

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 810

Performance Evaluation of Integrated Hard Real-Time Application and

RISC V Processor for Spacecraft on Board Software Application

Vishwanath Y1*, Kiran Desai2, R S Upendra3, Venkatesh Prasad1, Sasidhar Babu Suvanam4, Arun

Biradar1, Supreeth S5, Rohith S6

Submitted: 23/04/2023 Revised: 27/06/2023 Accepted: 06/07/2023

Abstract: Space industries operating critical missions and safety aspects must operate robust and error-free software systems. A trace

amount of error causes failure of the entire spacecraft system; hence, the onboard software of spacecraft systems typically uses Baremetal

Cyclic executives to maintain robustness under error-free conditions. Baremetal Cyclic executive software programs are highly predictable

in their behavior, and have been evaluated and proven critically for space applications. Technology advent with increased computational

power and concurrency necessitates high-end applications of spacecraft systems such as Agriculture, Weather forecasting, communication,

and geospatial applications. To meet these challenges, spacecraft systems must be upgraded to handle high-level computational loads, time

complexities, and parallelism in activity at the manifold. Currently, space agencies across the globe replace the conventional Baremetal

Cyclic executives with advanced RTOS developed on single/multicore processors such as Power PC and LEON4 based on ARINC 653

specifications, which are proprietary, run with the operating system, that is, VxWorks, RTEMS, etc. The execution of the RISC V

architecture in the onboard software of a spacecraft system offers advantages, such as openness, modularity, extensibility, and stability.

Many RISC-V designs have single/multicore architectures with open-source RTOS support. In the present work, we developed a prototype

built on hard real-time satellite application software and evaluated its performance using an RTOS stack on a RISC V series. This research

also developed a library to allow portable application development for any flavor of the RISC V architecture.

Keywords: Space/Avionics, Onboard software system, Baremetal Cyclic executives, RTOS, Multiprocessor, Hard Real Time Systems, RISC

V, Closed Loop systems

1. Introduction

Hard Real Time (HRT) systems is a Boolean outcome

unlike soft real time systems; works on the assumptions

whether a system succeeds in meeting the deadlines or not

[1]. Generally, HRT is a critical system, failure to which

may result in social/financial loss [2]. Spacecraft on board

software is such mission/safety critical software wherein

achieving the deadlines are of prime importance [3]. In such

systems, selection of microprocessors and corresponding

execution environment plays a vital role. Various flavours

of microprocessor cores proprietaries such as Power PC,

ARM LEON3 (SparcV8) etc. are extensively used in

onboard systems of spacecrafts [4]. Most of the applications

in such HRTs will be developed employing Baremetal real

time cyclic executive software to achieve the required HRT

functionalities [5]. Technology advancement demands high

end computation power, so that the existing Baremetal real

time Cyclic executive software [17, 19] may not serve the

purpose and need a replacement with the much-advanced

software architecture such as open RISC V. Open RISC V

architecture comes along with various advantages such as

layered and extensible ISA; common set of shared tools and

development resources; flexibility to customize processor;

accelerate time to market etc. [6]. With these advantages,

manufacturers, and Field-Programmable Gate Array

(FPGA) developers all over the world are developing

various flavours of RISC-V processors with varied

applications [7].

With this interest, present work aimed to explore RISC V

processor and to conduct a built-in prototype-based case

study applying RTOS in regard with spacecraft on board

software application and also to prove the possible

implementation of RISC V integrated with RTOS for

satellite applications. Present work proposed the usage of

1Professor, School of Computer Science and Engineering, REVA

University, Bengaluru-560064, India

ORCID ID: https://orcid.org/0000-0003-2210-2297
2Student, School of Computer Science and Engineering, REVA University,

Bengaluru-560064, India
3Associate Professor, School of Electronics & Communications

Engineering, REVA University, Bengaluru-560064, India

ORCID ID: https://orcid.org/0000-0003-4749-1719
1Professor, School of Computer Science and Engineering, REVA

