

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 653

A Proposed Hybrid GA-TDDPL-CNN-LSTM Architecture for Stock

Trend Prediction

Wei Chuan Loo1, Esraa Faisal Malik2, XinYing Chew3*, Khai Wah Khaw4, Sajal Saha5 , Ming Ha Lee6,

Mariam Al Akasheh7

Submitted: 26/04/2023 Revised: 28/06/2023 Accepted: 06/07/2023

Abstract: This study constructs a hybrid deep learning model to predict the price trend movement of Standard & Poor’s 500 index.

Predicting stock market price trends is challenging because stock market data are non-linear and complex. Additionally, various factors,

such as investor sentiment and news events, exert influence on stock price trends, leading to fluctuations in price trends. Researchers have

implemented a variety of machine learning methods to predict stock price movements. The present study develops a hybrid deep learning

network model consisting of a feature learning model, which is a long short-term memory model, and a feature selection model. Different

types of data, including stock price, smoothing indicators, trend indicators, and oscillator indicators, are used as inputs to improve the

model’s performance. Furthermore, to optimize the hyperparameter of each feature extraction model and feature selection model, a Genetic

algorithm is utilized. An expert rule trend deterministic layer is also implemented to pre-process the data to further improve the model’s

performance. The results indicate that the proposed model has superior testing performance compared to restricted Boltzmann machine,

convolutional neural network, and autoencoder models.

Keywords: CNN, expert rule, genetic algorithm, LSTM, RBM, stock market

1. Introduction

The trend of a stock market index is defined as the tendency

of the price series for the financial securities to go

downward or upward. The ability to predict stock trends can

help investors to obtain higher earnings. Stock market price

movement can be predicted by macroeconomic variables

such as dividend price ratio, inflation rate and future profit

growth, and by technical indicators that rely on the previous

price movement and volume pattern. Using technical

indicators to predict stock price movements is simple and

thus is popular among traders. According to the findings of

the authors in [1], the predictive performance of technical

indicators is comparable to that of economic variables.

Similarly, the authors in [2] used technical indicators as

input data to predict price trends. Additionally, applying a

trend deterministic data preparation layer (TDDPL) to pre-

processing technical data to discretize the data to 0 and 1 has

been implemented by [3]. Stock market prediction machine

learning methods can be divided into two types: traditional

statistical machine learning methods and deep learning

methods. Traditional machine learning methods, such as the

support vector machine (SVM), logistic regression (LR) and

decision trees, are often used in stock trend prediction as

they have low complexity and often perform better than

other methods when the data sample size is small. In

contrast, deep learning methods perform better when the

training dataset is very large, and the data are highly non-

linear. Several deep learning models have been developed

in various studies to forecast stock market movements. The

authors in [4] compared the prediction performance of deep

learning methods such as recurrent neural network (RNN),

multilayer perceptron, long short-term memory (LSTM),

convolutional neural network (CNN) and auto regressive

integrated moving average statistical methods. Their results

indicate that deep learning methods outperform traditional

machine learning methods. In the deep learning domain,

CNN has received attention due to its ability to extract

complex features. In addition, LSTM is popular for

predicting time series data due to its ability to solve the long-

term dependency problem in RNN. The strength of feature

extraction of CNN and the predictive power of LSTM have

inspired the researchers to combine both models to form a

hybrid neural network [5], [6]. The authors in [7] propose a

novel CNN-LSTM hybrid deep learning model based on

short-, medium- and long-term features of closing price

1School of Computer Sciences, Universiti Sains Malaysia, Penang,

Malaysia

E-mail: weichuanloo@student.usm.my
2 School of Management, Universiti Sains Malaysia, Penang, Malaysia

E-mail: esraa.f@student.usm.my
3School of Computer Sciences, Universiti Sains Malaysia, Penang,

Malaysia

E-mail: xinying@usm.my (Corresponding Author)
4 School of Management, Universiti Sains Malaysia, Penang, Malaysia

E-mail: khaiwah@usm.my
5Department of Mathematics, IUBAT‒International University of Business

Agriculture and Technology, Dhaka, Bangladesh

E-mail: sajal.saha@iubat.edu
6Faculty of Engineering, Computing and Science, Swinburne University of

Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia

E-mail: mhlee@swinburne.edu.my
7Department of Analytics in the Digital Era, College of Business and

Economics, United Arab Emirates University, Al Ain 15551, United Arab

Emirates

E-mail: mariam.alakasheh@uaeu.ac.ae

3 Computer Eng., Selcuk University, Konya – 42002, TURKEY

ORCID ID : 0000-3343-7165-777X

* Corresponding Author Email: author@email.com

mailto:mariam.alakasheh@uaeu.ac.ae

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 654

sequences, and they also suggest that different time frames

provide unique features for the machine learning model to

learn; that study uses two layers of CNN to extract multiple

time scale data.

The present paper proposes a hybrid deep learning model

called GA(genetic algorithm)-TDDPL-CNN-LSTM to

predict the price trend of Standard & Poor’s 500 index (S&P

500). The inspiration for this model comes from the TDDPL

layer proposed by [3] and the multiple time frame model

introduced by [7]. In addition, the hyperparameters of the

deep learning model are optimized using GA. The aim of

this research is to enhance the performance of the multiple

time scale CNN-LSTM model proposed by [7].

