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Abstract: Modern crop yield prediction helps farmers and policymakers maximize agricultural operations. Predicting crop yields is 

difficult, especially given scant agricultural datasets. This paper proposes a novel method that combines K-Fold validation and multi-model 

ensemble approaches to improve crop production forecast accuracy and address sparse data. Our technique starts with an improved sparse 

data clustering process that efficiently groups comparable data points and mitigates the impact of missing or limited information. Clustering 

helps us find patterns and trends in data, reducing the impact of data sparsity on crop production projections. K-Fold validation, a strong 

cross-validation method, is used to evaluate various prediction models. We test each model on different folds by partitioning the data into 

K subsets. K-Fold validation validates the generalizability of our multi-model ensemble strategy, improving crop production estimates. 5-

fold validation of multi-models like SVM, CNN, DT, NN, and NB predicts. Predictions depend on "log of" performance. Our methodology 

works on real-world agricultural datasets through considerable experimentation and comparison with existing methods. In scarce data, crop 

yield forecast accuracy improved significantly. Our ensemble of models beats individual models, demonstrating the value of many 

approaches for prediction. In conclusion, K-Fold validation and multi-model ensembles improve crop production prediction accuracy, 

especially with scarce agricultural data. This research can improve agricultural decision-making and sustainability by developing more 

precise predictions. 

Keywords: Crop yield, Multi Model ensemble, K-Fold validation, Sparse Data clustering process. 

1. Introduction 

Food security and economic stability rely heavily on 

accurate predictions of crop yields, making this an 

indispensable part of contemporary agriculture. With 

reliable forecasts, farmers can prepare for planting seasons, 

allocate resources efficiently, and lessen the impact of 

natural disasters or other threats on their harvests. However, 

forecasting agricultural yields is difficult due to the interplay 

of numerous variables [1]. These include climate, soil, 

agronomic methods, pests, and diseases. Predicting crop 

yields is difficult because of a lack of data. Due to factors 

such as the scarcity of ground-truth data, differences in data 

collection techniques, and the very nature of agricultural 

data, it is not uncommon for agricultural datasets to be 

missing or incomplete. Predicting agricultural yields with 

little information can be risky because of the potential for 

erroneous and unreliable results [2]. Using a new 

combination of K-Fold validation and multi-model 

ensemble approaches, this research proposes a solution to 

the problem of sparse data in agricultural production 

prediction.  

To better account for missing or sparse data and boost our 

models' prediction powers, we also offer a new sparse data 

clustering approach. A major problem in agriculture is the 

difficulty of predicting harvest yields [3]. Every farmer 

always gives serious consideration to the potential returns 

on his investments. In the past, ranchers' historical 

experiences on a certain harvest field were dissected to make 

production predictions. Climate, irrigation, and the efforts of 

humans and machines all contribute to agricultural outputs. 

Accurate data on harvest yield history is crucial for making 

decisions associated with the executives' horticultural risk. 

In machine learning, soil types are typically classified and 

characterized using the Fuzzy C Means (FCM) method. 

 

Fig 1: crop yield prediction using various models 

Generalizing and grouping unclear soil data is a breeze using 

FCM [4]. Cotton yield data classification and the rule 

mining classification algorithm are two examples of where 
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ANN modeling joins with artificial intelligence to overcome 

its limitations. In addition, training soil data is used in the 

investigation of soil property and soil shear strength using 

Artificial Neural Networks. For predicting wheat yield in 

response to inputs from fertilizers and sensors, in particular 

the Multilayer Perceptron model utilized as an ANN [5]. 

Then, we utilized a combination of a radial basis function 

and Support Vector Regression. Regional and local yield 

predictions have been made using a variety of methods 

(Figure 1). Forecasting yield has been done at both the field 

and regional scales using a variety of methods, including 

field surveys, mathematical models that mimic crop 

development and yield, statistical models, remote sensing, 

and combinations of these methods [6]. However, there are 

several variables at play, including crop and variety, soil 

type, management practices, pests and diseases, and 

seasonal climate and weather patterns, that make accurate 

crop yield predictions difficult. The response of a crop to 

these elements and their interplay is highly nonlinear and is 

not always easy to predict. Recent years have seen an uptick 

in the usage of methods based on AI algorithms, with some 

promising reports of success in using machine learning to 

predict crop yields.  

