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Abstract: At times, optimization procedures are required to address practical issues. A single goal may be the focus of some of these 

issues, while others may include competing priorities. An issue is said to be a single-objective optimization problem if there is only one 

goal to achieve and a multi-objective optimization problem if there are two or more. Public transportation has been generally 

acknowledged as a viable approach to ameliorate transportation-associated issues including traffic congestion and air pollution as 

demand for transportation rises in most major cities across the globe. The development of an efficient public transportation system is a 

priority. In this study, we structure the trip route issue as a multi-objective optimization problem with the aim of reducing users' financial 

outlays, journey times, and carbon footprints. The proposed Non-dominated Sorting Genetic Algorithm-based approach provides 

environmentally preferable travel choices and allows the traveller to choose between the slower but more eco-friendly bus journey and 

the faster but more "eco-unfriendly" air plane. 
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1. Introduction 

The vast majority of the issues that are faced in the actual 

world are multi-goal difficulties. Finding a unique answer 

that will work for every situation is challenging [1]. The 

matter becomes much more complicated if there are trades-

offs between competing goals; for example, if one goal is 

reduced while another is maximized. The goal of multi-

objective optimization (MOO) algorithms is to strike a 

compromise between competing goals [2], [3]. Due to its 

ability to consider all relevant factors, the MOO algorithms 

provide a workable set of solutions to issues with multiple 

goals. As an alternative to a single optimum solution, 

MOO algorithms provide a collection of options that meet 

the criteria, known as Pareto optimal solutions. The Pareto 

optimum set of solutions includes all of the possible 

outcomes while being non-detrimental to any of the other 

possible outcomes [2], [3]. The choice is made by picking 

one of the feasible options presented. 

Over the course of the last decade, a number of different 

multi-objective evolutionary algorithms (MOEAs) have 

been proposed [4], [5]. Specifically, they may find many 

Pareto-optimal solutions with a single run. Since it is 

difficult to find a single solution that simultaneously 

maximizes all objectives, a multi-objective formulation of 

a problem is necessary [6]. A method that produces 

numerous solutions sitting on or near the Pareto-optimal 

front is particularly helpful in practice. 

Assume that all objective functions are to be reduced since 

maximizing of one objective function may be recast as the 

minimizing of another. To define a multi-objective 

optimization problem, we need to provide a collection of 

objective functions and a solution space. 

Consider the solution space to be S. An example of a 

multi-objective optimization problem is: 

min f1(s), ..., min fk(s), s∈ S 

where f1, f2,..., fk are objective functions where fi: S → R. 

The cost vector of solution s is the vector [f1(s),..., fk(s)]. 

To discover a solution with the best possible cost vector is, 

thus, to solve a multi-optimization issue. In most cases, the 

goal functions are incompatible, thus minimizing one will 

require sacrificing another. Therefore, there is no solution 

that achieves a minimum of all goals. Hence, the cost 

vector (mins∈S f1(s), ..., mins∈Sfk(s)) is not present in any 

solution. Rather, it is necessary to make a compromise 

between the goals. To that end, we may define an optimum 

cost vector as one that strikes the best balance between 

competing goals. In a perfect compromise, reducing one 

goal any more would have a negative impact on another. 

The dominance relation is used to formally describe this. 

If at every index i in both vectors, x is less or equal than y, 

then x dominates y. The notation for this is x ≺ y. In other 

words, given x ≠y, xi must be strictly less than yi for some 

i and this must hold true for at least one i. It is important to 

keep in mind that dominance is a partial order relation, 

therefore, (1, 2, 2) ≺(1, 2, 3), but (1, 2, 3) ⊀(1, 3, 2) and (1, 
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3, 2) ⊀(1, 2, 3). The non-dominated portion of a collection 

of vectors may be determined using the dominance 

relation. 

For each vector set X, the non-dominated subset is 

characterized as 

nondom(X) = {x ∈ X |  ∄x’ ∈ X, x’ ≺ x} 

In this way, we may specify the solutions that map to the 

set of cost vectors that is not dominated by any other set in 

the solution space. 

When solving a MOP, the best solutions will have a cost 

vector that is not dominated by any other cost vectors in 

the MOP. From here on, we shall refer to a solution that is 

inside the Pareto front as a non-dominated solution. A 

MOP often has several non-dominated solutions [7]. As 

dominance is a partial order relation, a decision maker 

needs to supply extra preference information to choose one 

answer. When extra preferences are needed are used to 

classify multi-objective optimization techniques. To 

function properly, interactive algorithms need extra 

preference information at various stages of the algorithm's 

execution. Using the preferences, we may tweak the 

optimization by, for instance, reordering the priority of 

objectives [8].  