To the best of the authors' knowledge, there is currently no

deep learning model that utilizes short-, medium- and long-

term time frames to predict stock prices. This constitutes the

first novel contribution of this paper. Furthermore, instead

of solely relying on closing prices, a different type of stock

information data is utilized for multiple time scale

prediction, marking the second novel contribution. Lastly,

expert rules are employed in the data pre-processing stage

to train the multiple time scale prediction model, which

constitutes the third novel contribution. The structure of this

paper is as follows: Section 2 provides a brief overview of

the existing literature on deep learning techniques for stock

price trend prediction. In Section 3, a novel methodology

known as GA-TDDPL-CNN-LSTM is described. The

performance of the proposed model is examined and

discussed in Section 4. Finally, the paper concludes with our

findings and suggestions for future research in Section 5.

2. Related Work

There is growing interest in using machine learning to

predict the trend of the stock market [8]–[10]. Deep learning

methods have gained a lot of attention due to their

performance in predicting highly complex stock market

data, as they have outperformed traditional machine

learning methods [11]–[13]. Combinations of different

types of deep learning layers have also implemented by

researchers due to their ability to outperform a simple

model. An autoencoder LSTM network model called AE-

LSTM was proposed in [14] to predict stock market price

trends. The autoencoder consisted of LSTM layers in the

decoder and encoder parts. After each LSTM layer, dropout

was used as a regularization to prevent overfitting. During

training, the encoder part was used as the feature generator

to feed the LSTM based forecaster to predict the next day’s

price. The model trained by the authors used S&P 500 index

stock data from 2019 to 2020. Their data consisted of six

features: adjusted closing price, open, high, low, and closing

prices and trading volume. Nine technical indicators were

used, including moving average, convergence/divergence,

relative strength index (RSI), Williams %R, stochastic

oscillator, price rate of change (PROS), average directional

index(ADI), Bollinger bands and logarithmic return. Their

results indicated a lower mean absolute error and root mean

square error than generative adversarial network.

In the research performed by [15], wavelet transform (WT),

stacked autoencoders and LSTM were used to predict stock

prices. First, WT was used to decompose the time series data

for noise elimination before it was fed into the model. The

model consisted of stacked autoencoders to train in an

unsupervised manner and LSTM with delays to generate

output at the specified future step. The six stock indices used

to evaluate the performance of the deep learning model were

the DJIA index, S&P 500, Nikkei 225, Hang Seng index,

Nifty 50 index and CSI 50. The input variables consisted of

daily trading data, technical indicators and macroeconomic

variables. The stock price prediction results were compared

with LSTM and RNN, and the proposed model had higher

accuracy and less volatility than LSTM and RNN. The

authors suggested that the autoencoder reduced the noise of

the input and therefore produced less variance prediction.

Similar research was performed by [16] to construct a

stacked denoising autoencoder (SDAE) to forecast the

financial market direction in order to predict the daily CSI

300 index from Shanghai and Shenzhen Stock Exchanges in

China. SDAE was the extension of the stacked autoencoder.

The training of the SDAE started with the training of the

first layer as an autoassociator to minimize errors in the

reconstruction of the output. The output of the

autoassociator was the input for another layer to generate

another autoassociator. This step was iterated to generate a

specific number of layers. The last hidden layer output was

taken as the input to the supervised layer with specific

parameters. Finally, the hyperparameters of this model were

fined tuned based on the supervised criterion. The SDAE

consisted of two key facades which were a multilayer

perceptron and autoencoders. During the first stage of

training, each autoencoder was trained separately. In the

second stage, the multilayer perceptron was trained. The

authors suggested that this layer-wise training procedure has

better performance and achieves better generalization than

random initialization of deep networks. To train the model,

28 technical indicators from moving averages, trend

detection, oscillators, volume, momentum, and price

volume were used as input features. The output of the model

is “-1” if the price of the index tomorrow is lower than today

and “1” if it is higher. The authors discovered that SDAE

had higher accuracy than SVM of radial kernel function and

three-layer backpropagation network. The authors

concluded that SAED can remove large amounts of noise in

stock market data and was able to find an underlying

common pattern among stock data, therefore performing

better than the non-deep learning method and swallow layer

deep learning method.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 655

CNN is one of the most popular methods in stock market

prediction due to its ability to extract sophisticated features

without the need for complex pre-processing. CNNs are

normally combined with pooling and fully connected layers

to form a neural network architecture. The authors in [2]

implemented a CNN model to forecast the hourly stock

price trend of 100 stocks in the Turkish stock market. A

novel graph convolutional feature neural network to

simultaneously learn the feature from stock market

movement and individual stock movement to predict the

trend of the stock price movement was proposed by [17].

Furthermore, the authors in [18] implemented a CNN to

predict the stock price movement in China’s stock market

with feature normalization, in which they utilized

reinforcement learning to simulate the expert decision and

enhanced the reinforcement learning with CNN.

Additionally, RNN is needed to learn the time dependency

feature of stock price movement. However, conventional

RNN suffers from gradient exploding and vanishing errors

if the time sequence is too large; as a result, LSTM was

introduced by [19]

Different deep learning models can be combined to form a

hybrid model that can utilize the advantages of different

models. A popular example is the combination of CNN and

LSTM network. The authors in [18] proposed a hybrid

CNN-LSTM deep neural network model to predict stock

trends. The CNN model is used to extract the feature from

buying volume and transaction number. bidirectional long

short-term memory (BiLSTM) was implemented to learn

the data extracted from the CNN model. The authors in [7]

combined a CNN and LSTM network to predict the stock

price trend with short-, medium- and long-term features of

the stock price. In their paper, the authors employ different

numbers of CNN layers to extract multiple time frame

features and use one LSTM model to learn the time

dependency feature of a time frame. Finally, the output of

each LSTM model is fed into fully connected layer for final

trend prediction [7].

