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Abstract: This study constructs a hybrid deep learning model to predict the price trend movement of Standard & Poor’s 500 index. 

Predicting stock market price trends is challenging because stock market data are non-linear and complex. Additionally, various factors, 

such as investor sentiment and news events, exert influence on stock price trends, leading to fluctuations in price trends. Researchers have 

implemented a variety of machine learning methods to predict stock price movements. The present study develops a hybrid deep learning 

network model consisting of a feature learning model, which is a long short-term memory model, and a feature selection model. Different 

types of data, including stock price, smoothing indicators, trend indicators, and oscillator indicators, are used as inputs to improve the 

model’s performance. Furthermore, to optimize the hyperparameter of each feature extraction model and feature selection model, a Genetic 

algorithm is utilized. An expert rule trend deterministic layer is also implemented to pre-process the data to further improve the model’s 

performance. The results indicate that the proposed model has superior testing performance compared to restricted Boltzmann machine, 

convolutional neural network, and autoencoder models.   

Keywords: CNN, expert rule, genetic algorithm, LSTM, RBM, stock market  

1. Introduction 

The trend of a stock market index is defined as the tendency 

of the price series for the financial securities to go 

downward or upward. The ability to predict stock trends can 

help investors to obtain higher earnings. Stock market price 

movement can be predicted by macroeconomic variables 

such as dividend price ratio, inflation rate and future profit 

growth, and by technical indicators that rely on the previous 

price movement and volume pattern. Using technical 

indicators to predict stock price movements is simple and 

thus is popular among traders. According to the findings of 

the authors in [1], the predictive performance of technical 

indicators is comparable to that of economic variables. 

Similarly, the authors in [2] used technical indicators as 

input data to predict price trends. Additionally, applying a 

trend deterministic data preparation layer (TDDPL) to pre-

processing technical data to discretize the data to 0 and 1 has 

been implemented by [3]. Stock market prediction machine 

learning methods can be divided into two types: traditional 

statistical machine learning methods and deep learning 

methods. Traditional machine learning methods, such as the 

support vector machine (SVM), logistic regression (LR) and 

decision trees, are often used in stock trend prediction as 

they have low complexity and often perform better than 

other methods when the data sample size is small. In 

contrast, deep learning methods perform better when the 

training dataset is very large, and the data are highly non-

linear. Several deep learning models have been developed 

in various studies to forecast stock market movements. The 

authors in [4] compared the prediction performance of deep 

learning methods such as recurrent neural network (RNN), 

multilayer perceptron, long short-term memory (LSTM), 

convolutional neural network (CNN) and auto regressive 

integrated moving average statistical methods. Their results 

indicate that deep learning methods outperform traditional 

machine learning methods. In the deep learning domain, 

CNN has received attention due to its ability to extract 

complex features. In addition, LSTM is popular for 

predicting time series data due to its ability to solve the long-

term dependency problem in RNN. The strength of feature 

extraction of CNN and the predictive power of LSTM have 

inspired the researchers to combine both models to form a 

hybrid neural network [5], [6]. The authors in [7] propose a 

novel CNN-LSTM hybrid deep learning model based on 

short-, medium- and long-term features of closing price 
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sequences, and they also suggest that different time frames 

provide unique features for the machine learning model to 

learn; that study uses two layers of CNN to extract multiple 

time scale data. 

The present paper proposes a hybrid deep learning model 

called GA(genetic algorithm)-TDDPL-CNN-LSTM to 

predict the price trend of Standard & Poor’s 500 index (S&P 

500). The inspiration for this model comes from the TDDPL 

layer proposed by [3] and the multiple time frame model 

introduced by [7]. In addition, the hyperparameters of the 

deep learning model are optimized using GA. The aim of 

this research is to enhance the performance of the multiple 

time scale CNN-LSTM model proposed by [7]. 

To the best of the authors' knowledge, there is currently no 

deep learning model that utilizes short-, medium- and long-

term time frames to predict stock prices. This constitutes the 

first novel contribution of this paper. Furthermore, instead 

of solely relying on closing prices, a different type of stock 

information data is utilized for multiple time scale 

prediction, marking the second novel contribution. Lastly, 

expert rules are employed in the data pre-processing stage 

to train the multiple time scale prediction model, which 

constitutes the third novel contribution. The structure of this 

paper is as follows: Section 2 provides a brief overview of 

the existing literature on deep learning techniques for stock 

price trend prediction. In Section 3, a novel methodology 

known as GA-TDDPL-CNN-LSTM is described. The 

performance of the proposed model is examined and 

discussed in Section 4. Finally, the paper concludes with our 

findings and suggestions for future research in Section 5. 

