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Abstract: Space industries operating critical missions and safety aspects must operate robust and error-free software systems. A trace 

amount of error causes failure of the entire spacecraft system; hence, the onboard software of spacecraft systems typically uses Baremetal 

Cyclic executives to maintain robustness under error-free conditions. Baremetal Cyclic executive software programs are highly predictable 

in their behavior, and have been evaluated and proven critically for space applications. Technology advent with increased computational 

power and concurrency necessitates high-end applications of spacecraft systems such as Agriculture, Weather forecasting, communication, 

and geospatial applications. To meet these challenges, spacecraft systems must be upgraded to handle high-level computational loads, time 

complexities, and parallelism in activity at the manifold. Currently, space agencies across the globe replace the conventional Baremetal 

Cyclic executives with advanced RTOS developed on single/multicore processors such as Power PC and LEON4 based on ARINC 653 

specifications, which are proprietary, run with the operating system, that is, VxWorks, RTEMS, etc. The execution of the RISC V 

architecture in the onboard software of a spacecraft system offers advantages, such as openness, modularity, extensibility, and stability. 

Many RISC-V designs have single/multicore architectures with open-source RTOS support. In the present work, we developed a prototype 

built on hard real-time satellite application software and evaluated its performance using an RTOS stack on a RISC V series. This research 

also developed a library to allow portable application development for any flavor of the RISC V architecture. 

Keywords: Space/Avionics, Onboard software system, Baremetal Cyclic executives, RTOS, Multiprocessor, Hard Real Time Systems, RISC 

V, Closed Loop systems 

1. Introduction 

Hard Real Time (HRT) systems is a Boolean outcome 

unlike soft real time systems; works on the assumptions 

whether a system succeeds in meeting the deadlines or not 

[1]. Generally, HRT is a critical system, failure to which 

may result in social/financial loss [2]. Spacecraft on board 

software is such mission/safety critical software wherein 

achieving the deadlines are of prime importance [3]. In such 

systems, selection of microprocessors and corresponding 

execution environment plays a vital role. Various flavours 

of microprocessor cores proprietaries such as Power PC, 

ARM LEON3 (SparcV8) etc. are extensively used in 

onboard systems of spacecrafts [4].  Most of the applications 

in such HRTs will be developed employing Baremetal real 

time cyclic executive software to achieve the required HRT 

functionalities [5]. Technology advancement demands high 

end computation power, so that the existing Baremetal real 

time Cyclic executive software [17, 19] may not serve the 

purpose and need a replacement with the much-advanced 

software architecture such as open RISC V. Open RISC V 

architecture comes along with various advantages such as 

layered and extensible ISA; common set of shared tools and 

development resources; flexibility to customize processor; 

accelerate time to market etc. [6]. With these advantages, 

manufacturers, and Field-Programmable Gate Array 

(FPGA) developers all over the world are developing 

various flavours of RISC-V processors with varied 

applications [7].  

With this interest, present work aimed to explore RISC V 

processor and to conduct a built-in prototype-based case 

study applying RTOS in regard with spacecraft on board 

software application and also to prove the possible 

implementation of RISC V integrated with RTOS for 

satellite applications. Present work proposed the usage of 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1Professor, School of Computer Science and Engineering, REVA 

University, Bengaluru-560064, India 

ORCID ID:  https://orcid.org/0000-0003-2210-2297 
2Student, School of Computer Science and Engineering, REVA University, 

Bengaluru-560064, India 
3Associate Professor, School of Electronics & Communications 

Engineering, REVA University, Bengaluru-560064, India 

ORCID ID:  https://orcid.org/0000-0003-4749-1719 
1Professor, School of Computer Science and Engineering, REVA 

University, Bengaluru-560064, India 
4Professor, Department of Computer Science and Engineering, School of 

Engineering, Presidency University, Bengaluru-560064, India 

ORCID ID:  https://orcid.org/0000-0002-9006-0853 
1Professor, School of Computer Science and Engineering, REVA 

University, Bengaluru-560064, India 

ORCID ID: https://orcid.org/0000-0003-2355-7066 
5Assistant Professor, School of Computer Science and Engineering, REVA 

University, Bengaluru-560064, India 

ORCID ID: https://orcid.org/0000-0002-7097-6733 
6Associate Professor, Nagarjuna College of Engineering and Technology, 

Bengaluru-562110, India 

ORCID ID: https://orcid.org/0000-0001-5709-9492 

* Corresponding Author Email: vishwanath.y@reva.edu.in 

https://orcid.org/0000-0002-9006-0853


International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2023, 11(3), 810–817 |  811 

Shakti C Class processors and its compatible FPGA, 

compiler tool chain to develop a typical Altitude and Orbit 

Control System (AOCS) for space/avionics applications. 