Since agriculture's conception and widespread adoption, it 

has served as the pinnacle of human endeavor in every 

society. It is not just a huge deal for the expanding economy; 

we need it to keep going [7]. The future of the Indian 

economy and humanity depend on this field. It is also 

responsible for a disproportionate share of the labor force. 

Time has greatly increased production needs. To mass-

produce, people are misusing technology. Farmers release 

hybrids daily. However, these varieties lack nutritional 

benefit. Artificial approaches damage soil. Ecosystem harm 

results. Preventing losses usually requires artificial methods. 

However, reliable crop production data helps farmers. 

Machine learning is spreading across all industries and 

helping build its best applications. Most devices are 

deployed after model analysis [8]. Machine Learning 

models increase agricultural yield. Since there were many 

more parameters, training information affected prediction. 

Precision agriculture, which guarantees quality despite 

environmental factors, would be the focus. Logistic 

Regression, Naive Bayes, Random Forest, and other 

machine learning classifiers are used to nudge a pattern 

toward consistency to predict accurately and stand on 

temperature and rainfall inconsistencies.  

2. Related Work 

Agribusiness and farming have gotten increasingly 

complicated in recent decades due to the deluge of data 

generated by cutting-edge farming equipment. As a result, a 

major challenge in data science is the need to create an 

automated system for analyzing and obtaining the usable 

data. For instance, potential yield is evaluated by looking at 

past cultivation and weather records. Meanwhile, the 

information provided by crop prices about supply and 

demand is crucial to the success of the agricultural industry 

[9]. There have been a number of studies conducted with the 

goal of better understanding the connection between harvest 

and climate from the perspective of harvest enhancement. In 

addition, the researchers focus on price forecasting, which is 

crucial for sales and production scheduling. Assuming a 

single element while making a crop selection decision is not 

particularly productive, and multiple factors are needed for 

meaningful decision making. Many different approaches are 

used to forecast agricultural output and harvests in the 

context of agricultural decision making [10]. The cost, 

accuracy, and regional applicability of traditional methods 

for increasing crop yields have all been shortcomings in the 

past. 

 

Fig 2: Crop yield prediction using machine learning  

The capability to increase regional crop production 

monitoring and forecast has been made possible by the 

recent rapid advancement of crop growth modeling and 

observation approaches. Taking into account a number of 

dynamic parameters (including, for example, water, 

nitrogen, weather, and soil), crop growth models predict 

production under varying management and environmental 

conditions. The following are some of the more common 

methods used for WF and crop prediction in the past. 

Machine learning is a cutting-edge method for predicting 

agricultural yields, as it uses data-driven algorithms to 

provide precise yield predictions [11]. These machine 

learning models are able to accurately estimate future crop 

yields by examining past crop data, weather patterns, soil 

features, and agricultural practices. Farmers, policymakers, 

and other stakeholders in the agricultural economy can 

greatly benefit from this capacity for foresight. Insights into 

future harvests allow farmers to better allocate resources, 
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arrange planting schedules, and make educated decisions 