To improve the performance of the model, data are often

pre-processed using a denoising signal processing algorithm

or rule defined with domain knowledge. A WT and

autoencoder to eliminate the noise in the model were

utilized by [15]. Moreover, the authors in [7] implemented

a stacked denoised autoencoder to pre-process the input of

their stock trend prediction model. The authors in [5]

utilized a restricted Boltzmann machine (RBM) to extract

useful features from the data while eliminating noise. They

also implemented TDDPL to convert the technical

indicators’ input to binary values based on a set of expert

rules. The authors conclude that RBM and TDDPL pre-

processing methods improve on the performance of the base

model in stock trend prediction [5].

3. Methodology

This section describes data science project lifecycle,

including the analysis of different deep learning models and

the construction of the proposed hybrid deep learning

model, GA-TDDPL-CNN-LSTM. Furthermore, it provides

a detailed description of the ensemble learning method. The

target of the prediction, upward or downward price trend, is

defined by using the following rule as shown in equation

(1), where n is the number of days and xi is the closing price

for the day. Y = 1 indicates the price trend of the day is an

uptrend; Y = 0 indicates the price trend of the day is a

downtrend. n is set to 20 in our experiment.

𝑌 = {
1 𝑥𝑖 < 𝑥𝑖+𝑛

0 𝑥𝑖 > 𝑥𝑖+𝑛
 (1)

3.1. Data Collection

The dataset utilized in this research consists of daily S&P

500 index data, spanning from January 30, 1999, to January

30, 2019. The selection of this specific index was motivated

by its frequent usage in tracking the performance of the

stock market in the United States, as well as its common

application in stock trend prediction studies [8], [17]. The

dataset was partitioned into training, validation, and testing

sets. The data can be obtained from Yahoo Finance in Excel

format, including the opening, high, low and closing points

of the index, as well as volume information.

3.2. Data Pre-processing

Three types of technical indicators are calculated from the

dataset. The first technical indicator is the exponential

moving average (EMA) of 10 days, which is a type of

smoothing indicator. EMA is calculated using equation (2):

𝐸𝑀𝐴𝑡,𝑛 = 𝑃 ∗ (
2

1 + 𝑛
) + 𝐸𝑀𝐴𝑡−1,𝑛 ∗ (

2

1 + 𝑛
) (2)

where t is the trading period, n is the number of days to

average, and P is the closing price of the index.

The second type of technical indicator is the RSI for 14 days,

which is a type of oscillator indicator. The RSI calculation

is shown in equations (3) and (4).

𝑅𝑆𝐼 = 100 −
100

1 + 𝑅𝑆
 (3)

𝑅𝑆 =
𝐴𝑣𝑔𝑈

𝐴𝑣𝑔𝐷

(4)

where RS is the relative strength, AvgU is the average of all

up moves in the last 14 days and AvgD is the average of all

down moves in the last 14 days.

The third type of data is a ROS percentage indicator for 1

month. The ROS percentage indicator is calculated using

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 656

equation (5):

ROS = (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒
− 1) ∗ 100 (5)

where the current value is set as the closing price for the day

and the previous value is set as the closing price 30 days

before. All the technical indicators shown above are

combined with the closing price of the S&P 500 index to

form the input data. The training set, validation set and

testing set are determined by random shuffle, split in the

ratio 0.8:0.1:0.1. After the input data are formed, a TDDPL

is constructed to convert the continuous technical indicator

data value to discrete 0 or 1 values according to specific

rules. This method was proposed by [3] to improve the

performance of machine learning methods such as artificial

neural networks, SVM and RF methods. The input technical

indicator data consists of closing price, RSI, ROS and EMA

for 10 days. The discretization of the values is shown in

Table 1.

Table 1. Discretization of input data

Technical

indicator
Strategy for discretization

Closing price value = 1, if the closing price at day t is

higher than day t-20.

value = 0, if the closing price at day t is

lower than day t – 20

RSI

When RSI not in [30, 70],

value = 1 if RSIt less than 30

value = 0 if RSIt more than 70

When RSI in [30, 70],

value = 1 if RSIt >= RSIt-1,

value = 0 if RSIt < RSIt-1

where RSIt is the RSI value at day t

ROS value = 0 if ROCt is < 0,

value = 1 if ROCt is >= 0

where ROCt is ROC at time t

EMA 10 value = 1 if closing price is more than

EMA10

value = 0 if closing price is less than

EMA10

3.3. The Development of the Proposed Model

3.3.1. Deep Learning Model Construction

The description of the deep learning model is split into two

components, which are the base deep learning layer for

output prediction and the variety of deep learning layers that

are combined with the base layer as shown in Fig.1. LSTM

is utilized as the base layer for output prediction based on

the research by [8] because it has demonstrated incredible

performance, outperforming memory free classification

methods such as Random Forest (RF) and LR. Additionally,

LSTM solves the gradient exploding/vanishing error that

occurs in conventional RNN prediction. It is normally

combined with max pooling to extract the most valuable

feature in a patch. The layer usually utilized is autoencoder,

and can be merged with LSTM, as done in [19], and RBM,

as done in [5].