University, Bengaluru-560064, India
4Professor, Department of Computer Science and Engineering, School of

Engineering, Presidency University, Bengaluru-560064, India

ORCID ID: https://orcid.org/0000-0002-9006-0853
1Professor, School of Computer Science and Engineering, REVA

University, Bengaluru-560064, India

ORCID ID: https://orcid.org/0000-0003-2355-7066
5Assistant Professor, School of Computer Science and Engineering, REVA

University, Bengaluru-560064, India

ORCID ID: https://orcid.org/0000-0002-7097-6733
6Associate Professor, Nagarjuna College of Engineering and Technology,

Bengaluru-562110, India

ORCID ID: https://orcid.org/0000-0001-5709-9492

* Corresponding Author Email: vishwanath.y@reva.edu.in

https://orcid.org/0000-0002-9006-0853

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 811

Shakti C Class processors and its compatible FPGA,

compiler tool chain to develop a typical Altitude and Orbit

Control System (AOCS) for space/avionics applications.

2. Literature Review

In [8] stated that in very near future, NASA is bound to face

the requirements for reliable space based multicore

processing methods and approaches that can deliver under

the given extreme constraints of power, mass, and cost

features [8]. The usage of multicore processor is extensively

discussed in terms of onboard processing power and ability

to support fault tolerant environment in the research paper

published in [9]. The paper discusses about the

experimentation carried out with multicore processor used

on board of Mars Rover to evaluate the performance of

image processing analysis. The hardware setup includes

Tilera TILE64TM 750 MHz with concurrency architecture

of 64 processing elements. The developed hardware

architecture [18] setup supports a Linux based software

architecture which includes the standard GNU C and C++

compilers and other support tools like debugger and object

manipulation tools. Hence the development environment

supports a full featured Linux platform to development and

performance evaluation. The results reported that, multicore

processor environment has made an impactful step by

qualifying the code for the radiation hardened multicore

processor and also there is a ten-fold increase in the average

runtime of image processing algorithm has been noticed [9].

A research team developed MIPS R3000 processor

supported spacecraft onboard real time software

architecture system. The developed architecture system is

focused on fault detection and identification (FDI). The

system makes use of prony approximation and FFNN (feed

forward neural network) to classify the anomalies detected

from the wheel and solar panel. The result of the

classification is found to have an accuracy of 100% [10].

 In the recent past time various countries across the globe

has witnessed the tremendous increase in the number of

satellites being launched, among all most of them are used

for agriculture, commercial and research needs.

Furthermost, these satellites carry a good number of sensors

which can generate enormous amount of data i.e optical

sensing, hyperspectral, infrared imaging data etc. Hence the

onboard software system is expected to have large memory

to store this huge amount of data generated and make use of

the downlink bandwidth to send it back to the earth station

for further processing, which can make the system

unproductive. The ineffectiveness of the onboard software

system can be overcome by having an onboard system

capable of processing the data and sending the required data

on the downlink. A set of six experiments to demonstrate

intelligent data processing capability using AMD A10-

8700P and AMD V1605B part of the V1000 family of SOCs

using the ROCm HPC stack. The results obtained from the

setup reported significant benefits in terms of radiation

tolerance and observed that the deep learning training can

be performed on the orbit effectively and neural network

designed for earth observation application can be applied for

onboard data processing and self-learning [11]. Aranda et

al. (2020) conducted a study on RISC V soft processor

implemented on FPGA which can be used as an onboard

computer of space application. Study used fault injection

experimentation method to assess the performance of RISC

V software processor installed in satellite onboard software

system. The experimentation results have shown that, 96%

of injected errors didn’t create any wrong outcome, the

analysis of the result obtained revealed that many of the bits

that Xilinx classifies as essential do not influence the

behaviour by inducing the errors, hence they cannot be

considered as critical errors. Therefore, based on the results

study proposed a procedure to compute the empirical

percentage of critical bits that helps in assessing the fault

tolerance capability of the system [12].