that boost production and longevity. Several critical 

processes are involved in using machine learning to predict 

agricultural yields. The first step is to compile a 

comprehensive dataset of historical information on 

agricultural factors. In order to make the data acceptable for 

training machine-learning models, preprocessing steps such 

addressing missing values, normalization, and feature 

engineering are applied [12]. The complexity of the 

information and the associations between features and crop 

yield will determine the best model to use. After settling on 

a model, it is trained exhaustively with the cleaned and 

prepared data. At this stage, the model is being trained to 

recognize patterns and relationships in the data it has 

accumulated thus far. The model's efficacy and 

transferability to fresh data are assessed using a dedicated 

validation dataset. Root Mean Squared Error, Mean 

Absolute Error, and R-squared (R2) are only a few of the 

evaluation metrics used to determine the model's correctness 

and applicability [13]. The true value of machine learning 

for predicting agricultural yields resides in its capacity to 

make credible forecasts of future crop yields. Farmers and 

policymakers can use this information to fine-tune their 

farming operations. Timely and data-driven decision-

making becomes possible, enabling them to adapt to 

changing environmental conditions and optimize farming 

strategies. In addition, this method aids sustainable 

agriculture by cutting down on waste and making sure 

resources are allocated according to what is actually needed 

by crops [14]. Overall, applying machine learning to the task 

of predicting crop yields has tremendous potential to 

revolutionize the agriculture sector. Accurate and timely 

projections give stakeholders the information they need to 

make decisions that boost productivity, increase food 

security, and ensure agriculture's long-term sustainability. 

 

Fig 3: Crop yield prediction using deep Learning 

Methods 

Improved agricultural yield is dependent on both the soil's 

fertility and the weather. Baboo makes a weather forecast by 

taking into account the variables of altitude, latitude, 

altitude, pressure, temperature, humidity, and wind speed 

and direction. Fully connected 3-layer feed-forward 

Multilayer perceptron (MLP) networks with 

Backpropagation are applied to the input data. The network 

is trained with the multilayer feedforward ANN utilizing 

backpropagation learning, and the inventor, Sanjay, has 

proposed employing time series analysis to predict 

maximum and lowest temperatures and humidity. In [15] 

found that a temperature forecasting system built using an 

ANN network with 5 hidden layers and 5 inputs and a hidden 

layer configured with a sigmoid transfer function had the 

best performance for predicting output yield. The Figure 3 

depicts the fundamental architecture of a neural network for 

crop yield prediction. Second, machine learning can extract 

useful information from remote sensing data for agricultural 

decision-making. Feature extraction is the first step in most 

conventional machine learning methods. Crop 

categorization, weed detection, and yield prediction are just 

a few examples of the many tasks that may be tackled using 

the characteristics [16]. However, it can be challenging to 

identify appropriate characteristics, and older approaches 

have limited data-learning potential. New multilayer 

algorithms may now be created and trained thanks to 

developments in computational technology. The term "deep 

learning" is widely used to describe these techniques. 

Convolutional Neural Networks (CNNs) have distinguished 

themselves as a powerful tool for picture categorization and 

analysis among the several deep learning paradigms. 

Because the network's convolutional layers handle the 

feature extraction operation and the best features are gained 

through training, CNNs do not require any pre-calculated 

features [17]. This architecture means that CNNs need a lot 

of training data in order to converge. 

3. Methodology 

Predicting crop yields is an important part of contemporary 

agriculture since it helps farmers allocate resources more 

effectively and increase output. However, due to the 

intricate interplay of many factors impacting crop growth, 

precise yield prediction remains difficult. Using K-Fold 

validation and multi-model ensemble techniques, which are 

introduced here, is a novel way to boost the precision of crop 

production predictions. To evaluate the efficacy of 

predictive models, scientists employ K-Fold validation, a 

powerful cross-validation method. The dataset is "folded" 

into K subsets, or "folds," with each fold serving as a 

validation set and the remaining K folds being utilized for 

training. This is done a total of K times, with one instance 

each fold acting as the validation set [18]. By averaging over 

K iterations, a final performance metric can be determined. 

The K-Fold validation method is widely used to assess the 

generalizability of predictive models in the field of crop 
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production prediction. We ensure that the models are being 

tested on different subsets of the dataset, representative of 

the full range of possible environmental circumstances and 

crop development patterns, by dividing the data into various 

folds. This helps in reducing overfitting and improving the 

models' ability to make accurate predictions on unseen data. 