2. Literature Review 

In [8] stated that in very near future, NASA is bound to face 

the requirements for reliable space based multicore 

processing methods and approaches that can deliver under 

the given extreme constraints of power, mass, and cost 

features [8]. The usage of multicore processor is extensively 

discussed in terms of onboard processing power and ability 

to support fault tolerant environment in the research paper 

published in [9]. The paper discusses about the 

experimentation carried out with multicore processor used 

on board of Mars Rover to evaluate the performance of 

image processing analysis. The hardware setup includes 

Tilera TILE64TM 750 MHz with concurrency architecture 

of 64 processing elements. The developed hardware 

architecture [18] setup supports a Linux based software 

architecture which includes the standard GNU C and C++ 

compilers and other support tools like debugger and object 

manipulation tools. Hence the development environment 

supports a full featured Linux platform to development and 

performance evaluation. The results reported that, multicore 

processor environment has made an impactful step by 

qualifying the code for the radiation hardened multicore 

processor and also there is a ten-fold increase in the average 

runtime of image processing algorithm has been noticed [9]. 

A research team developed MIPS R3000 processor 

supported spacecraft onboard real time software 

architecture system. The developed architecture system is 

focused on fault detection and identification (FDI). The 

system makes use of prony approximation and FFNN (feed 

forward neural network) to classify the anomalies detected 

from the wheel and solar panel. The result of the 

classification is found to have an accuracy of 100% [10].  

 In the recent past time various countries across the globe 

has witnessed the tremendous increase in the number of 

satellites being launched, among all most of them are used 

for agriculture, commercial and research needs. 

Furthermost, these satellites carry a good number of sensors 

which can generate enormous amount of data i.e optical 

sensing, hyperspectral, infrared imaging data etc. Hence the 

onboard software system is expected to have large memory 

to store this huge amount of data generated and make use of 

the downlink bandwidth to send it back to the earth station 

for further processing, which can make the system 

unproductive. The ineffectiveness of the onboard software 

system can be overcome by having an onboard system 

capable of processing the data and sending the required data 

on the downlink. A set of six experiments to demonstrate 

intelligent data processing capability using AMD A10-

8700P and AMD V1605B part of the V1000 family of SOCs 

using the ROCm HPC stack. The results obtained from the 

setup reported significant benefits in terms of radiation 

tolerance and observed that the deep learning training can 

be performed on the orbit effectively and neural network 

designed for earth observation application can be applied for 

onboard data processing and self-learning [11]. Aranda et 

al. (2020) conducted a study on RISC V soft processor 

implemented on FPGA which can be used as an onboard 

computer of space application. Study used fault injection 

experimentation method to assess the performance of RISC 

V software processor installed in satellite onboard software 

system. The experimentation results have shown that, 96% 

of injected errors didn’t create any wrong outcome, the 

analysis of the result obtained revealed that many of the bits 

that Xilinx classifies as essential do not influence the 

behaviour by inducing the errors, hence they cannot be 

considered as critical errors. Therefore, based on the results 

study proposed a procedure to compute the empirical 

percentage of critical bits that helps in assessing the fault 

tolerance capability of the system [12].  

From this critical review it is evidenced that the present 

onboard processors and operating systems employed in the 

satellite on board software communication network need to 

be updated with the multicore based processing system runs 

with the installed RISC V multicore processor in order to 

support the storage of enormous data generated by the 

satellites and also to send the data to downlink station for 

further processing. Hence it is advised to develop a 

prototype applying the RISC V multicore processor using 

real time operating system to know the real time application 

of multicore processor system in the satellite onboard 

software system.  

3. Shakti C Class Processor and Tool Chain 

The Shakti processor program was initiated by IIT-M RISE 

group in 2014. The major aim of the program is to bridge 

industry and academia by providing innovative and 

customized solutions without royalties. The Shakti 

processors designed by IIT-M comes in various classes 

based on the application at hand to be solved [13]. Any 

ecosystem built for spacecraft on board software 

development consists necessary elements as discussed in 

Figure 1 [14].  