From this critical review it is evidenced that the present

onboard processors and operating systems employed in the

satellite on board software communication network need to

be updated with the multicore based processing system runs

with the installed RISC V multicore processor in order to

support the storage of enormous data generated by the

satellites and also to send the data to downlink station for

further processing. Hence it is advised to develop a

prototype applying the RISC V multicore processor using

real time operating system to know the real time application

of multicore processor system in the satellite onboard

software system.

3. Shakti C Class Processor and Tool Chain

The Shakti processor program was initiated by IIT-M RISE

group in 2014. The major aim of the program is to bridge

industry and academia by providing innovative and

customized solutions without royalties. The Shakti

processors designed by IIT-M comes in various classes

based on the application at hand to be solved [13]. Any

ecosystem built for spacecraft on board software

development consists necessary elements as discussed in

Figure 1 [14].

Fig 1. Shakti C Class Stack

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 812

A. Processor selection: Shakti C Class processor was

selected; it is a new upgraded version from RISE and

represents fault tolerant class (F Class)

B. RTOS Selection: FreeRTOS was selected for

development among the existing RTOS flavours such

as RT Linux, FreeRTOS and Zephyr RTOS.

C. RISC V GNU GCC Compiler: An Architecture

design of the prototype developed and tested on RISC

V Shakti C Class processor and named it as Vyoma

Application.

4. System Design of Vyoma Application

Vyoma system consists of following architectural

components.

Shakti C Class IP Core: Shakti C Class IP was compiled

using BlueSpec compiler and Vivado Tool Suite; generated

by loading bit/mcs file to ArtyA7 100T FPGA. Further, the

loaded FPGA was configured as 64-bit single core processor

known as Shakti C Class processor [15].

Fig 2. Vyoma System Context Diagram

4.1 Vyoma Spacecraft on Board Application

Application was developed with a conceptual understanding

of a multithreaded application running on a FreeRTOS OS

stack. The Vyoma application is a multithreaded application

which consists of three main threads [16].

4.2 ACS (Attitude Control System) Thread

Thread runs at 16ms frequency with 4 ms interval and is

responsible for Attitude Control of the spacecraft, by

executing following functions

• Reading the angular rate sensor data acquired through

data acquisition thread w (radians/s)

• Convert the rates into quaternions using small angle

approximation theorem as in Eq. (1)-(3).

Δ𝑞 = (
1

2
) �̇� (1)

𝑄 = 𝑄𝑏𝑛 × Δ𝑞 (2)

𝑄 = correct(𝑄)(Sign correctness) (3)

Compare with commanded altitude of spacecraft and

generate error as in Eq. (4):

𝜏 = −𝐾rate × (𝜔err) − 𝐾prop × (2.0 × Qerr)

 (4)

• Generate torque signal

i. Data Acq Thread: Runs at 4ms frequency with 2ms

interval and is responsible to

• Read angular rate using sensor such as MPU6050 real

sensor (or) CP2112 I2C driver sensor based on the

connection.

• Also, responsible for posting wheel torque to wheel

drive (UART FT232RL).

ii. Nav Thread: Help in providing precise navigation

information to Vyoma

iii. Software Timer Thread: A novel timer initiated by

present study and is responsible for triggering all other

threads in a timely manner. Timer runs at 1ms

frequency.

• Novel features of developed application:

➢ Nyquist sampling: Two times faster than the PD

Controller computational rate.

➢ A timer interrupt: After a brief initialization of all

state variables and devices, a timer interrupt initiated

at regular intervals, based on the thread frequency

specified, triggers execution as in Figure 3.

Fig 3. Multi-threaded architectural view

Fig 4. Controller details of Vyoma Application

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 813

• Developed architecture is portable enough to run on

POSIX based RT-Linux OS.

4.1. Spacecraft Dynamics:

Simulation to model Spacecraft environment.

1. Actuator Model (or) Wheel Model: An ideal wheel was

modelled with torque distributed to all the three wheels as

in Figure 5. UART driver provides wheel torque to Actuator

Model. Based on spacecraft inertia (measured to principal

axis Ixx, Iyy, Izz) it is integrated to body momentum, forms

the angular rate and wheel momentum. Body rate computed

is assessed by sensor model.