Discovering the best possible path is the focus of this 

research. The algorithms utilized for multi-objective 

optimization in this research look for ways to improve on 

three different metrics at once. 

Each part of the research is labeled as follows: Section 2 

examines the work of other scholars who have come to 

similar conclusions. The suggested approach is described 

in Section 3. Section 4 details the problem formulation that 

will be used in the experimental analysis that follows. In 

this part, we also discuss the outcomes. The paper is 

finished with Section 5. 

2. Literature Review 

Path planning involves not just identifying a collision-free 

path from a starting point to an endpoint, but also a path 

that reduces or maximizes a set of important goals. 

Jinjun Tang et al.[9] propose data-driven bus timetable 

improvements. We initially created a bi-objective 

optimization model to calculate the bus company's 

departure schedule and passengers' waiting times. By 

combining bus GPS trajectories with Smart Card passenger 

data, optimization model variables such as time-dependent 

travel duration, bus dwell time, and passenger volume are 

determined. Finally, a unique encoding approach enabled a 

faster Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) to find Pareto optimal solutions. To test the 

proposed method, a Beijing bus route is tested. Compared 

to empirical scheduling and GA-based single-objective 

optimization, the proposed methodology may quickly 

create high-quality and acceptable schedule schemes for 

urban transportation system administrators. 

Using an elitist non-dominated sorting genetic algorithm 

and a unique kind of multi-objective differential evolution 

called heterogeneous multi-objective differential evolution, 

the paths of mobile robots are designed in [10]. Numerical 

simulations are used to evaluate the effectiveness of the 

suggested optimization methods. The demonstrated 

superiority of the offered methods for this issue has been 

confirmed by the findings. The Vehicles route problems 

(VRP) with time windows (VRPTW) were studied by Fei 

Tan et al.[11] The authors developed a model for robust 

multi-objective VRPTW (RMOVRPTW) and suggested a 

MOEA/D-based robust optimization method (R-MOEAD-

VRP) to minimize both the overall distance travelled and 

the number of vehicles needed to complete the journey. 

The experimental findings demonstrate the effectiveness of 

their suggested algorithm in producing answers that are 

both more resilient and less influenced by uncertainty. 

Researchers Fergal Stapleton et al. [12] examined the 

impact of five distinct objectives on neuroevolution for 

trajectory prediction in autonomous vehicles using the 

popular Non-dominated Sorting Genetic Algorithm-II. The 

researchers found that the objectives can have either a 

beneficial or detrimental impact on the process. The open 

green vehicle routing issue was solved sustainably by 

Joydeep Dutta et al. [13] using the cluster primary-route 

secondary approach. Reducing operating costs and service 

vehicle fuel emissions are two realistic aims that 

occasionally conflict. This paradigm lets the decision-

maker pick the best option from a set of choices, unlike 

multi-objective problems. First, it employs a modified k-

means algorithm to sort all users into discrete groups. 

Residents use one automobile per building group. Then, a 

multi-objective evolutionary algorithm finds the best sub 

route to service all cluster users. The approximated fronts 

were calculated using the expanded Strength Pareto 

Evolutionary Algorithm (SPEA2) and the Non-dominated 

Sorting-based Genetic Algorithm (NSGA-II). When 

compared to SPEA2, NSGA-II has lower efficacy. 

3. Material and Methods 

In this paper, we offer a Non-dominated Sorting Genetic 

Algorithm-based solution approach for determining the 

trade-off levels between competing goals. The approach to 

the answer includes three steps: The first stage involves 

generating a large number of candidate routes with 

corresponding frequencies; the second stage involves 

assigning trips to routes for a given transit network and 

demand matrix and then evaluating the network based on 

that assignment; and the third stage involves using a 

Genetic Algorithm-based optimization process to find the 

trade-off levels between the conflicting objectives. 
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The pseudocode of the proposed algorithm is presented 

below: 

 

P creates a "parent population" of N individuals. 

while Iteration <MaxIteration do 

C <- Empty child population 

while the number of individuals C in < N do 

Use tournament selection approach for selecting 

parent1(P1) 

Use tournament selection approach for selecting 

parent2(P2) 

Get child1(C1), child2(C2) through the Binary Crossover 

(P1,P2) 

Polynomial Mutation (C1, C2) 

Evaluate C1, C2 for their fitness values 

Insert C1, C2 into C 

end while 

U<- Combine P and C to get 2N individuals 

Rank the union set U using the nondominated sorting. 