Fig.1 Component of improvised deep learning model

However, the authors in [2] relied solely on CNN in their

study. Therefore, we analyze different deep learning models

and construct a CNN-LSTM deep learning model. The

following points summarize the deep learning experiment

model:

• Autoencoder +LSTM

• TDDPL + CNN + LSTM

• CNN + LSTM

• CNN

• TDDPL + RBM + LSTM

• RBM + LSTM

Moreover, LSTM units, type of activation function, and the

number of units in the fully connected layer along with the

number of network layers, hidden units, activation function,

and the pooling patch size of CNN, will be optimized by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 657

using a GA. Autoencoder is an unsupervised artificial neural

network that encodes data and learns how to reconstruct the

data and reduce noise. It consists of an input layer, a hidden

layer and an output layer. In this research, the activation

function of each layer is tuned using a GA. Binary RBM is

used in this research because it has higher performance than

the Gaussian restricted Boltzmann machine and is not

limited to underlying data that follows a Gaussian

distribution [5]. We also utilize a binary cross-entropy loss

function [7].

Binary cross entropy penalizes if the probability predicted

is far from the expected value and is famously used in binary

class classification. A stochastic gradient descent optimizer

is utilized to train the neural network with an initialized

learning rate provided by the GA. The value of batch size is

80. Early stopping and dropout techniques are implemented

to prevent overfitting. The patience of early stopping is set

to 70, indicating that the training will be stopped if the

validation accuracy does not improve in 70 epochs. The

dropout rate is set to 0.2. Batch normalization is

implemented after convolution operation to solve internal

covariate shifts that occur in the training of deep learning

networks.

3.3.2. Ensemble Learning Model

Subsequently, three similar best deep learning models with

different time series length inputs are constructed. The first,

second and third models have time-series length inputs of

20 days, 40 days and 80 days. The predicted output of the

three models will be combined through bagging to generate

a positive return in the stock market. We developed the

methodology from [20], in which the authors implemented

the bagging method to combine linear forecasting models

with non-parametric forecasting models to reduce the mean

squared forecast error. The bagging model can generate a

positive return in the stock market. The ensemble learning

model can be constructed by averaging the uptrend

probability predicted by each model. The prediction

probability of each input model of input time lengths 20, 40

and 80 are combined to form the final prediction output

using equation (6):

𝑃𝑟𝑜𝑏𝑐𝑜𝑚𝑏 =
𝑃𝑟𝑜𝑏20 + 𝑃𝑟𝑜𝑏40 + 𝑃𝑟𝑜𝑏80

3
 (6)

where Prob20, Prob40 and Prob80 are the prediction

probability of input time series length of 20, 40 and 80. The

prediction output is discretized based on equation (7):

(1) 𝑃𝑟𝑒𝑑 = {
1 𝑖𝑓 𝑝𝑟𝑜𝑏𝑐𝑜𝑚𝑏 ≥ 0.5
0 𝑖𝑓 𝑝𝑟𝑜𝑏𝑐𝑜𝑚𝑏 < 0.5

 (7)

3.3.3. GA

GA is a search heuristic used to find out the optimum value

by mimicking the evolutionary process of Darwinian

evolution. it is applied to the hyperparameter tuning of all

deep learning models. The individuals in GA can be

represented in a fixed length of the vector and the value in

each vector can be a binary or floating point value. The GA

starts with 10 individuals with random initial values. First,

the fitness score of individuals is evaluated using an

accuracy score. Second, the accuracy score is obtained by

the accuracy of the trend predictions of the deep learning

model trained with the hyperparameter value in the

validation dataset. Third, parent selection to select the five

best individuals is defined. The parent undergoes a

crossover operation to produce offspring. The offspring will

be mutated to produce variation in the solution

representation. The process will be repeated until a certain

generation number is met, or a termination criterion is hit.

In our case, the algorithm stops when 100 individuals are

produced in each experiment of the deep learning model.

The solution with the best validation accuracy score is then

picked.

Chromosome solution encoding in an individual

The solution representation of RBM, autoencoder, CNN is

represented in this subsection. The chromosome encoding

of the autoencoder LSTM model, CNN, CNN-LSTM and

RBM are shown in Table 2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 658

Individual and population initialization

Initialization of the value of the solution for an individual is

performed randomly to ensure that the solution is spread

evenly in the search space. There is no general rule to

identify the suitable number of individuals in the population,

which is dependent on the problem search space size, the

problem difficulty, the length of the solution, and other

factors.

In this research, 10 individuals are used in a generation and,

subsequently, 10 generations are produced in the

evolutionary algorithm. Therefore, a total of 100 individuals

will be produced in the evolutionary algorithm.

Fitness evaluation

The fitness of an individual is determined by the accuracy

of trend prediction in the validation set by using the

hyperparameter in the solution represented by the

individual. The validation accuracy is equal to the fitness

score of the individual. The higher the fitness score, the

better the solution represented by the individual.

Parent selection

The purpose of parent selection is to pick the best individual

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 659

to generate offspring, with reasonably diversified

individuals, from a pool of parents and offspring. There are

many types of parent selection methods such as tournament

selection, elitism, fitness proportional selection, and linear

ranking. Elitism will result in selection of the individuals

with the top fitness function. Standard tournament selection

will randomly sample k individuals with replacements into

a tournament size of k from the current population. The

individual of top n fitness will be selected from the

tournament. Compared with linear ranking and exponential

ranking, tournament selection is simple to code and not

computationally expensive. It also does not require sorting

of the entire population first. Fitness proportional selection

assigns selection probability based on the fitness value of

the individual. Meanwhile, linear or exponential ranking

assigns selection probability to an individual based on the

rank of the fitness of the individual instead of the fitness

value itself. By doing so, linear ranking prevents the entire

population from being overwhelmed by the individual

whose fitness value is too large at the initial stage, and

therefore preserves the diversity of the population.