Fig 5. Wheel Model with each wheel mounted in principal

axis of body

2. Gyro Sensor Model: Model takes Body rates as input

and screen various sensor characteristics such as: Sensor

Bias, Sensor Gaussian Random noise, Misalignment factors

and Drift rate. Model was constructed by considering the

above discussed parameters, further study computes the

Gyro rate and is fed through CP2112 I2C drive and close the

loop. The Gyro model provides rate along all the three axes

in sensor frame. For ideal conditions, study considered

sensor frame and body frame that are aligned with each

other.

4.3 Brief Architecture of Vyoma Application:

As seen in the Figure 6, the entire software is implemented

as a multi-threaded software. The Software consists of three

threads, activated by mutex lock release mechanism. This

Activation is done by the Software timer, which is started

once the scheduler is started. Detailed explanation of what

each thread and Software timer performs is provided in

subsequent sections.

 The scheduler selected from FreeRTOS is Fixed Priority

Pre-emptive scheduling. This is also called as “Rate

Monotonic” Scheduling. The Prerequisites for this

scheduler to be used are;

• Ensure that the thread with smallest quantum to be

executed is assigned higher priority

➢ In this case Data Acquisition thread is provided

highest priority

• Similar frequency tasks to be given same priority

• Higher period tasks to be given lower priority

➢ In this case Orbit Determination/Nav Thread is

given lowest priority

The Vyoma application software consists of 4 major

components:

• Software Timer Trigger Module

• Data Acquisition Thread

• Attitude and Orbit Control System Thread

• Navigation, Orbit Determination Thread

Fig 6. Developed onboard power of Vyoma application

4.3.1 Software Timer Trigger Module:

Task Sequencer:

As can be seen in the below flowchart, the task sequencer

checks which threads must be unblocked for execution by

FreeRTOS, so that the tasks are kept in “ready to execute”

state. “Task Notify” functionality is used to release the

threads if they are blocked waiting for “Wait till notify” call,

which we will see in subsequent sections of thread/task

descriptions. This is the routine which decides the frequency

in which the tasks are to be executed, which was discussed

in previous section.

4.3.2 Data Acquisition Thread

This thread waits for “Task Sequencer” as shown in Figure

7 to release “sem” or “Task Notify”. This thread will be in

block state at beginning of execution or once its actions are

executed for that cycle. This thread is an infinite loop

running same tasks in a repeated manner.

Inputs to this thread:

• ulTaskNotifyTake to Thread Output from this thread:

Processed Gyro angles in all axes Delta Quaternions

with small angle approximations Propagated

quaternions representing the body attitude

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 814

Fig 7. vTimerCallBack

4.3.3 Attitude and Orbit Control System Thread:

This is the main Controller Thread of the entire System. The

job of this thread is to take input, Processed Quaternions,

Gyro Rates of all the three axes, execute PD Controller,

Compute Body Torque and provide output to Actuators.

Fig 8. rRead_I2C_Gyro_into_QIB

 This function reads propagates through QXQ

multiplication utility and generates current Body attitude.

Inputs to this thread:

Inputs to this thread:

• Processed Gyro Rates

• Current Body attitude (QBN), Reference Attitude

(QREF)

Output from this thread: Actuator Torque

4.3.4 Navigation, Orbit Determination Thread:

The Spacecraft always needs a reference to which it must

point in terms of Orientation and Angular velocity vectors.

