet-MGO for PU. Therefore, the enhanced optimization 

algorithm which is applied in the proposed OptSegNet 

achieves more accurate segmentation results than the other 

algorithms. 

Table 5 represents the achieved fitness value of the proposed 

OptSegNet i.e. SegNet with EMGO and SegNet-MGO. From 

the table it is clear that the obtained fitness result of the 

introduced system is maximum than the other implemented 

optimization algorithm’s fitness values.  

 
(i) 

 
(ii) 

 
(iii) 

Fig 10. With and without optimization algorithm performance comparison (i) IP, (ii) SD and (iii) PU 
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Table 5. Optimization Comparison 

Methods SegNet-MGO Proposed SegNet-

EMGO 

IPSO [21] CS [31] DE [32] FF [33] 

IP 43.890 45.569 44.619 44.427 43.627 43.554 

SD 33.129 39.452 38.422 37.689 37.578 36.964 

PU 41.519 49.120 47.009 46.096 45.446 45.193 

 

Table 6. Segmentation Performance Comparison for IP, PU and SD Based 5% And 15% Training Samples. 

Algorithms OA (5%) AA (5%) Kappa (5%) OA (15%) AA (15%) Kappa (15%) 

IP 

AlexNet [34] 0.689 0.5692 0.6450 0.8167 0.7955 0.7907 

ResNet [35] 0.707 0.6996 0.6640 0.8300 0.8067 0.8059 

DenseNet [36] 0.711 0.6732 0.6683 0.8428 0.8149 0.8203 

PRAN [37] 0.727 0.7359 0.6975 0.8286 0.7663 0.8039 

FSSFNet [38] 0.737 0.6795 0.6998 0.8261 0.7448 0.8005 

Proposed 0.907 0.9367 0.92867 0.9234 0.956 0.956 

SD 

AlexNet [34] 0.9290 0.9182 0.9056 0.9298 0.9359 0.9149 

ResNet [35] 0.9090 0.9142 0.8785 0.9424 0.9489 0.9322 

DenseNet [36] 0.9036 0.8951 0.8719 0.9239 0.9355 0.9145 

PRAN [37] 0.9359 0.9247 0.9151 0.9482 0.9362 0.9314 

FSSFNet [38] 0.9372 0.9235 0.9165 0.9437 0.9265 0.9252 

Proposed 0.947 0.987 0.9878 0.961 0.9534 0.9825 

PU 

AlexNet [34] 0.9419 0.9676 0.9353 0.9437 0.9579 0.9531 

ResNet [35] 0.9180 0.9529 0.9087 0.9379 0.9685 0.9309 

DenseNet [36] 0.9114 0.9447 0.9012 0.9309 0.9605 0.9229 

PRAN [37] 0.9033 0.8823 0.8922 0.9195 0.8944 0.9102 

FSSFNet [38] 0.9356 0.9669 0.9282 0.9585 0.9803 0.9537 

Proposed 0.9483 0.9750 0.9550 0.9612 0.9831 0.9611 

Table 6 illustrates that the performance of the proposed 

OSegNet is higher than the other conventional segmentation 

models through 5% and 15% based on OA, AA and Kappa. 

This introduced segmentation system demonstrates the 

excellent results over three different datasets.  

Fig.11 (a), (d), and (g) illustrates the achieved AA, Kappa, 

and OA measures of proposed for IP, (b), (e), and (h) 

illustrates the achieved AA, Kappa, and OA measures of 

proposed for PU.  
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Fig 11. Comparison of segmentation models 

Further, Fig.11 (c), (f), and (i) illustrates the achieved AA, 

Kappa, and OA measures of proposed for SD compared with 

some traditional segmentation methods such as AlexNet 

[34], ResNet [35], DenseNet [36], PRAN [37], and 

FSSNFNet [38]. Proposed method attains best segmentation 

results when the training sample is 5% and 15%. 

5. Conclusion 

This research work incorporates dual UNet with the 

ResNet_50 for RSI segmentation and proposes a feature 

extraction and segmentation-based OptSegNet model. 

Especially in the dual UNet with ResNet_50 network, depth-

wise convolution is designed to extract the joint features of 

RSIs. Finally, the output of decoder module 2 (UNet2) is 

concatenated with the output of decoder module 1 (UNet1) 

which produces an accurate segmentation outcome than the 

other implemented models. The experimental outcome 

shows that the OptSegNet performs well with satisfactory 

performance for the three databases. The proposed technique 

is implemented in PYTHON platform. Finally, the achieved 

OA, AA, and kappa values of proposed method on IP dataset 

is 99.13%, 96.58% and 100%. On SD is 99.71%, 99.61% and 

99.67%, on PU is 99.34%, 98.57%, and 99.13% respectively. 

In the future work, as different unlabeled samples are applied 

to enhance the learning performance, it will explore how to 

minimize training time. 
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