Furthermore, the authors in [21] aimed to identify the

performance of each selection method, and their results

show that linear ranking outperforms other methods such as

tournament selection. Therefore, linear ranking is used in

this research. The selection probability of linear ranking is

calculated based on equation (8).

𝑃𝑙𝑖𝑛−𝑟𝑎𝑛𝑘 (𝑖)

= ((2 − 𝑠) 𝑢) + (2𝑖(𝑠 − 1) 𝑢(𝑢 − 1))⁄⁄
(8)

Table 3 illustrates the selection probabilities of each

individual sorted in ascending order when the population

size (u) ranges from 6 to 10, with s = 0.05. Elitism is also

implemented to ensure that the best individual is preserved

to the next generation without being mutated.

Table 3. Selection probability of everyone in a linear

ranking

The number of

individuals (u)

Selection probability of individually

sorted according to ascending order

10
0.05, 0.061, 0.072, 0.083, 0.094,

0.105, 0.117, 0127, 0.139, 0.152

9

0.056, 0.069, 0.083, 0.097, 0.111,

0.125, 0.139, 0.153, 0.167

8
0.0625, 0.08, 0.098, 0.116, 0.134,

0.151, 0.17, 0.1885

7
0.0714, 0.0956, 0.119, 0.143, 0.167,

0.19, 0.214

6 0.083, 0.117, 0.15, 0.18, 0.22, 0.25

Crossover

Crossover occurs between N number of selected parents, to

produce N number of offspring. There are many methods of

crossover, such as uniform crossover, M point crossover,

and cycle crossover. The crossover method is divided into

binary and arithmetic types. For binary values, uniform

crossover will be used in this research. Each gene will have

a 50% probability of being inherited from one parent. Fig.2

illustrates how uniform crossover works.

For arithmetic values, whole arithmetic crossover is used to

produce offspring in this research. Whole arithmetic

crossover works by averaging out the value for two parents

to produce two offspring. Fig.3 illustrates how whole

arithmetic crossover works in this research.

Fig.2 Example of uniform crossover

Fig.3 Example of arithmetic crossover

Mutation

For binary values, bit flip mutation is implemented, which

involves flipping the binary value in a gene with a specified

probability. The mutation probability is 0.1. Bit flip

mutation is illustrated in Fig.4.

Fig.4 Bit flip mutation

Meanwhile, for arithmetic values, a small increment or

decrement value, x, is added to the gene with a specified

probability. The mutated value x is different in each gene

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 660

depending on the search space of the solution. Table 4

shows the mutations that have been made to each search

hyperparameter in autoencoder, CNN, LSTM + fully

connected layer, and RBM, respectively.

Table 4. Mutation in autoencoder, CNN, LSTM + fully

connected layer, and RBM

Gene number Value range Mutation (+/-)

Mutation in autoencoder

0 0.001-0.5 0.05

1

1-5 2

2 5-25 4

3 5-25 4

4 5-25 4

5 5-25 4

6 5-25 4

Mutation in CNN

0 0.001-0.5 0.05

1 1-10 2

2 10-70 4

Mutation in LSTM

0 0.001-0.25 0.05

1 1-10 2

2 10-50 4

Mutation in RBM

0 1-512 20

1 0.001-0.25 0.05

2 0 or 1 Bit flip

3.4. Model Evaluation

The target of the deep learning model is increasing prices

(representing uptrend) and decreasing prices (representing

downtrend) after 20 days. If the price increases after 20

days, the target value is 1. If the price decreases after 20

days, the target value is 0. The performance of different

feature extractions is compared. The evaluation metrics

used are accuracy, precision, and recall. True positive (TP)

refers to the total number of correctly predicted uptrends.

True negative (TN) is the total number of a correctly

predicted downtrends. False positive (FP) is the total

number of wrongly predicted uptrends. False negative (FN)

is the total number of wrongly predicted downtrends.

Accuracy, which represents the proportion of samples that

can be correctly predicted among the total number of

samples, is calculated by equation (9):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(9)

Precision refers to the proportion of true positive samples

compared with the total number of positive identifications.

The precision is calculated by equation (10):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(10)

Recall indicates the proportion of actual positives predicted

compared with the number of positives. The recall is

calculated by equation (11):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(11)

4. Results and Discussion

The implementation of GA and the hyperparameter value in

each model, as well as the optimum parameter acquired

using GA on each run, will be discussed further below. The

summary and description of the results of GA are illustrated

in Table 5.

Table 5. Summary and description of GA

Symbolic parameters

Representation Bit-string

Parent and Survivor selection Linear ranking selection

Mutation

Bit flip mutation for binary

value and uniform

mutation for arithmetic

value

Crossover Uniform crossover

Numeric parameter

Population size 10

Mutation probability 0.2

Crossover probability 0.5

The methods and values shown in Table 5 are used to fine-

tune the optimum hyperparameter for each gene shown in

Table 6. A total of 100 individuals is generated in the

evolutionary algorithm. The individual with the best fitness

score will be picked. The optimum hyperparameter obtained

from GA runs for autoencoder LSTM, CNN, CNN-LSTM,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 661

and RBM model is shown in Table 6.