2. Related Work 

There is growing interest in using machine learning to 

predict the trend of the stock market [8]–[10]. Deep learning 

methods have gained a lot of attention due to their 

performance in predicting highly complex stock market 

data, as they have outperformed traditional machine 

learning methods [11]–[13]. Combinations of different 

types of deep learning layers have also implemented by 

researchers due to their ability to outperform a simple 

model. An autoencoder LSTM network model called AE-

LSTM was proposed in [14] to predict stock market price 

trends. The autoencoder consisted of LSTM layers in the 

decoder and encoder parts. After each LSTM layer, dropout 

was used as a regularization to prevent overfitting. During 

training, the encoder part was used as the feature generator 

to feed the LSTM based forecaster to predict the next day’s 

price. The model trained by the authors used S&P 500 index 

stock data from 2019 to 2020. Their data consisted of six 

features: adjusted closing price, open, high, low, and closing 

prices and trading volume. Nine technical indicators were 

used, including moving average, convergence/divergence, 

relative strength index (RSI), Williams %R, stochastic 

oscillator, price rate of change (PROS), average directional 

index(ADI), Bollinger bands and logarithmic return. Their 

results indicated a lower mean absolute error and root mean 

square error than generative adversarial network.  

In the research performed by [15], wavelet transform (WT), 

stacked autoencoders and LSTM were used to predict stock 

prices. First, WT was used to decompose the time series data 

for noise elimination before it was fed into the model. The 

model consisted of stacked autoencoders to train in an 

unsupervised manner and LSTM with delays to generate 

output at the specified future step. The six stock indices used 

to evaluate the performance of the deep learning model were 

the DJIA index, S&P 500, Nikkei 225, Hang Seng index, 

Nifty 50 index and CSI 50. The input variables consisted of 

daily trading data, technical indicators and macroeconomic 

variables. The stock price prediction results were compared 

with LSTM and RNN, and the proposed model had higher 

accuracy and less volatility than LSTM and RNN. The 

authors suggested that the autoencoder reduced the noise of 

the input and therefore produced less variance prediction. 

Similar research was performed by [16] to construct a 

stacked denoising autoencoder (SDAE) to forecast the 

financial market direction in order to predict the daily CSI 

300 index from Shanghai and Shenzhen Stock Exchanges in 

China. SDAE was the extension of the stacked autoencoder. 

The training of the SDAE started with the training of the 

first layer as an autoassociator to minimize errors in the 

reconstruction of the output. The output of the 

autoassociator was the input for another layer to generate 

another autoassociator. This step was iterated to generate a 

specific number of layers. The last hidden layer output was 

taken as the input to the supervised layer with specific 

parameters. Finally, the hyperparameters of this model were 

fined tuned based on the supervised criterion. The SDAE 

consisted of two key facades which were a multilayer 

perceptron and autoencoders. During the first stage of 

training, each autoencoder was trained separately. In the 

second stage, the multilayer perceptron was trained. The 

authors suggested that this layer-wise training procedure has 

better performance and achieves better generalization than 

random initialization of deep networks. To train the model, 

28 technical indicators from moving averages, trend 

detection, oscillators, volume, momentum, and price 

volume were used as input features. The output of the model 

is “-1” if the price of the index tomorrow is lower than today 

and “1” if it is higher. The authors discovered that SDAE 

had higher accuracy than SVM of radial kernel function and 

three-layer backpropagation network. The authors 

concluded that SAED can remove large amounts of noise in 

stock market data and was able to find an underlying 

common pattern among stock data, therefore performing 

better than the non-deep learning method and swallow layer 

deep learning method. 
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CNN is one of the most popular methods in stock market 

prediction due to its ability to extract sophisticated features 

without the need for complex pre-processing. CNNs are 

normally combined with pooling and fully connected layers 

to form a neural network architecture. The authors in [2] 

implemented a CNN model to forecast the hourly stock 

price trend of 100 stocks in the Turkish stock market. A 

novel graph convolutional feature neural network to 

simultaneously learn the feature from stock market 

movement and individual stock movement to predict the 

trend of the stock price movement was proposed by [17]. 

Furthermore, the authors in [18] implemented a CNN to 

predict the stock price movement in China’s stock market 

with feature normalization, in which they utilized 

reinforcement learning to simulate the expert decision and 

enhanced the reinforcement learning with CNN. 