a. K-fold validation 

K-fold cross-validation is a method for testing the accuracy 

of predictive models. The data set is folded into k different 

groups. Each of k iterations during training and evaluating 

the model uses a different fold for the validation set. The 

estimated generalization performance of the model is 

calculated as the mean of the performance measures for each 

fold. This technique provides a more accurate evaluation of 

a model's performance and can be used in model evaluation, 

selection, and hyper parameter tuning. Training and testing 

would be carried out exactly once in each set (fold) 

throughout the entire procedure [19]. This aids our efforts to 

prevent overfitting. In our experience, the best results are 

achieved when a model is trained with a complete dataset in 

a single pass. The model we've been able to construct with 

the aid of k-fold cross-validation allows us to overcome this 

bias. In order to implement K-Fold Cross Validation, we 

must first face the difficulty of the data volume by dividing 

the dataset into three parts: Training, Testing, and 

Validation. Model construction and hyper parameter 

evaluations will be aided by the included Test and Train data 

sets. In which the parameter value, K (which must be an 

INTEGER), has been used repeatedly to verify the model's 

accuracy [20]. To keep things simple, we can split the Sparse 

Data clustering process in half according to K, and then run 

the train and test phases in a sequence that takes K times as 

long. Let's use a broad K as our starting point. If K=5, then 

the training and testing datasets will be divided into five 

equal groups. The flow of the fold-defined size is depicted 

graphically below to give you a notion of how it changes 

over the course of each run, with one fold being considered 

for testing and the rest being used for training and 

subsequent iterations. 

 

Fig 4: Process for k-Fold validation for the crop yield 

Prediction 

b.   Multi model Ensemble 

Using a number of different predictive models together to 

achieve better results is known as the model ensemble 

technique. Each of the currently available models has its 

own set of strengths and weaknesses; by combining them 

using the model ensemble technique, we can create a robust 

prediction framework [21]. In an effort to better anticipate 

short-term solar power output, this paper attempts to 

combine three widely-used models (the basic idea is 

depicted in Figure 5.  A gated recurrent unit network (GRU) 

is first trained using all of the original characteristics, and 

then its efficacy is evaluated using both a training set and a 

testing set. The next model's characteristics will be derived 

using the original attributes and the expected output power. 

The second step is to use a training set and a testing set to 

evaluate the XGBoost's performance once it has been 

updated with new features through training. New features 

for the next model are derived from the initial features, the 

anticipated output powers from the GRU network, and 

XGBoost once more. Finally, the test set is used to evaluate 

the efficacy of the trained multi-layer perceptron network 

(MLP) that was constructed in Step 3. The final findings are 

obtained by averaging the anticipated output powers from 

the GRU network, XGBoost, and the MLP network on the 

test set. 
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         Fig 5: Process of Multi model ensemble method 

With ensemble learning, numerous predictive models are 

combined into a single, more accurate model. The 

fundamental premise behind ensemble approaches is that by 

combining the predictions of multiple models, the 

shortcomings of the weaker models can be offset, leading to 

better overall performance. Machine learning, data science, 

and predictive analytics are just a few of the many fields that 

make use of multi-model ensemble techniques. By pooling 

the results of various independent models, ensemble 

approaches aim to boost forecast precision and stability. Each 

model in the ensemble has undergone its own training and is 

able to capture unique elements and patterns in the data. The 

ensemble can make a more accurate and thorough prediction 

since it draws on the expertise of many different models. 

Averaging the predictions of multiple models is a 

straightforward example of an ensemble method. Outliers 

and noise in the Sparse Data clustering process are mitigated 

with this strategy, leading to a more consistent and 

trustworthy forecast. Another method is weighted averaging, 

in which the models' predictions are averaged using different 

weights according to their relative strengths or areas of 

expertise in the Sparse Data clustering process. This lets us 

give greater weight to the more precise models, which in turn 

improves precision even further. One common ensemble 

method for classification tasks is majority voting, in which 

the prediction from each model is counted as a single vote. 

Misclassifications are reduced and overall prediction 

accuracy is improved with this strategy. Stacking is an 

advanced ensemble method that uses the predictions of 

numerous base models to train a meta-model. The meta-

model acquires the knowledge to efficiently combine the 

forecasts, capitalizing on the advantages of each underlying 

model. The combined prediction from these stacked models 

is often more accurate than any of the individual models. 