Name Gene number Value range

The optimum hyperparameter for the autoencoder LSTM

Learning rate 0 0.4758

Number of autoencoder layer 1 5

Number of hidden layers 1 2 24

Number of hidden layers 2 3 18

Number of hidden layers 3 4 15

Number of hidden layers 4 5 13

Number of hidden layers 5 6 8

Fully connected layer number of

nodes
7 8

LSTM number of hidden units 8 20

 The optimum hyperparameter for CNN

Learning rate 0 0.2593

Convolutional kernel size 1 3

Number of convolutional kernels 2 66

Fully connected layer number of

nodes

3
31

LSTM number of hidden units 4 20

 The optimum hyperparameter for RBM

Learning rate 0 0.1187

Number of components 1 43

Random state 2 1

LSTM number for hidden units 3 6

Fully connected layer node number 4 5

Table 6. The optimum hyperparameter for the autoencoder LSTM , CNN, CNN-LSTM, and RBM model

The hyperparameter values obtained in the previous table

(Table 6) are used to construct the deep learning model. The

CNN deep learning model consists of a one-dimensional

convolutional layer, one max-pooling layer, and two fully

connected layers with a sigmoid activation function. The

CNN-LSTM deep learning model consists of a 1D CNN

layer connected with a pooling layer, batch normalization

layer, dropout layer, LSTM layer, and two fully connected

layers. The LSTM deep learning model only consists of an

LSTM layer connected with two fully connected layers. The

autoencoder model consists of an autoencoder layer

connected with LSTM and a fully connected layer. The

autoencoder layer consists of an encoder and decoder with

five RELU activation functions and fully connected dense

layers, respectively. The constructed model receives the

pre-processed input to output the stock trend prediction.

 The training, validation, and testing accuracy of each

model are shown in Tables 7, 8, and 9, respectively. As

shown in Table 7 below, using the training dataset, the GA-

TDDPL-CNN-LSTM model has the highest accuracy,

followed by the TDDPL autoencoder-LSTM, RBM-LSTM,

CNN-LSTM, CNN, autoencoder – LSTM, and TDDPL

RBM-LSTM. It is observed that the TDDPL layer improves

the training performance of the CNN-LSTM model and

autoencoder-LSTM model. Furthermore, an improvised

deep learning model has better performance than a simple

deep learning model. For example, improvised deep

learning models such as the CNN-LSTM have slightly

better performance than the CNN model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 662

Table 7. Training accuracy, recall, and precision of each

deep learning model

Experiment model Accuracy Recall Precision

GA-TDDPL-CNN-LSTM

(proposed model)
0.8832 0.9301 0.8726

CNN-LSTM 0.5493 0.6608 0.5135

CNN 0.5459 0.6028 0.3287

Autoencoder-LSTM 0.5480 0.8615 0.1362

TDDPL autoencoderLSTM 0.6414 0.9469 0.3145

RBM-LSTM 0.5872 0.6634 0.4014

TDDPL RBM-LSTM 0.5217 0.5451 0.3437

Meanwhile, in the validation dataset, the GA-TDDPL-

CNN-LSTM has the highest accuracy, followed by TDDPL

autoencoder-LSTM, RBM-LSTM, autoencoder LSTM,

CNNLSTM, CNN, and TDDPL discretized RBM-LSTM.

There was no notable difference in performance between the

validation and testing datasets. Therefore, the model trained

is not overfitted. Table 8 shows the validation accuracy,

recall, and precision of each model.

Table 8. Validation accuracy, recall and precision of each

deep learning model

Experiment model Accuracy Recall Precision

GA-TDDPL-CNN-LSTM

(proposed model)
0.8508 0.8984 0.8487

CNN-LSTM 0.5693 0.7216 0.5384

CNN 0.5153 0.5322 0.3626

Autoencoder-LSTM 0.5710 0.8285 0.1638

TDDPL autoencoderLSTM 0.6407 0.8615 0.3181

RBM-LSTM 0.6128 0.6283 0.4226

TDDPL RBM-LSTM 0.5125 0.5547 0.3757

As shown in Table 9, utilizing the test data dataset, the GA-

TDDPL-CNN-LSTM exhibited the most superior

performance, followed by CNN-LSTM, CNN, autoencoder-

LSTM, RBM-LSTM, TDDPL-LSTM, autoencoder-LSTM

and TDDPL autoencoder-LSTM. Compared with RBM and

autoencoder, CNN has the best performance. CNN can

extract features of highly complex and noisy data better

compared with RBM and autoencoder. When CNN is paired

with LSTM, the performance of the deep learning model is

slightly superior, which shows that LSTM can learn time

dependency data from the feature output by the CNN model.

It also indicates that the hybrid model yields better

performance than the single CNN model alone. Without

data pre-processing, the CNN-LSTM model has a 1% higher

accuracy score than RBM-LSTM and a 5% higher score

than the autoencoder LSTM model. When combined with

the TDDPL layer, in all the testing, training, and validation

datasets, GA-TDDPL-CNN-LSTM has the highest

performance after using the parameter finetuning by the GA.

The TDDPL layer uses the expert rule to help the deep

learning model to learn by discretizing the data into 1

(uptrend) and 0 (downtrend). It informs the deep learning

model in which condition the technical indicators are bullish

or bearish. It is interesting to note that TDDPL has the

highest accuracy score percentage increment (32%) on the

CNN-LSTM model compared with RBM-LSTM (-2.3%)

and autoencoder LSTM (-13.74%). Lastly, the TDDPL

CNN-LSTM model with input shapes of (20,4), (40,4), and

(80,4) are constructed and trained as illustrated in Table 10.

It is noted that the higher the input time length, the higher

the performance of the model. The testing accuracy, recall,

and precision of the ensemble model using equation (2) are

shown in Table 11.