P <- N front individuals in U by the crowded comparison 

selector. 

end while 

 

4. Evaluation and Results 

To illustrate and evaluate the performance of the proposed 

methodology, an experimental transit network is 

constructed and tested. An all-India travel plan was 

prepared including 12 cities i.e. 'Lucknow', 'New Delhi', 

'Mumbai', 'Pune', 'Kolkata', 'Patna', 'Chennai', 'Guwahati', 

'Chandigarh', 'Jaipur', 'Ahmedabad', and ‘Hyderabad’. 

Journey to be started from Lucknow. Any one of two 

modes of travel i.e bus and flight is to be selected based on 

three objective criteria fare, time, and CO2 emission. For 

bus travel time calculation 60KM/Hr speed of the bus has 

been considered. For flight time and fare calculation, the 

average of the best flights in the month Feb 2023 has been 

considered. As per a study[14], the CO2 emission of the 

bus is 515.2 g/KM. Considering the average of 50 

passengers in a bus, CO2 emission of 10.304 g/KM per 

person is used in this study. 36.6 g/km CO2 emission has 

been considered for Airplane travel [15]. The fare 

calculation of the bus has been done as Rs. 4 per kilometer. 

Data used for the experimental evaluation of the proposed 

methodology is illustrated in tables 1-6. 

Table 1: Travel time by Bus 
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Proposed Multi-Optimization Algorithm 

Return plausible non-dominated solutions. 
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Table 2: Travel time by Flight 
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Table 3: CO2 emission by Bus 
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Table 3: Co2 emission by flight 
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The suggested technique incorporates CO2 emissions, trip 

time, and overall cost into its fitness function. This 

procedure takes in the route (e.g., [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 0]) and the BF as inputs (e.g. [0, 0, 0, 1, 1, 1, 0, 0, 

0, 1, 1, 1]). Where 1 represents the bus and 0 represents the 

airplane, BF is a binary array. In this study, the local 

search function two opt () was used. When it comes to 

local searches for the traveling salesman issue, the 2-opt 

operator is by far the most popular and successful choice. 

The basic concept is to reverse the sequence of a route that 

now doubles back on itself. 

The most efficient method for computing 2-opt involves 

comparing just the distance of the swapped edges before 

and after the transformation. In certain cases, the 2-opt 

operator may be used, which is computationally wasteful 

since it compares the whole distance. Given the availability 

of both bus and plane, as well as a bus than plane and 

plane then bus, there are a total of four permutations to 

think about. 

Visualizations of Pareto approximation sets in three 

dimensions are produced using the suggested method (fig-

1). 

 

Fig. 1: Pareto Visualization 

Additionally, the most economical, expedient, and 

environmentally friendly route combination is identified 

(table 7). 

Table 7: cheapest, the fastest, and the greenest set of 

routes 

cost time 
carbo

n 
route BF sum 

27525.

0 
4344.0 225.0 

0,5,7,4,3,

11,6,2,10,

9,1,8,0 

B,B,F,F,F,B

,F,F,B,B,B,

B 

32094.

0 

28642.

0 
4655.0 173.0 

0,5,4,7,6,

11,3,2,10,

9,1,8,0 

B,B,F,F,B,

B,B,F,B,B,

B,B 

33470.

0 

29183.

0 
4141.0 248.0 

0,9,8,1,10

,2,6,11,3,

4,7,5,0 

B,B,F,F,B,F

,B,F,F,F,B,

B 

33572.

0 

29735.

0 
3775.0 260.0 

0,9,8,1,10

,2,6,11,3,

4,7,5,0 

B,B,F,F,F,F

,F,F,F,B,B,

B 

33770.

0 

28326.

0 
5505.0 191.0 

0,5,7,4,3,

11,6,2,10,

9,1,8,0 

B,B,B,F,F,

B,F,B,B,B,

B,B 

34022.

0 

 

Best route is visualized in fig 2. 
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Fig. 2: Best route (cheapest, the fastest, and the greenest) 

5. Conclusion 

Public transportation system expansion potential has 

received a lot of attention as of late because of the rising 

demand for transportation services in most major cities 

throughout the globe. There are several factors to consider 

while organizing a trip, such as the best way to get there 

and how long it will take. We present a computationally 

efficient elitist multi-objective evolutionary algorithm that 

uses a non-dominated sorting strategy to solve this issue. 

The model maximizes a Pareto front (trade-off) between 

reducing capital expenditures and minimizing network 

delays while pursuing dual target functions. 

Afterward, we conduct a thorough evaluation of a 

suggested method. The data demonstrate that the suggested 

method yields optimum Pareto front solutions, with strong 

convergence to the genuine optimal front and a 

characteristic of uniform distribution. A useful tool for 

real-world planning, the suggested method can be 

implemented. 
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