These vectors are derived using the knowledge of current

Orbit/Trajectory and set of Orbital Parameters, which are

shown in the below figure and descriptions:

Fig 9. Functional flow of Orbit Model computation

Steps followed:

1. Read the Orbital Parameters initialized

2. Julian Date computation

a. JDN=(1461 * (year + 4800 + (month - 14)/12))/4

+(367 * (month - 2 - 12 * ((month - 14)/12)))/12 -

(3 * ((year + 4900 + (month - 14)/12)/100))/4 +

day - 32075;

b. JD=JDN+UT/(cSec_in_SolDay);

3. Computation of Eccentric and Mean Anomaly

a. Mean_anly=(n*(t-to));

b. Ecc_anly=Prev_Ecc_anly+(Mean_anly+e*sin(Ec

c_anly)-Ecc_anly)/(1.0-e*cos(Ecc_anly));

4. Computation of Mean Anomaly and Eccentric

Anomaly due to J2:

5. Computation of Position and Velocity in 2D Ellipse

6. Computation of Position and Velocity in 3D axes:

a. Using Right Ascension of ASC Node and

argument of perigee compute

7. Conversion of ECI Frame to ECEF Frame

8. Computation of Earth Pointing Direction Cosine

Matrix and Reference Quaternions

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 815

Qearth.q[3]=1.0+R_3x3DCM[0][0]+R_3x3DCM[1][1]+

R_3x3DCM[2][2];

Qearth.q[0]=1.0+R_3x3DCM[0][0]-R_3x3DCM[1][1]-

R_3x3DCM[2][2];

Qearth.q[1]=1.0-R_3x3DCM[0][0]+R_3x3DCM[1][1]-

R_3x3DCM[2][2];

Qearth.q[2]=1.0-R_3x3DCM[0][0]-

R_3x3DCM[1][1]+R_3x3DCM[2][2];

find_max();

Ang=euler_angle(Qearth.q[0],Qearth.q[1],Qearth.q[2],Q

earth.q[3]);

Rate=calculate_Rates(Ang,Prev_Ang);

9. Assigning to Reference Attitude Control system

Thread.

5. Setup and Results of Execution

5.1. Hardware setup of onboard Vyoma application

system:

Efficacy of the satellite onboard software system prototype

Vyoma is principally influenced by the accuracy and

robustness of the inbuilt hardware setup. The entire

hardware setup of Vyoma application was discussed in the

Figure 10 and it consists of,

1) A developed onboard software with Vyoma application

system represented in the Figure 10a.

Fig 10a. Developed onboard power of Vyoma application

2) Shakti class c processer powered on display outcome was

discussed in the Figure 10b,

Fig 10b. Shakti C Class Powered on system

3) Connecting through OpenOCD and GDB represented in

the Figure 10c.

Fig 10c. OpenOCD and GDB connected to Shakti C Class

IP Core

4) Execution of Threads as discussed in the Figure 10d.

Fig 10d. Threads Execution

5.2. Time tick response of FreeRTOS

As the threads are of minimum 4ms revisit time, there are

two ticks available from FreeRTOS in the developed

prototype, which provides necessary trigger for threads to

start. FreeRTOS in current implementation provides 1

tick/2ms which was sufficient to achieve the goal of present

study (Fig 11). Efforts have been ON to make it much finer

of the order of 0.5ms to take care of future requirements.

Fig 11. Time Tick response of FreeRTOS

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 816

5.3. Thread Response with Frequency 50 Hz, 20 Hz,

0.066Hz:

The thread response with Frequency 50Hz, 20Hz, 0.066Hz

is recorded. The scheduler used in FreeRTOSConfig file for

the same is fixed priority preemptive scheduling. As can be

seen in Fig 8, since service S1 is of higher priority, pre-

emption of S3 takes place as soon as S1 frequency has come

into effect. With the above results it is imperative that RISC

V and FreeRTOS combination is providing suitable

environment for engineers to use the tool chain.

Furthermore, closed loop studies indicate its effectiveness.

Fig12. Execution profile

5.4. Safety assessment

The safety aspect of the system is tested by considering a

sample scenario data recorded in the excel sheet as shown

in Figure 13, and when compared with that of the cheddar

output shown in Figure 14 where a one-to-one mapping is

considered, it clearly matches and hence we can conclude

that it is a safe system.