Additionally, RNN is needed to learn the time dependency 

feature of stock price movement. However, conventional 

RNN suffers from gradient exploding and vanishing errors 

if the time sequence is too large; as a result, LSTM was 

introduced by [19] 

Different deep learning models can be combined to form a 

hybrid model that can utilize the advantages of different 

models. A popular example is the combination of CNN and 

LSTM network. The authors in [18] proposed a hybrid 

CNN-LSTM deep neural network model to predict stock 

trends. The CNN model is used to extract the feature from 

buying volume and transaction number. bidirectional long 

short-term memory (BiLSTM) was implemented to learn 

the data extracted from the CNN model. The authors in [7] 

combined a CNN and LSTM network to predict the stock 

price trend with short-, medium- and long-term features of 

the stock price. In their paper, the authors employ different 

numbers of CNN layers to extract multiple time frame 

features and use one LSTM model to learn the time 

dependency feature of a time frame. Finally, the output of 

each LSTM model is fed into fully connected layer for final 

trend prediction [7]. 

To improve the performance of the model, data are often 

pre-processed using a denoising signal processing algorithm 

or rule defined with domain knowledge. A WT and 

autoencoder to eliminate the noise in the model were 

utilized by [15]. Moreover, the authors in [7] implemented 

a stacked denoised autoencoder to pre-process the input of 

their stock trend prediction model. The authors in [5] 

utilized a restricted Boltzmann machine (RBM) to extract 

useful features from the data while eliminating noise. They 

also implemented TDDPL to convert the technical 

indicators’ input to binary values based on a set of expert 

rules. The authors conclude that RBM and TDDPL pre-

processing methods improve on the performance of the base 

model in stock trend prediction [5].  

 

3. Methodology 

This section describes data science project lifecycle, 

including the analysis of different deep learning models and 

the construction of the proposed hybrid deep learning 

model, GA-TDDPL-CNN-LSTM. Furthermore, it provides 

a detailed description of the ensemble learning method. The 

target of the prediction, upward or downward price trend, is 

defined by using the following rule as shown in equation 

(1), where n is the number of days and xi is the closing price 

for the day. Y = 1 indicates the price trend of the day is an 

uptrend; Y = 0 indicates the price trend of the day is a 

downtrend. n is set to 20 in our experiment. 

𝑌 =  {
1 𝑥𝑖 < 𝑥𝑖+𝑛

0 𝑥𝑖 > 𝑥𝑖+𝑛
 (1) 

3.1. Data Collection 

The dataset utilized in this research consists of daily S&P 

500 index data, spanning from January 30, 1999, to January 

30, 2019. The selection of this specific index was motivated 

by its frequent usage in tracking the performance of the 

stock market in the United States, as well as its common 

application in stock trend prediction studies [8], [17]. The 

dataset was partitioned into training, validation, and testing 

sets. The data can be obtained from Yahoo Finance in Excel 

format, including the opening, high, low and closing points 

of the index, as well as volume information. 

3.2. Data Pre-processing 

Three types of technical indicators are calculated from the 

dataset. The first technical indicator is the exponential 

moving average (EMA) of 10 days, which is a type of 

smoothing indicator. EMA is calculated using equation (2):    

𝐸𝑀𝐴𝑡,𝑛 = 𝑃 ∗ (
2

1 + 𝑛
) +  𝐸𝑀𝐴𝑡−1,𝑛 ∗ (

2

1 + 𝑛
) (2) 

where t is the trading period, n is the number of days to 

average, and P is the closing price of the index. 

The second type of technical indicator is the RSI for 14 days, 

which is a type of oscillator indicator. The RSI calculation 

is shown in equations (3) and (4). 

𝑅𝑆𝐼 = 100 − 
100

1 + 𝑅𝑆
 (3) 

 

𝑅𝑆 =  
𝐴𝑣𝑔𝑈

𝐴𝑣𝑔𝐷
 

 

(4) 

where RS is the relative strength, AvgU is the average of all 

up moves in the last 14 days and AvgD is the average of all 

down moves in the last 14 days. 

The third type of data is a ROS percentage indicator for 1 

month. The ROS percentage indicator is calculated using 
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equation (5): 

ROS = (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒
− 1) ∗ 100 (5) 

where the current value is set as the closing price for the day 

and the previous value is set as the closing price 30 days 

before. All the technical indicators shown above are 

combined with the closing price of the S&P 500 index to 

form the input data. The training set, validation set and 

testing set are determined by random shuffle, split in the 

ratio 0.8:0.1:0.1. After the input data are formed, a TDDPL 

is constructed to convert the continuous technical indicator 

data value to discrete 0 or 1 values according to specific 

rules. This method was proposed by [3] to improve the 

performance of machine learning methods such as artificial 

neural networks, SVM and RF methods. The input technical 

indicator data consists of closing price, RSI, ROS and EMA 

for 10 days. The discretization of the values is shown in 

Table 1. 