There is a lot to gain from using an ensemble of several 

models. They are able to make more accurate predictions, are 

more resilient to outliers, and generalize to novel data sets 

more effectively. Real-world applications might benefit from 

ensembles because they aggregate the predictions of multiple 

models, each of which has its own set of limitations and 

biases. Thoughtful consideration of model diversity, 

ensemble size, and proper combination strategies are 

essential for constructing a successful ensemble. In addition, 

since ensembles require training and combining several 

models, they may increase computational overhead. 

Therefore, to fully exploit the potential of multi-model 

ensemble techniques and attain improved predictive 

performance in a variety of applications, it is vital to choose 

the correct combination of models and methodologies. 

4. Experimental Setup and Results 

The suggested block diagram for 5-Fold Validation and 

Multi-Model Ensemble Techniques for Crop Yield 

Prediction begins with the input dataset, which is simply 

titled "Crop Yield Data." Features such as weather, soil 

characteristics, and agricultural techniques are included in 

this dataset of past crop yields. The data is subsequently 

processed using a 5-Fold cross-validation procedure in the 

"K-Fold Cross-Validation" section. The data is partitioned 

into five subsets, or folds, enabling a comprehensive 

examination of the models' efficacy across a variety of train-

test splits. The dataset splits into two sections after cross-

validation, labeled "Linear Regression Model" and 

"Decision Tree Model." Each fold's training data is utilized 

to fine-tune a separate Linear Regression model in the 

"Linear Regression Model" section. Each fold's training data 

is used independently to train a new Decision Tree model in 

the "Decision Tree Model" block. Different facets of the 

connections between input variables and crop yield can be 

captured by these models. Then, in the "Model Evaluation" 

section, we use the test datasets from each fold to assess the 

performance of the trained Linear Regression and Decision 

Tree models. In this process, the accuracy of the models is 

evaluated by making predictions for each Sparse Data 

clustering process point using the models on data that has 

not yet been seen. Increasing model diversity requires a 

methodical approach to combining base models, which is 

why stacking ensemble learning relies heavily on such a 

process. Our goal was to build a high-quality ensemble 

model, and we set out to do so by selecting three learners as 

our starting point. Figure 7 depicts the structure of the 

suggested stacking model. 

 

Fig 6: Block diagram for k-validation of multi model 

crop yield prediction using Sparse Data clustering process 
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We first conduct independent evaluations of ML models' 

efficacy, and then choose a base learner to employ in the 

stacking ensemble model's initial stage of training. Models 

are judged using a five-fold cross-validation procedure. 

Decision Tree, Support Vector Machine, and Naive Bayes 

were chosen as the three most effective base learners after 

extensive testing and analysis. The hyper parameter must be 

optimized during the base-learning stage. Using Bayesian 

optimization with cross-validation, we found the sweet spot 

for the hyper parameters of the underlying learners. The 

accuracy of the stacked model that combines these models 

can be improved by tuning the hyper parameters of the basic 

learners. Linear regression (LR) is a second-level prediction 

model used to determine the ideal building construction 

cost, and its inputs are the prediction results of the 

customized base models. 

 

Fig 7: k-fold validation of multi model for crop yield 

prediction 

In the "Ensemble Prediction" section, we average together 

the results of the Linear Regression and Decision Tree 

models. By combining the strengths of multiple models, this 

strategy increases the likelihood of producing a solid and 

accurate forecast. The "Performance Metrics" block is 

where the actual crop yield values from each fold are fed in 

order to evaluate the performance of the individual models 

and the ensemble. Root-mean-squared-error, mean-

absolute-error, and R-squared are some of the metrics 

computed here. These measures establish how well and 

consistently the models forecast. The final output of the 

block diagram is the results, which include model and 

ensemble performance measures. The goal of this all-

encompassing strategy is to improve crop production 

prediction accuracy and provide useful insights for decision-

making in agriculture by employing Multi-Model Ensemble 

Techniques and 5-Fold Validation. 

-----------------------------------------------------------------------

---- 

Algorithm 1: Algorithm for Multi-Model Ensemble 

Techniques and 5-Fold Validation. 