Table 9. Testing accuracy, recall and precision of each

deep learning model

Experiment model Accuracy Recall Precision

GA-TDDPL-CNN-LSTM

(proposed model)

0.8036 0.8961 0.7920

CNN-LSTM 0.5471 0.7148 0.5138

CNN 0.5313 0.5945 0.3173

Autoencoder-LSTM 0.5188 0.9032 0.1290

TDDPL autoencoderLSTM 0.4561 0.5116 0.2010

RBM-LSTM 0.5414 0.6124 0.3726

TDDPL RBM-LSTM 0.5288 0.6031 0.3674

Table 10. Accuracy, recall and precision of CNN-LSTM

of different input time lengths

Input time length of CNN-

LSTM

Accuracy Recall Precision

20 0.8036 0.8961 0.7920

40 0.8672 0.9049 0.8682

80 0.8844 0.9052 0.8958

Table 11. Accuracy, recall and precision of combination of

input length 20, 40 and 80

Model Accuracy Recall Precision

Combination of input

length 20, 40 and 80

0.9029 0.9201 0.9071

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 663

The results indicate that the testing accuracy, recall, and

precision of the proposed GA-TDDPL-CNN-LSTM model

are higher than those of the prediction model of the input

time length of 20, 40, and 80, respectively. Therefore, the

use of ensemble learning can boost the accuracy of the

prediction model. Accurate trend prediction is crucial to

achieve profitability in stock trading. For profitable trades,

the trader should buy when the model predicts an uptrend

and sell when the model predicts a downtrend. To ensure

profitability, the model must attain an accuracy higher than

50%. In this research, GA-TDDPL-CNN-LSTM, CNN-

LSTM, CNN autoencoder-LSTM, RBM-LSTM, and

TDDPL RBM-LSTM models can be applied in real-life

trading. It is important to consider that in trading, a 1%

increase in accuracy corresponds to a 2% improvement in

profitability. When the prediction is correct, the individual

will both gain profit and avoid a loss of the same magnitude.

Therefore, slight accuracy improvement can significantly

improve the profitability of trading. It is worth

implementing data pre-processing and hyperparameter

optimization to improve the accuracy of the model. The

results show that the proposed GA-TDDPL-CNN-LSTM

deep learning model has the highest testing performance

compared to CNN-LSTM, CNN, autoencoder-LSTM,

TDDPL autoencoder-LSTM, RBM-LSTM, and TDDPL

RBM-LSTM with GA optimization technique.

Furthermore, the present findings indicate that building a

deep learning model that takes into account multiple time

frame features improves the performance of the model.

5. Conclusion

 In this research, a proposed deep learning model called GA-

TDDPLCNN-LSTM is developed to predict stock market

trends. The proposed architecture intends to fill the research

gap in regard to the multiple time frame CNN-LSTM model.

This research makes three novel contributions: the first is

the use of the different types of technical analysis data and

expert rule TDDPL layer to improve the performance of the

multiple time frame model in stock market trend prediction.

The second contribution is the use of a GA to search the

hyperparameter for the deep learning model for stock

market trend prediction. The search space of the

hyperparameter value proposed by the authors is expanded.

In the final stage, different input time lengths of GA-

TDDPL-CNN-LSTM model are constructed, and the

prediction probability of uptrend from each model is

combined through voting. The proposed GA-TDDPL-CNN-

LSTM model has the best accuracy, recall, and precision.

The result shows that TDDPL layer data pre-processing, GA

hyperparameter searching, the use of CNN-LSTM as a deep

learning model, and multiple time frame training can

improve the performance of the model. We hope that further

studies can confirm our findings by employing different

techniques, e.g., more technical analysis data can be added

as an input feature to improve the performance of the model.

Furthermore, fundamental financial data such as S&P 500

earnings growth and price to earnings ratio can be

incorporated into the feature to improve the result.

Correlation between the difference index and news event

can also be identified and used as a training feature to boost

the performance of the model. In the combination of

multiple time frame prediction, instead of using voting

ensemble learning, the three different input time lengths

GA-TDDPL-CNN-LSTM model can be connected to a

dense layer. The dense layer can be trained to assign

weightage on each model to produce the output. Finally,

various denoising methods such as WT can be used to

reduce the noise in the time series stock data before it is

input into the TDDPL layer of the model.

Acknowledgements

This work is supported by Ministry of Higher Education

Malaysia, Fundamental Research Grant Scheme Grant No.

FRGS/1/2022/STG06/USM/02/4, for the project entitled

“Efficient Joint Process Monitoring Using a New Robust

Variable Sample Size and Sampling Interval Run Sum

Scheme”.

References

[1] C. J. Neely, D. Rapach, J. Tu, and G. Zhou,

“Forecasting the Equity Risk Premium: The Role of

Technical Indicators,” SSRN Electron. J., Jan. 2013,

doi: 10.2139/SSRN.1787554.

[2] H. Gunduz, Y. Yaslan, and Z. Cataltepe, “Intraday

prediction of Borsa Istanbul using convolutional

neural networks and feature correlations,” Knowledge-

Based Syst., vol. 137, pp. 138–148, Dec. 2017, doi:

10.1016/J.KNOSYS.2017.09.023.

[3] J. Patel, S. Shah, P. Thakkar, and K. Kotecha,

“Predicting stock and stock price index movement

using Trend Deterministic Data Preparation and

machine learning techniques,” Expert Syst. Appl., vol.

42, no. 1, pp. 259–268, Ja[21n. 2015, doi:

10.1016/J.ESWA.2014.07.040.

[4] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and

K. P. Soman, “NSE Stock Market Prediction Using

Deep-Learning Models,” Procedia Comput. Sci., vol.

132, pp. 1351–1362, Jan. 2018, doi:

10.1016/J.PROCS.2018.05.050.