Table 1. Discretization of input data 

Technical 

indicator 
Strategy for discretization 

Closing price  value = 1, if the closing price at day t is 

higher than day t-20. 

value = 0, if the closing price at day t is 

lower than day t – 20 

RSI 

 

When RSI not in [30, 70], 

value = 1 if RSIt less than 30 

value = 0 if RSIt more than 70 

 

When RSI in [30, 70], 

value = 1 if RSIt >= RSIt-1, 

value = 0 if RSIt < RSIt-1 

where RSIt is the RSI value at day t 

ROS value = 0 if  ROCt is < 0, 

value = 1 if ROCt is >= 0 

where ROCt is ROC at time t 

EMA 10 value = 1 if closing price is more than 

EMA10 

value = 0 if closing price is less than 

EMA10 

3.3. The Development of the Proposed Model  

3.3.1. Deep Learning Model Construction 

The description of the deep learning model is split into two 

components, which are the base deep learning layer for 

output prediction and the variety of deep learning layers that 

are combined with the base layer as shown in Fig.1. LSTM 

is utilized as the base layer for output prediction based on 

the research by [8] because it has demonstrated incredible 

performance, outperforming memory free classification 

methods such as Random Forest (RF) and LR. Additionally, 

LSTM solves the gradient exploding/vanishing error that 

occurs in conventional RNN prediction. It is normally 

combined with max pooling to extract the most valuable 

feature in a patch. The layer usually utilized is autoencoder, 

and can be merged with LSTM, as done in [19], and RBM, 

as done in [5]. 

 

Fig.1 Component of improvised deep learning model 

However, the authors in [2] relied solely on CNN in their 

study. Therefore, we analyze different deep learning models 

and construct a CNN-LSTM deep learning model. The 

following points summarize the deep learning experiment 

model: 

• Autoencoder +LSTM 

• TDDPL + CNN + LSTM 

• CNN + LSTM 

• CNN 

• TDDPL + RBM + LSTM 

• RBM + LSTM 

Moreover, LSTM units, type of activation function, and the 

number of units in the fully connected layer along with the 

number of network layers, hidden units, activation function, 

and the pooling patch size of CNN, will be optimized by 
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using a GA. Autoencoder is an unsupervised artificial neural 

network that encodes data and learns how to reconstruct the 

data and reduce noise. It consists of an input layer, a hidden 

layer and an output layer. In this research, the activation 

function of each layer is tuned using a GA. Binary RBM is 

used in this research because it has higher performance than 

the Gaussian restricted Boltzmann machine and is not 

limited to underlying data that follows a Gaussian 

distribution [5]. We also utilize a binary cross-entropy loss 

function [7].  

Binary cross entropy penalizes if the probability predicted 

is far from the expected value and is famously used in binary 

class classification. A stochastic gradient descent optimizer 

is utilized to train the neural network with an initialized 

learning rate provided by the GA. The value of batch size is 

80. Early stopping and dropout techniques are implemented 

to prevent overfitting. The patience of early stopping is set 

to 70, indicating that the training will be stopped if the 

validation accuracy does not improve in 70 epochs. The 

dropout rate is set to 0.2. Batch normalization is 

implemented after convolution operation to solve internal 

covariate shifts that occur in the training of deep learning 

networks. 

3.3.2. Ensemble Learning Model 

Subsequently, three similar best deep learning models with 

different time series length inputs are constructed. The first, 

second and third models have time-series length inputs of 

20 days, 40 days and 80 days. The predicted output of the 

three models will be combined through bagging to generate 

a positive return in the stock market. We developed the 

methodology from [20], in which the authors implemented 

the bagging method to combine linear forecasting models 

with non-parametric forecasting models to reduce the mean 

squared forecast error. The bagging model can generate a 

positive return in the stock market. The ensemble learning 

model can be constructed by averaging the uptrend 

probability predicted by each model. The prediction 

probability of each input model of input time lengths 20, 40 

and 80 are combined to form the final prediction output 

using equation (6):   

𝑃𝑟𝑜𝑏𝑐𝑜𝑚𝑏 =  
𝑃𝑟𝑜𝑏20 + 𝑃𝑟𝑜𝑏40 +  𝑃𝑟𝑜𝑏80

3
 (6) 

where Prob20, Prob40 and Prob80 are the prediction 

probability of input time series length of 20, 40 and 80. The 

prediction output is discretized based on equation (7): 

(1) 𝑃𝑟𝑒𝑑 =  {
1 𝑖𝑓 𝑝𝑟𝑜𝑏𝑐𝑜𝑚𝑏  ≥ 0.5
0 𝑖𝑓 𝑝𝑟𝑜𝑏𝑐𝑜𝑚𝑏 < 0.5

 (7) 

3.3.3. GA 

GA is a search heuristic used to find out the optimum value 

by mimicking the evolutionary process of Darwinian 

evolution. it is applied to the hyperparameter tuning of all 

deep learning models. The individuals in GA can be 

represented in a fixed length of the vector and the value in 

each vector can be a binary or floating point value. The GA 

starts with 10 individuals with random initial values. First, 

the fitness score of individuals is evaluated using an 

accuracy score. Second, the accuracy score is obtained by 

the accuracy of the trend predictions of the deep learning 

model trained with the hyperparameter value in the 

validation dataset. Third, parent selection to select the five 

best individuals is defined. The parent undergoes a 

crossover operation to produce offspring. The offspring will 

be mutated to produce variation in the solution 

representation. The process will be repeated until a certain 

generation number is met, or a termination criterion is hit. 