 

Fig 1. Shakti C Class Stack 
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A. Processor selection: Shakti C Class processor was 

selected; it is a new upgraded version from RISE and 

represents fault tolerant class (F Class) 

B. RTOS Selection: FreeRTOS was selected for 

development among the existing RTOS flavours such 

as RT Linux, FreeRTOS and Zephyr RTOS. 

C. RISC V GNU GCC Compiler: An Architecture 

design of the prototype developed and tested on RISC 

V Shakti C Class processor and named it as Vyoma 

Application.  

4. System Design of Vyoma Application 

Vyoma system consists of following architectural 

components.  

Shakti C Class IP Core: Shakti C Class IP was compiled 

using BlueSpec compiler and Vivado Tool Suite; generated 

by loading bit/mcs file to ArtyA7 100T FPGA. Further, the 

loaded FPGA was configured as 64-bit single core processor 

known as Shakti C Class processor [15].  

Fig 2. Vyoma System Context Diagram 

4.1 Vyoma Spacecraft on Board Application 

Application was developed with a conceptual understanding 

of a multithreaded application running on a FreeRTOS OS 

stack. The Vyoma application is a multithreaded application 

which consists of three main threads [16].  

4.2 ACS (Attitude Control System) Thread 

Thread runs at 16ms frequency with 4 ms interval and is 

responsible for Attitude Control of the spacecraft, by 

executing following functions 

• Reading the angular rate sensor data acquired through 

data acquisition thread w (radians/s) 

• Convert the rates into quaternions using small angle 

approximation theorem as in Eq. (1)-(3). 

Δ𝑞 = (
1

2
) �̇�   (1) 

𝑄 = 𝑄𝑏𝑛 × Δ𝑞   (2) 

𝑄 = correct(𝑄)( Sign correctness ) (3) 

 

Compare with commanded altitude of spacecraft and 

generate error as in Eq. (4): 

𝜏 = −𝐾rate × (𝜔err ) − 𝐾prop × (2.0 ×  Qerr )  

 (4) 

• Generate torque signal  

i. Data Acq Thread: Runs at 4ms frequency with 2ms 

interval and is responsible to  

• Read angular rate using sensor such as MPU6050 real 

sensor (or) CP2112 I2C driver sensor based on the 

connection. 

• Also, responsible for posting wheel torque to wheel 

drive (UART FT232RL). 

ii. Nav Thread: Help in providing precise navigation 

information to Vyoma 

iii. Software Timer Thread: A novel timer initiated by 

present study and is responsible for triggering all other 

threads in a timely manner. Timer runs at 1ms 

frequency. 

• Novel features of developed application:  

➢ Nyquist sampling: Two times faster than the PD 

Controller computational rate. 

➢ A timer interrupt: After a brief initialization of all 

state variables and devices, a timer interrupt initiated 

at regular intervals, based on the thread frequency 

specified, triggers execution as in Figure 3.  

 

Fig 3. Multi-threaded architectural view 

 

Fig 4. Controller details of Vyoma Application 
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• Developed architecture is portable enough to run on 

POSIX based RT-Linux OS. 

4.1. Spacecraft Dynamics: 

Simulation to model Spacecraft environment. 

1. Actuator Model (or) Wheel Model: An ideal wheel was 

modelled with torque distributed to all the three wheels as 

in Figure 5. UART driver provides wheel torque to Actuator 

Model. Based on spacecraft inertia (measured to principal 

axis Ixx, Iyy, Izz) it is integrated to body momentum, forms 

the angular rate and wheel momentum. Body rate computed 

is assessed by sensor model. 

 

Fig 5. Wheel Model with each wheel mounted in principal 

axis of body 

2. Gyro Sensor Model: Model takes Body rates as input 

and screen various sensor characteristics such as: Sensor 

Bias, Sensor Gaussian Random noise, Misalignment factors 

and Drift rate.  Model was constructed by considering the 

above discussed parameters, further study computes the 

Gyro rate and is fed through CP2112 I2C drive and close the 

loop. The Gyro model provides rate along all the three axes 

in sensor frame. For ideal conditions, study considered 

sensor frame and body frame that are aligned with each 

other.  