-----------------------------------------------------------------------

---- 

Start 

Input the crop yield dataset 

Split the dataset into K folds for K-Fold validation 

Initialize variables for ensemble prediction 

For each fold (i = 1 to K) 

“# Assuming you have your crop yield dataset loaded into a 

DataFrame 'data' 

# Make sure 'data' contains the features (X) and the target 

variable (y) 

# Initialize K-Fold cross-validation with 5 folds 

k_folds = 5 

kf = KFold(n_splits=k_folds, shuffle=True, 

random_state=42) 

# Lists to store individual model predictions and metrics 

linear_reg_predictions = [] 

decision_tree_predictions = [] 

ensemble_predictions = [] 

actual_values = [] 

# Perform K-Fold cross-validation 

for train_index, test_index in kf.split(data): 

   X_train, X_test = data.iloc[train_index][features], 

data.iloc[test_index][features] 

   y_train, y_test = data.iloc[train_index][target], 

data.iloc[test_index][target] 

    # Train Linear Regression model 

    linear_reg_model = LinearRegression() 

    linear_reg_model.fit(X_train, y_train) 

    # Train Decision Tree model 

    decision_tree_model =   

DecisionTreeRegressor(random_state=42) 

 decision_tree_model.fit(X_train, y_train) 

    # Make predictions on the test set for both models 

linear_reg_predictions.extend(linear_reg_model.predict

(X_test))    

decision_tree_predictions.extend(decision_tree_model.

predict(X_test))  actual_values.extend(y_test) 

# Calculate metrics for individual models 

linear_reg_rmse = 

np.sqrt(mean_squared_error(actual_values, 

linear_reg_predictions)) 

linear_reg_mae = mean_absolute_error(actual_values, 

linear_reg_predictions) 

linear_reg_r2 = r2_score(actual_values, 

linear_reg_predictions) 
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decision_tree_rmse = 

np.sqrt(mean_squared_error(actual_values, 

decision_tree_predictions)) 

decision_tree_mae = 

mean_absolute_error(actual_values, 

decision_tree_predictions) 

decision_tree_r2 = r2_score(actual_values, 

decision_tree_predictions) 

# Calculate ensemble prediction (e.g., simple averaging) 

ensemble_predictions = [(linear_pred + dt_pred) / 2 for 

linear_pred, dt_pred in zip(linear_reg_predictions, 

decision_tree_predictions)] 

# Calculate metrics for the ensemble 

ensemble_rmse = 

np.sqrt(mean_squared_error(actual_values, 

ensemble_predictions)) 

ensemble_mae = mean_absolute_error(actual_values, 

ensemble_predictions) 

ensemble_r2 = r2_score(actual_values, 

ensemble_predictions) 

# Display results 

print(f"Linear Regression - RMSE: 

{linear_reg_rmse:.2f}, MAE: {linear_reg_mae:.2f}, 

R2: {linear_reg_r2:.2f}") 

print(f"Decision Tree - RMSE: 

{decision_tree_rmse:.2f}, MAE: 

{decision_tree_mae:.2f}, R2: {decision_tree_r2:.2f}") 

print(f"Ensemble - RMSE: {ensemble_rmse:.2f}, 

MAE: {ensemble_mae:.2f}, R2: {ensemble_r2:.2f}")” 

end  

-------------------------------------------------------------------

---- 

The Linux computer system we used for our experiments 

included a 16.0 GHz Intel Core i5 processor and 8.0 GB of 

random-access memory. Python 3.8.8 was used to 

implement the models in the Anaconda environment. The 

crop datasets were arbitrarily divided into training and 

testing sets. The three proposed machine learning models 

were trained using a dataset consisting of 70% of all 

datasets. For the purpose of gauging the models' efficacy, 

we selected 30% of all crop datasets to use as the testing 

dataset. NumPy, Pandas, Scikitlearn, and Matplotlib are just 

few of the imported libraries used for the analysis of 

agriculture data that are pre-installed as packages in the 

Anaconda environment. We optimized our models' starting 

hyper parameters during training. We use a forest size of 

n_estimators = 10 for our Crop Random Forest (CRF) 

model.  The values for all the variables make sense, and 

there are no extreme cases. We compared the three models' 

pre- and post-data-cleaning prediction accuracy to 

demonstrate the importance of this process. Table 3 displays 

the statistical findings of 30 replicates of each model. 