In our case, the algorithm stops when 100 individuals are 

produced in each experiment of the deep learning model. 

The solution with the best validation accuracy score is then 

picked. 

Chromosome solution encoding in an individual 

The solution representation of RBM, autoencoder, CNN is 

represented in this subsection. The chromosome encoding 

of the autoencoder LSTM model, CNN, CNN-LSTM and 

RBM are shown in Table 2. 
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Individual and population initialization 

Initialization of the value of the solution for an individual is 

performed randomly to ensure that the solution is spread 

evenly in the search space. There is no general rule to 

identify the suitable number of individuals in the population, 

which is dependent on the problem search space size, the 

problem difficulty, the length of the solution, and other 

factors.  

In this research, 10 individuals are used in a generation and, 

subsequently, 10 generations are produced in the 

evolutionary algorithm. Therefore, a total of 100 individuals 

will be produced in the evolutionary algorithm. 

Fitness evaluation 

The fitness of an individual is determined by the accuracy 

of trend prediction in the validation set by using the 

hyperparameter in the solution represented by the 

individual. The validation accuracy is equal to the fitness 

score of the individual. The higher the fitness score, the 

better the solution represented by the individual. 

Parent selection 

The purpose of parent selection is to pick the best individual 
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to generate offspring, with reasonably diversified 

individuals, from a pool of parents and offspring. There are 

many types of parent selection methods such as tournament 

selection, elitism, fitness proportional selection, and linear 

ranking. Elitism will result in selection of the individuals 

with the top fitness function. Standard tournament selection 

will randomly sample k individuals with replacements into 

a tournament size of k from the current population. The 

individual of top n fitness will be selected from the 

tournament. Compared with linear ranking and exponential 

ranking, tournament selection is simple to code and not 

computationally expensive. It also does not require sorting 

of the entire population first. Fitness proportional selection 

assigns selection probability based on the fitness value of 

the individual. Meanwhile, linear or exponential ranking 

assigns selection probability to an individual based on the 

rank of the fitness of the individual instead of the fitness 

value itself. By doing so, linear ranking prevents the entire 

population from being overwhelmed by the individual 

whose fitness value is too large at the initial stage, and 

therefore preserves the diversity of the population. 

Furthermore, the authors in [21] aimed to identify the 

performance of each selection method, and their results 

show that linear ranking outperforms other methods such as 

tournament selection. Therefore, linear ranking is used in 

this research. The selection probability of linear ranking is 

calculated based on equation (8).  

𝑃𝑙𝑖𝑛−𝑟𝑎𝑛𝑘 (𝑖)

= ((2 − 𝑠) 𝑢) + (2𝑖(𝑠 − 1) 𝑢(𝑢 − 1))⁄⁄  
(8) 

Table 3 illustrates the selection probabilities of each 

individual sorted in ascending order when the population 

size (u) ranges from 6 to 10, with s = 0.05. Elitism is also 

implemented to ensure that the best individual is preserved 

to the next generation without being mutated. 

Table 3. Selection probability of everyone in a linear 

ranking 

The number of 

individuals (u) 

Selection probability of individually 

sorted according to ascending order 

10 
0.05, 0.061, 0.072, 0.083, 0.094, 

0.105, 0.117, 0127, 0.139, 0.152 

9 

 

0.056, 0.069, 0.083, 0.097, 0.111, 

0.125, 0.139, 0.153, 0.167 

8 
0.0625, 0.08, 0.098, 0.116, 0.134, 

0.151, 0.17, 0.1885 

7 
0.0714, 0.0956, 0.119, 0.143, 0.167, 

0.19, 0.214 

6 0.083, 0.117, 0.15, 0.18, 0.22, 0.25 

 

Crossover 

Crossover occurs between N number of selected parents, to 

produce N number of offspring. There are many methods of 

crossover, such as uniform crossover, M point crossover, 

and cycle crossover. The crossover method is divided into 

binary and arithmetic types. For binary values, uniform 

crossover will be used in this research. Each gene will have 

a 50% probability of being inherited from one parent. Fig.2 

illustrates how uniform crossover works.  