4.3 Brief Architecture of Vyoma Application: 

As seen in the Figure 6, the entire software is implemented 

as a multi-threaded software. The Software consists of three 

threads, activated by mutex lock release mechanism. This 

Activation is done by the Software timer, which is started 

once the scheduler is started. Detailed explanation of what 

each thread and Software timer performs is provided in 

subsequent sections.  

 The scheduler selected from FreeRTOS is Fixed Priority 

Pre-emptive scheduling. This is also called as “Rate 

Monotonic” Scheduling. The Prerequisites for this 

scheduler to be used are; 

• Ensure that the thread with smallest quantum to be 

executed is assigned higher priority 

➢ In this case Data Acquisition thread is provided 

highest priority 

• Similar frequency tasks to be given same priority 

• Higher period tasks to be given lower priority 

➢ In this case Orbit Determination/Nav Thread is 

given lowest priority 

The Vyoma application software consists of 4 major 

components: 

• Software Timer Trigger Module 

• Data Acquisition Thread 

• Attitude and Orbit Control System Thread 

• Navigation, Orbit Determination Thread 

 

Fig 6. Developed onboard power of Vyoma application 

4.3.1 Software Timer Trigger Module: 

Task Sequencer: 

As can be seen in the below flowchart, the task sequencer 

checks which threads must be unblocked for execution by 

FreeRTOS, so that the tasks are kept in “ready to execute” 

state. “Task Notify” functionality is used to release the 

threads if they are blocked waiting for “Wait till notify” call, 

which we will see in subsequent sections of thread/task 

descriptions. This is the routine which decides the frequency 

in which the tasks are to be executed, which was discussed 

in previous section. 

4.3.2 Data Acquisition Thread 

This thread waits for “Task Sequencer” as shown in Figure 

7 to release “sem” or “Task Notify”.  This thread will be in 

block state at beginning of execution or once its actions are 

executed for that cycle. This thread is an infinite loop 

running same tasks in a repeated manner.  

Inputs to this thread:  

• ulTaskNotifyTake to Thread Output from this thread: 

Processed Gyro angles in all axes Delta Quaternions 

with small angle approximations Propagated 

quaternions representing the body attitude 
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Fig 7. vTimerCallBack 

4.3.3 Attitude and Orbit Control System Thread: 

This is the main Controller Thread of the entire System. The 

job of this thread is to take input, Processed Quaternions, 

Gyro Rates of all the three axes, execute PD Controller, 

Compute Body Torque and provide output to Actuators. 

 

Fig 8. rRead_I2C_Gyro_into_QIB 

 This function reads propagates through QXQ 

multiplication utility and generates current Body attitude. 

Inputs to this thread:  

Inputs to this thread:  

• Processed Gyro Rates 

• Current Body attitude (QBN), Reference Attitude 

(QREF) 

Output from this thread: Actuator Torque 

4.3.4 Navigation, Orbit Determination Thread: 

The Spacecraft always needs a reference to which it must 

point in terms of Orientation and Angular velocity vectors. 

These vectors are derived using the knowledge of current 

Orbit/Trajectory and set of Orbital Parameters, which are 

shown in the below figure and descriptions: 

 

Fig 9. Functional flow of Orbit Model computation 

Steps followed: 

1. Read the Orbital Parameters initialized 

2. Julian Date computation 

a. JDN=(1461 * (year + 4800 + (month - 14)/12))/4 

+(367 * (month - 2 - 12 * ((month - 14)/12)))/12 - 

(3 * ((year + 4900 + (month - 14)/12)/100))/4 + 

day - 32075; 

b. JD=JDN+UT/(cSec_in_SolDay); 

3. Computation of Eccentric and Mean Anomaly 

a. Mean_anly=(n*(t-to)); 

b. Ecc_anly=Prev_Ecc_anly+(Mean_anly+e*sin(Ec

c_anly)-Ecc_anly)/(1.0-e*cos(Ecc_anly)); 

4. Computation of Mean Anomaly and Eccentric 

Anomaly due to J2: 