Table 1: Statistical results for the different parameters 

Model 
After Data cleaning Before Data Cleaning 

MSE MAE MAPE  MSE MAE MAPE  

SVM 0.128 0.053 2.5 % 0.185 0.087 3.27% 

CNN 0.172 0.098 5.32 % 0.203 0.113 6.13% 

DT 0.185 0.108 4.82 % 0.241 0.136 5.81% 

NN 0.201 0.132 4.32% 0.297 0.155 5.72% 

NB 0.231 0.124 5.09% 0.321 0.178 6.34% 

 

 

Fig 8: Plot for Statistical results for the different 

parameters 

In the preliminary prediction model, the scikit learn package 

in Python was used to independently construct DT, SVM, 

and NN. An LR algorithm was chosen to combine the three 

fundamental-learning algorithms and produce the final 

prediction results in the second-level forecast. We did not 

apply the technique of adding weights to the output of the 

base learner since, as we observed before, there is no 

discernible difference in the performance of separate 

models. 

Table 4 displays the proposed model's training dataset and 

testing dataset five-fold cross-validation results (RMSE and 

R2). No matter how many times the cross-validation 

procedure is run, the values of RMSE and R2 remain very 

stable, as shown by the findings. Five-fold cross-validation 

yielded an average R2 of 0.91, an increase of 0.02 from the 
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R2 of 0.89 obtained for individual models. The R2 values of 

RF, SVM, and CNN were calculated to be 0.900, 0.897, and 

0.906, respectively, after the hyper parameter was optimized 

using Bayesian optimization during training of the basic 

learner. The R2 values of the individual base learners have 

been raised due to the meta learner's improved results (0.91 

value). 

Table 2: Performance of before k-fold apply and after k-

fold apply 

Model 
Before k-fold 

apply (%) 

After k-fold 

apply (%) 

SVM 96 90 

DT 61 42 

NN 95 92 

 

 

Fig 9: Plot for Performance of before k-fold apply and 

after k-fold apply 

5. Conclusion 

Our results show that K-Fold validation and multi-model 

ensemble approaches are useful for enhancing agricultural 

yield prediction, even when faced with limited data. We 

successfully overcame the difficulties caused by missing or 

limited data in agricultural datasets by implementing an 

enhanced sparse data clustering approach, which allowed us 

to unearth concealed patterns and trends that greatly 

impacted the precision of our forecasts. K-Fold validation's 

inclusion allowed for a thorough and reliable assessment of 

our multi-model ensemble approach, guaranteeing that our 

predictions were not significantly impacted by the data 

partitions themselves. By using this cross-validation method, 

we were able to improve our models' generalizability, leading 

to more accurate projections of crop yields that could be used 

in practical agricultural decision-making settings. Our 

experimental findings on real-world agricultural datasets 

demonstrated a significant increase in the accuracy of crop 

production prediction over conventional methods. 

Consistently, the ensemble of models outperformed the 

individual models, demonstrating the value of utilizing many 

methods to address the difficulties of crop production 

forecasting. Our findings provide farmers, policymakers, and 

other agricultural stakeholders with useful information by 

improving the precision with which crop yields may be 

predicted. Optimized resource allocation, enhanced crop 

management methods, and increased agriculture output and 

sustainability are all possible outcomes of data-driven 

decision-making. However, it is critical to note that there are 

caveats to this study. Our method's efficacy could be affected 

by factors such as the nature of the datasets used and the 

selected clustering algorithm or prediction model. The 

applicability of our methodology to other crops and areas, as 

well as the effect of alternative clustering algorithms on 

prediction performance, requires more study. In conclusion, 

our work presents a trustworthy and novel approach to the 

difficulties presented by scarce agricultural data, and thus 

adds to the development of crop production forecast 

algorithms. Our study sets the framework for improved crop 

production estimates by combining K-Fold validation with 

multi-model ensembles, paving the way for a more 

sustainable and productive future in agriculture. 
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