[5] Q. Liang, W. Rong, J. Zhang, J. Liu, and Z. Xiong,

“Restricted Boltzmann machine based stock market

trend prediction,” Proc. Int. Jt. Conf. Neural Networks,

vol. 2017-May, pp. 1380–1387, Jun. 2017, doi:

10.1109/IJCNN.2017.7966014.

[6] W. Lu, J. Li, Y. Li, A. Sun, and J. Wang, “A CNN-

LSTM-based model to forecast stock prices,”

Complexity, vol. 2020, 2020, doi:

10.1155/2020/6622927.

[7] Y. Hao and Q. Gao, “Predicting the Trend of Stock

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 653–664 | 664

Market Index Using the Hybrid Neural Network Based

on Multiple Time Scale Feature Learning,” Appl. Sci.

2020, Vol. 10, Page 3961, vol. 10, no. 11, p. 3961, Jun.

2020, doi: 10.3390/APP10113961.

[8] Y. Huang, “Predicting home value in California,

United States via machine learning modeling,” Stat.

Optim. Inf. Comput., vol. 7, no. 1, pp. 66–74, 2019,

doi: 10.19139/soic.v7i1.435.

[9] S. Pourmand, A. Shabbak, and M. Ganjali, “Feature

Selection Based on Divergence Functions: A

Comparative Classification Study,” Stat. Optim. Inf.

Comput., vol. 9, no. 3, pp. 587–606, 2021, doi:

10.19139/soic-2310-5070-1092.

[10] M. Kheirkhahzadeh and M. Analoui, “Community

detection in social networks using consensus

clustering,” Stat. Optim. Inf. Comput., vol. 7, no. 4, pp.

864–884, 2019, doi: 10.19139/soic-2310-5070-801.

[11] T. Fischer and C. Krauss, “Deep learning with long

short-term memory networks for financial market

predictions,” Eur. J. Oper. Res., 2017, Accessed: Oct.

14, 2021. [Online]. Available:

https://ideas.repec.org/p/zbw/iwqwdp/112017.html.

[12] P. Zhong and Z. Gong, “A hybrid DBN and CRF

model for spectral-spatial classification of

hyperspectral images,” Stat. Optim. Inf. Comput., vol.

5, no. 2, pp. 75–98, 2017, doi: 10.19139/soic.v5i2.309.

[13] F. Abdullayeva and Y. Imamverdiyev, “Development

of oil production forecasting method based on deep

learning,” Stat. Optim. Inf. Comput., vol. 7, no. 4, pp.

826–839, 2019, doi: 10.19139/soic-2310-5070-651.

[14] M. Faraz, H. Khaloozadeh, and M. Abbasi, “Stock

Market Prediction-by-Prediction Based on

Autoencoder Long Short-Term Memory Networks,”

2020 28th Iran. Conf. Electr. Eng. ICEE 2020, Aug.

2020, doi: 10.1109/ICEE50131.2020.9261055.

[15] W. Bao, J. Yue, and Y. Rao, “A deep learning

framework for financial time series using stacked

autoencoders and long-short term memory,” PLoS

One, vol. 12, no. 7, p. e0180944, Jul. 2017, doi:

10.1371/JOURNAL.PONE.0180944.

[16] S. Lv, Y. Hou, and H. Zhou, “Financial Market

Directional Forecasting With Stacked Denoising

Autoencoder,” Dec. 2019, Accessed: Oct. 14, 2021.

[Online]. Available:

https://arxiv.org/abs/1912.00712v1.

[17] W. Chen, M. Jiang, W. G. Zhang, and Z. Chen, “A

novel graph convolutional feature based convolutional

neural network for stock trend prediction,” Inf. Sci.

(Ny)., vol. 556, pp. 67–94, May 2021, doi:

10.1016/J.INS.2020.12.068.

[18] J. Long, Z. Chen, W. He, T. Wu, and J. Ren, “An

integrated framework of deep learning and knowledge

graph for prediction of stock price trend: An

application in Chinese stock exchange market,” Appl.

Soft Comput. J., vol. 91, Jun. 2020, doi:

10.1016/J.ASOC.2020.106205.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–

1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735.

[20] S. JIN, L. SU, and A. ULLAH, “Robustify Financial

Time Series Forecasting with Bagging,” Econom.

Rev., vol. 33, no. 5–6, p. 575, Aug. 2014, doi:

10.1080/07474938.2013.825142.

[21] H. M. Pandey, “Performance Evaluation of Selection

Methods of Genetic Algorithm and Network Security

Concerns,” Procedia Comput. Sci., vol. 78, pp. 13–18,

Jan. 2016, doi: 10.1016/J.PROCS.2016.02.004

[22] Dhabliya, D., & Dhabliya, R. (2019). Key

characteristics and components of cloud computing.

International Journal of Control and Automation,12(6

Special Issue), 12-18. Retrieved from

www.scopus.com

[23] Pekka Koskinen, Pieter van der Meer, Michael Steiner,

Thomas Keller, Marco Bianchi. Automated Feedback

Systems for Programming Assignments using

Machine Learning. Kuwait Journal of Machine

Learning, 2(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view

/190

[24] Carlos Silva, David Cohen, Takashi Yamamoto, Maria

Petrova, Ana Costa. Ethical Considerations in

Machine Learning Applications for Education. Kuwait

Journal of Machine Learning, 2(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view

/192

http://www.scopus.com/
http://kuwaitjournals.com/index.php/kjml/article/view/190
http://kuwaitjournals.com/index.php/kjml/article/view/190