For arithmetic values, whole arithmetic crossover is used to 

produce offspring in this research. Whole arithmetic 

crossover works by averaging out the value for two parents 

to produce two offspring. Fig.3 illustrates how whole 

arithmetic crossover works in this research. 

 

Fig.2 Example of uniform crossover 

 

Fig.3 Example of arithmetic crossover 

Mutation 

For binary values, bit flip mutation is implemented, which 

involves flipping the binary value in a gene with a specified 

probability. The mutation probability is 0.1. Bit flip 

mutation is illustrated in Fig.4. 

 

Fig.4 Bit flip mutation 

 

Meanwhile, for arithmetic values, a small increment or 

decrement value, x, is added to the gene with a specified 

probability. The mutated value x is different in each gene 
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depending on the search space of the solution. Table 4 

shows the mutations that have been made to each search 

hyperparameter in autoencoder, CNN, LSTM + fully 

connected layer, and RBM, respectively. 

Table 4. Mutation in autoencoder, CNN, LSTM + fully 

connected layer, and RBM 

Gene number Value range Mutation (+/-) 

Mutation in autoencoder 

0 0.001-0.5 0.05 

1 

 
1-5 2 

2 5-25 4 

3 5-25 4 

4 5-25 4 

5 5-25 4 

6 5-25 4 

Mutation in CNN 

0 0.001-0.5 0.05 

1 1-10 2 

2 10-70 4 

Mutation in LSTM 

0 0.001-0.25 0.05 

1 1-10 2 

2 10-50 4 

Mutation in RBM 

0 1-512 20 

1 0.001-0.25 0.05 

2 0 or 1 Bit flip 

3.4. Model Evaluation  

The target of the deep learning model is increasing prices 

(representing uptrend) and decreasing prices (representing 

downtrend) after 20 days. If the price increases after 20 

days, the target value is 1. If the price decreases after 20 

days, the target value is 0. The performance of different 

feature extractions is compared. The evaluation metrics 

used are accuracy, precision, and recall. True positive (TP) 

refers to the total number of correctly predicted uptrends. 

True negative (TN) is the total number of a correctly 

predicted downtrends. False positive (FP) is the total 

number of wrongly predicted uptrends. False negative (FN) 

is the total number of wrongly predicted downtrends. 

Accuracy, which represents the proportion of samples that 

can be correctly predicted among the total number of 

samples, is calculated by equation (9): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(9) 

Precision refers to the proportion of true positive samples 

compared with the total number of positive identifications. 

The precision is calculated by equation (10): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 

Recall indicates the proportion of actual positives predicted 

compared with the number of positives. The recall is 

calculated by equation (11): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(11) 

 

4. Results and Discussion  

The implementation of GA and the hyperparameter value in 

each model, as well as the optimum parameter acquired 

using GA on each run, will be discussed further below. The 

summary and description of the results of GA are illustrated 

in Table 5. 

Table 5. Summary and description of GA 

Symbolic parameters 

Representation Bit-string 

Parent and Survivor selection Linear ranking selection 

Mutation 

Bit flip mutation for binary 

value and uniform 

mutation for arithmetic 

value 

Crossover Uniform crossover 

Numeric parameter 

Population size 10 

Mutation probability 0.2 

Crossover probability 0.5 

 

The methods and values shown in Table 5 are used to fine-

tune the optimum hyperparameter for each gene shown in 

Table 6. A total of 100 individuals is generated in the 

evolutionary algorithm. The individual with the best fitness 

score will be picked. The optimum hyperparameter obtained 

from GA runs for autoencoder LSTM, CNN, CNN-LSTM, 
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and RBM model is shown in Table 6. 

Name Gene number Value range 

The optimum hyperparameter for the autoencoder LSTM 

Learning rate 0 0.4758 

Number of autoencoder layer 1 5 

Number of hidden layers 1 2 24 

Number of hidden layers 2 3 18 

Number of hidden layers 3 4 15 

Number of hidden layers 4 5 13 

Number of hidden layers 5 6 8 

Fully connected layer number of 

nodes 
7 8 

LSTM number of hidden units 8 20 

 The optimum hyperparameter for CNN 

Learning rate 0 0.2593 

Convolutional kernel size 1 3 

Number of convolutional kernels 2 66 

Fully connected layer number of 

nodes 

3 
31 

LSTM number of hidden units 4 20 

 The optimum hyperparameter for RBM 

Learning rate 0 0.1187 

Number of components 1 43 

Random state 2 1 

LSTM number for hidden units 3 6 

Fully connected layer node number 4 5 

Table 6. The optimum hyperparameter for the autoencoder LSTM , CNN, CNN-LSTM, and RBM model

The hyperparameter values obtained in the previous table 

(Table 6) are used to construct the deep learning model. The 

CNN deep learning model consists of a one-dimensional 

convolutional layer, one max-pooling layer, and two fully 

connected layers with a sigmoid activation function. The 

CNN-LSTM deep learning model consists of a 1D CNN 

layer connected with a pooling layer, batch normalization 

layer, dropout layer, LSTM layer, and two fully connected 

layers. The LSTM deep learning model only consists of an 

LSTM layer connected with two fully connected layers. The 

autoencoder model consists of an autoencoder layer 

connected with LSTM and a fully connected layer. The 

autoencoder layer consists of an encoder and decoder with 

five RELU activation functions and fully connected dense 

layers, respectively.  The constructed model receives the 

pre-processed input to output the stock trend prediction.  