Fig 13. Manual Schedulability Analysis

Fig 14. Cheddar tool output

6. Conclusions

Based on the results obtained from the present study, it can

be concluded that the Vyoma architecture defined over the

RISC V-FreeRTOS stack for a single core can meet the hard

deadlines specified by the application. Hence, it is reported

that the RISC V C-class processor and FreeRTOS stack are

suitable for hard real-time applications. The current work

focused on setting up an architectural and detailed design of

spacecraft on board software on a free RTOS RISC V stack

on a single core on an experimental basis. The future work

pertaining to this work is as follows:

1) Portability prototype development between RT-Linux

and FreeRTOS

2) Performance enhancement and evaluation on Multi

core Shakti Processors [2]

3) Performance evaluation on Fault Tolerant F-class

processors

4) Development of comprehensive Guidance and

Navigation Control Software for Satellites for

Academic purposes.

Conflicts of Interest

All authors declare that they have no conflicts of interest.

Author Contributions

Vishwanath Y, Kiran Desai were identified Initial problem

identification, algorithm write-up, analysis, drafting of the

manuscript, and simulation. R S Upendra, Venkatesh

Prasad were responsible for the Literature survey and

helped in the initial review process. Sasidhar Babu

Suvanam, Arun Birader were responsible for the

Complexity analysis of the research, evaluation of the

research work. Supreeth S, Rohith S were responsible for

the figures, final formatting and applied for the journal. All

authors worked together to implement and evaluate the

integrated system, and approved the final version of the

paper.

Acknowledgment

The authors deeply acknowledge the support by the

Director, the School of Computer Science and

Engineering, REVA University, and the entire academic

team.

References

[1] L. E. Rubio-Anguiano, J. L. Briz and A. Ramírez-

Treviño, "Accounting for Preemption and Migration

Costs in the Calculation of Hard Real-Time Cyclic

Executives for MPSoCs," in IEEE Robotics and

Automation Letters, vol. 7, no. 3, pp. 7990-7997, July

2022, doi: 10.1109/LRA.2022.3186489.

[2] D. Palmer and R. S. Holmes, “Extremely Low Resource

Optical Identifier: A License Plate for Your Satellite,”

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 810–817 | 817

Journal of Spacecraft and Rockets, vol. 55, no. 4, pp.

1014–1023, Jul. 2018, doi: 10.2514/1.a34106.

[3] M. B. Quadrelli et al., “Guidance, Navigation, and

Control Technology Assessment for Future Planetary

Science Missions,” Journal of Guidance Control and

Dynamics, vol. 38, no. 7, pp. 1165–1186, Jul. 2015, doi:

10.2514/1.g000525.

[4] G. Lentaris et al., “High-Performance Embedded

Computing in Space: Evaluation of Platforms for

Vision-Based Navigation,” Journal of Aerospace

Information Systems, vol. 15, no. 4, pp. 178–192, Apr.

2018, doi: 10.2514/1.i010555.

[5] N. -J. Wessman et al., "De-RISC: the First RISC-V

Space-Grade Platform for Safety-Critical Systems,"

2021 IEEE Space Computing Conference (SCC),

Laurel, MD, USA, 2021, pp. 17-26, doi:

10.1109/SCC49971.2021.00010.

[6] N. -J. Wessman et al., "De-RISC: A Complete RISC-V

Based Space-Grade Platform," 2022 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), Antwerp, Belgium, 2022, pp. 802-807, doi:

10.23919/DATE54114.2022.9774557.

[7] L. A. Aranda et al., “Analysis of the Critical Bits of a

RISC-V Processor Implemented in an SRAM-Based

FPGA for Space Applications,” Electronics, vol. 9, no.

1, p. 175, Jan. 2020, doi: 10.3390/electronics9010175.

[8] C. Villalpando, D. Rennels, R. Some and M. Cabanas-

Holmen, "Reliable multicore processors for NASA

space missions," 2011 Aerospace Conference, Big Sky,

MT, USA, 2011, pp. 1-12, doi:

10.1109/AERO.2011.5747447.