5. Computation of Position and Velocity in 2D Ellipse 

6. Computation of Position and Velocity in 3D axes: 

a. Using Right Ascension of ASC Node and 

argument of perigee compute  

7. Conversion of ECI Frame to ECEF Frame 

8. Computation of Earth Pointing Direction Cosine 

Matrix and Reference Quaternions 
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Qearth.q[3]=1.0+R_3x3DCM[0][0]+R_3x3DCM[1][1]+

R_3x3DCM[2][2]; 

Qearth.q[0]=1.0+R_3x3DCM[0][0]-R_3x3DCM[1][1]- 

R_3x3DCM[2][2]; 

Qearth.q[1]=1.0-R_3x3DCM[0][0]+R_3x3DCM[1][1]- 

R_3x3DCM[2][2]; 

Qearth.q[2]=1.0-R_3x3DCM[0][0]-

R_3x3DCM[1][1]+R_3x3DCM[2][2]; 

find_max(); 

Ang=euler_angle(Qearth.q[0],Qearth.q[1],Qearth.q[2],Q

earth.q[3]); 

Rate=calculate_Rates(Ang,Prev_Ang); 

9. Assigning to Reference Attitude Control system  

Thread. 

5. Setup and Results of Execution 

5.1. Hardware setup of onboard Vyoma application 

system:  

Efficacy of the satellite onboard software system prototype 

Vyoma is principally influenced by the accuracy and 

robustness of the inbuilt hardware setup. The entire 

hardware setup of Vyoma application was discussed in the 

Figure 10 and it consists of,  

1) A developed onboard software with Vyoma application 

system represented in the Figure 10a. 

Fig 10a. Developed onboard power of Vyoma application 

2) Shakti class c processer powered on display outcome was 

discussed in the Figure 10b,  

Fig 10b. Shakti C Class Powered on system 

 

3) Connecting through OpenOCD and GDB represented in 

the Figure 10c. 

 

Fig 10c. OpenOCD and GDB connected to Shakti C Class 

IP Core 

4) Execution of Threads as discussed in the Figure 10d. 

Fig 10d. Threads Execution 

5.2. Time tick response of FreeRTOS 

As the threads are of minimum 4ms revisit time, there are 

two ticks available from FreeRTOS in the developed 

prototype, which provides necessary trigger for threads to 

start. FreeRTOS in current implementation provides 1 

tick/2ms which was sufficient to achieve the goal of present 

study (Fig 11). Efforts have been ON to make it much finer 

of the order of 0.5ms to take care of future requirements. 

 

Fig 11. Time Tick response of FreeRTOS 
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5.3. Thread Response with Frequency 50 Hz, 20 Hz, 

0.066Hz: 

The thread response with Frequency 50Hz, 20Hz, 0.066Hz 

is recorded. The scheduler used in FreeRTOSConfig file for 

the same is fixed priority preemptive scheduling. As can be 

seen in Fig 8, since service S1 is of higher priority, pre-

emption of S3 takes place as soon as S1 frequency has come 

into effect. With the above results it is imperative that RISC 

V and FreeRTOS combination is providing suitable 

environment for engineers to use the tool chain. 

Furthermore, closed loop studies indicate its effectiveness. 

 
Fig12. Execution profile 

5.4. Safety assessment 

The safety aspect of the system is tested  by considering a 

sample scenario data recorded in the excel sheet as shown 

in Figure 13, and when compared with that of the cheddar 

output shown in Figure 14 where a one-to-one mapping is 

considered, it clearly matches and hence we can conclude 

that it is a safe system. 

 
Fig 13. Manual Schedulability Analysis 

 

Fig 14. Cheddar tool output 

6. Conclusions 

Based on the results obtained from the present study, it can 

be concluded that the Vyoma architecture defined over the 

RISC V-FreeRTOS stack for a single core can meet the hard 

deadlines specified by the application. Hence, it is reported 

that the RISC V C-class processor and FreeRTOS stack are 

suitable for hard real-time applications. The current work 

focused on setting up an architectural and detailed design of 

spacecraft on board software on a free RTOS RISC V stack 

on a single core on an experimental basis. The future work 

pertaining to this work is as follows: 

1) Portability prototype development between RT-Linux 

and FreeRTOS 

2) Performance enhancement and evaluation on Multi 

core Shakti Processors [2] 

3) Performance evaluation on Fault Tolerant F-class 

processors 

4) Development of comprehensive Guidance and 

Navigation Control Software for Satellites for 

Academic purposes. 
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