     The training, validation, and testing accuracy of each 

model are shown in Tables 7, 8, and 9, respectively. As 

shown in Table 7 below, using the training dataset, the GA-

TDDPL-CNN-LSTM model has the highest accuracy, 

followed by the TDDPL autoencoder-LSTM, RBM-LSTM, 

CNN-LSTM, CNN, autoencoder – LSTM, and TDDPL 

RBM-LSTM. It is observed that the TDDPL layer improves 

the training performance of the CNN-LSTM model and 

autoencoder-LSTM model. Furthermore, an improvised 

deep learning model has better performance than a simple 

deep learning model. For example, improvised deep 

learning models such as the CNN-LSTM have slightly 

better performance than the CNN model. 
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Table 7. Training accuracy, recall, and precision of each 

deep learning model 

Experiment model Accuracy Recall Precision 

GA-TDDPL-CNN-LSTM 

(proposed model) 
0.8832 0.9301 0.8726 

CNN-LSTM 0.5493 0.6608 0.5135 

CNN 0.5459 0.6028 0.3287 

Autoencoder-LSTM 0.5480 0.8615 0.1362 

TDDPL autoencoderLSTM 0.6414 0.9469 0.3145 

RBM-LSTM 0.5872 0.6634 0.4014 

TDDPL RBM-LSTM 0.5217 0.5451 0.3437 

 

Meanwhile, in the validation dataset, the GA-TDDPL-

CNN-LSTM has the highest accuracy, followed by TDDPL 

autoencoder-LSTM, RBM-LSTM, autoencoder LSTM, 

CNNLSTM, CNN, and TDDPL discretized RBM-LSTM. 

There was no notable difference in performance between the 

validation and testing datasets. Therefore, the model trained 

is not overfitted. Table 8 shows the validation accuracy, 

recall, and precision of each model.        

Table 8. Validation accuracy, recall and precision of each 

deep learning model 

Experiment model Accuracy Recall Precision 

GA-TDDPL-CNN-LSTM 

(proposed model) 
0.8508 0.8984 0.8487 

CNN-LSTM 0.5693 0.7216 0.5384 

CNN 0.5153 0.5322 0.3626 

Autoencoder-LSTM 0.5710 0.8285 0.1638 

TDDPL autoencoderLSTM 0.6407 0.8615 0.3181 

RBM-LSTM 0.6128 0.6283 0.4226 

TDDPL RBM-LSTM 0.5125 0.5547 0.3757 

 

As shown in Table 9, utilizing the test data dataset, the GA-

TDDPL-CNN-LSTM exhibited the most superior 

performance, followed by CNN-LSTM, CNN, autoencoder-

LSTM, RBM-LSTM, TDDPL-LSTM, autoencoder-LSTM 

and TDDPL autoencoder-LSTM. Compared with RBM and 

autoencoder, CNN has the best performance. CNN can 

extract features of highly complex and noisy data better 

compared with RBM and autoencoder. When CNN is paired 

with LSTM, the performance of the deep learning model is 

slightly superior, which shows that LSTM can learn time 

dependency data from the feature output by the CNN model. 

It also indicates that the hybrid model yields better 

performance than the single CNN model alone. Without 

data pre-processing, the CNN-LSTM model has a 1% higher 

accuracy score than RBM-LSTM and a 5% higher score 

than the autoencoder LSTM model. When combined with 

the TDDPL layer, in all the testing, training, and validation 

datasets, GA-TDDPL-CNN-LSTM has the highest 

performance after using the parameter finetuning by the GA. 

The TDDPL layer uses the expert rule to help the deep 

learning model to learn by discretizing the data into 1 

(uptrend) and 0 (downtrend). It informs the deep learning 

model in which condition the technical indicators are bullish 

or bearish. It is interesting to note that TDDPL has the 

highest accuracy score percentage increment (32%) on the 

CNN-LSTM model compared with RBM-LSTM (-2.3%) 

and autoencoder LSTM (-13.74%). Lastly, the TDDPL 

CNN-LSTM model with input shapes of (20,4), (40,4), and 

(80,4) are constructed and trained as illustrated in Table 10. 