[9] B. Bornstein, T. Estlin, B. Clement and P. Springer,

"Using a multicore processor for rover autonomous

science," 2011 Aerospace Conference, Big Sky, MT,

USA, 2011, pp. 1-9, doi:

10.1109/AERO.2011.5747454.

[10] E. A. Omran, W. A. Murtada and A. Serageldin,

"Spacecraft on-board real time software architecture for

fault detection and identification," 2017 12th

International Conference on Computer Engineering

and Systems (ICCES), Cairo, Egypt, 2017, pp. 615-620,

doi: 10.1109/ICCES.2017.8275379.

[11] F. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. A.

Troxel, “Enabling radiation tolerant heterogeneous

GPU-based onboard data processing in space,” Ceas

Space Journal, vol. 12, no. 4, pp. 551–564, Jun. 2020,

doi: 10.1007/s12567-020-00321-9.

[12] A. E. Wilson, M. Wirthlin and N. G. Baker, "Neutron

Radiation Testing of RISC-V TMR Soft Processors on

SRAM-Based FPGAs," in IEEE Transactions on

Nuclear Science, vol. 70, no. 4, pp. 603-610, April

2023, doi: 10.1109/TNS.2023.3235582.

[13] S. Tiwari, N. Gala, C. Rebeiro, and V. Kamakoti,

“PERI,” ACM Transactions on Architecture and Code

Optimization, vol. 18, no. 3, pp. 1–26, Apr. 2021, doi:

10.1145/3446210.

[14] N. Iuga, I. Zagan and V. G. Gaitan, "CPU Execution

Time Analysis based on RISC-V ISA Simulators: A

Survey," 2022 International Conference on

Development and Application Systems (DAS), Suceava,

Romania, 2022, pp. 12-18, doi:

10.1109/DAS54948.2022.9786163.

[15] A. Dörflinger et al., “A comparative survey of open-

source application-class RISC-V processor

implementations,” Proceedings of the 18th ACM

International Conference on Computing Frontiers.

ACM, May 11, 2021. doi: 10.1145/3457388.3458657.

[16] G. R. Granholm, P. J. Cefola, and W. L. Harris,

“Bridging the Tech Gap: Using STEM Internships to

Accelerate Innovation in the U.S. Air Force and Space

Force,” AIAA SCITECH 2022 Forum. American

Institute of Aeronautics and Astronautics, Jan. 03,

2022. doi: 10.2514/6.2022-1998.

[17] S. Abdul Halim, M. H. Othman, A. G. Buja, N. N.

Abdul Rahid, A. A. Sharip, and S. M. Md Zain, “C19-

SmartQ: Applying Real-Time Multi-Organization

Queuing Management System Using Predictive Model

to Maintain Social Distancing,” International Journal

of Interactive Mobile Technologies (iJIM), vol. 15, no.

06. International Association of Online Engineering

(IAOE), p. 108, Mar. 30, 2021. doi:

10.3991/ijim.v15i06.20597.

[18] A. Obukhov, D. Dedov, A. Siukhin, and A. Arkhipov,

“Mobile Simulator Control System for Isolating

Breathing Apparatus of Software-Hardware

Platform”, Int. J. Interact. Mob. Technol., vol. 14, no.

08, pp. pp. 32–42, May 2020.

[19] F. Al Huda, H. Tolle, and R. Andrie Asmara, “Realtime

Online Daily Living Activity Recognition Using Head-

Mounted Display”, Int. J. Interact. Mob. Technol., vol.

11, no. 3, pp. pp. 67–77, Apr. 2017.

[20] Sharma, R., & Dhabliya, D. (2019). A review of

automatic irrigation system through IoT. International

Journal of Control and Automation, 12(6 Special

Issue), 24-29. Retrieved from www.scopus.com

[21] Ana Rodriguez, Kristinsdóttir María, Pekka Koskinen

Pieter van der Meer, Thomas Müller. Machine

Learning Techniques for Multi-criteria Decision

Making in Decision Science. Kuwait Journal of

Machine Learning, 2(4). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/

214

http://www.scopus.com/