It is noted that the higher the input time length, the higher 

the performance of the model. The testing accuracy, recall, 

and precision of the ensemble model using equation (2) are 

shown in Table 11. 

Table 9. Testing accuracy, recall and precision of each 

deep learning model 

Experiment model Accuracy Recall Precision 

GA-TDDPL-CNN-LSTM 

(proposed model) 

0.8036 0.8961 0.7920 

CNN-LSTM 0.5471 0.7148 0.5138 

CNN 0.5313 0.5945 0.3173 

Autoencoder-LSTM 0.5188 0.9032 0.1290 

TDDPL autoencoderLSTM 0.4561 0.5116 0.2010 

RBM-LSTM 0.5414 0.6124 0.3726 

TDDPL RBM-LSTM 0.5288 0.6031 0.3674 

 

Table 10. Accuracy, recall and precision of CNN-LSTM 

of different input time lengths 

Input time length of CNN-

LSTM 

Accuracy Recall Precision 

20 0.8036 0.8961 0.7920 

40 0.8672 0.9049 0.8682 

80 0.8844 0.9052 0.8958 

 

Table 11. Accuracy, recall and precision of combination of 

input length 20, 40 and 80 

Model Accuracy Recall Precision 

Combination of input 

length 20, 40 and 80 

0.9029 0.9201 0.9071 
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The results indicate that the testing accuracy, recall, and 

precision of the proposed GA-TDDPL-CNN-LSTM model 

are higher than those of the prediction model of the input 

time length of 20, 40, and 80, respectively. Therefore, the 

use of ensemble learning can boost the accuracy of the 

prediction model. Accurate trend prediction is crucial to 

achieve profitability in stock trading. For profitable trades, 

the trader should buy when the model predicts an uptrend 

and sell when the model predicts a downtrend. To ensure 

profitability, the model must attain an accuracy higher than 

50%. In this research, GA-TDDPL-CNN-LSTM, CNN-

LSTM, CNN autoencoder-LSTM, RBM-LSTM, and 

TDDPL RBM-LSTM models can be applied in real-life 

trading. It is important to consider that in trading, a 1% 

increase in accuracy corresponds to a 2% improvement in 

profitability. When the prediction is correct, the individual 

will both gain profit and avoid a loss of the same magnitude. 

Therefore, slight accuracy improvement can significantly 

improve the profitability of trading. It is worth 

implementing data pre-processing and hyperparameter 

optimization to improve the accuracy of the model.  The 

results show that the proposed GA-TDDPL-CNN-LSTM 

deep learning model has the highest testing performance 

compared to CNN-LSTM, CNN, autoencoder-LSTM, 

TDDPL autoencoder-LSTM, RBM-LSTM, and TDDPL 

RBM-LSTM with GA optimization technique. 

Furthermore, the present findings indicate that building a 

deep learning model that takes into account multiple time 

frame features improves the performance of the model. 

5. Conclusion 

 In this research, a proposed deep learning model called GA-

TDDPLCNN-LSTM is developed to predict stock market 

trends. The proposed architecture intends to fill the research 

gap in regard to the multiple time frame CNN-LSTM model. 

This research makes three novel contributions: the first is 

the use of the different types of technical analysis data and 

expert rule TDDPL layer to improve the performance of the 

multiple time frame model in stock market trend prediction. 

The second contribution is the use of a GA to search the 

hyperparameter for the deep learning model for stock 

market trend prediction. The search space of the 

hyperparameter value proposed by the authors is expanded. 

In the final stage, different input time lengths of GA-

TDDPL-CNN-LSTM model are constructed, and the 

prediction probability of uptrend from each model is 

combined through voting. The proposed GA-TDDPL-CNN-

LSTM model has the best accuracy, recall, and precision. 

The result shows that TDDPL layer data pre-processing, GA 

hyperparameter searching, the use of CNN-LSTM as a deep 

learning model, and multiple time frame training can 

improve the performance of the model. We hope that further 

studies can confirm our findings by employing different 

techniques, e.g., more technical analysis data can be added 

as an input feature to improve the performance of the model. 

Furthermore, fundamental financial data such as S&P 500 

earnings growth and price to earnings ratio can be 

incorporated into the feature to improve the result. 

Correlation between the difference index and news event 

can also be identified and used as a training feature to boost 

the performance of the model. In the combination of 

multiple time frame prediction, instead of using voting 

ensemble learning, the three different input time lengths 

GA-TDDPL-CNN-LSTM model can be connected to a 

dense layer. The dense layer can be trained to assign 

weightage on each model to produce the output. Finally, 

various denoising methods such as WT can be used to 

reduce the noise in the time series stock data before it is 

input into the TDDPL layer of the model. 
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