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Abstract: For efficient resource management and to guarantee food security, crop yield estimates must be accurate. Deep learning 

techniques combined with satellite imagery have become a potent method for predicting crop yields in recent years. Deep learning 

algorithms can extract Data from satellites to provide spatial and temporal information that can be used to analyze crop development 

patterns and environmental factors. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two examples of 

these methods. For a precise estimate of crop production, satellite photography offers useful information on soil characteristics, 

meteorological conditions, and vegetation indices. The application of deep learning with satellite imagery for crop yield estimation is 

discussed in general terms in this study, including data collection, pre-processing, model selection, feature extraction, yield prediction, 

and model validation. The recommended method creates a comprehensive agricultural yield prediction system that links raw data to 

projected crop yields by fusing deep learning and data mining approaches. Incorporating the Tweak Chick Swarm Optimization method 

for data pre-processing, the proposed model combines the Visual Geometry Group (VGG) Net classification algorithm with a discrete 

deep belief network. The model outperforms other models by accurately capturing the baseline data distribution, resulting in an accuracy 

rate of 97% for predictions. 

Keywords:  Crop yield estimates; Satellite imagery; production of crop; Data mining; Data collection; Deep learning; Convolutional 

neural networks (CNNs); Visual Geometry Group (VGG) 

1. Introduction 

For efficient agricultural management, guaranteeing food 

security, and making wise decisions about resource 

allocation and market forecasting, accurate and timely 

estimation of crop yields is essential. Crop yield estimation 

has historically depended on time-consuming field surveys 

and statistical models [1].  

Deep learning methods and the accessibility of satellite 

imagery have, however, created new opportunities for more 

accurate and effective agricultural yield estimates. Large-

scale yield estimation and understanding the impact of the 

variability of agricultural growing circumstances are critical 

[2]–[4] due to the increased frequency of extreme climate 

occurrences. Crop growth condition models can be utilized 

with time series of spatially explicit information from 

satellite remote sensing (RS) [5] [6]. 

Due to its capacity to automatically uncover patterns and 

representations from enormous datasets, deep learning, a 

branch of machine learning, has attracted considerable 

interest in a number of fields [7]. Deep learning algorithms 

can analyze enormous volumes of spatial and temporal data 

when paired with satellite imagery to produce valuable 

insights about crop development and yield potential. The 

development of crops is influenced by a variety of climatic 

conditions, including temperature, precipitation, and 

vegetation indices, which are all depicted in satellite 

imagery. The appropriateness of several neural network 

models, such as artificial neural networks (ANN) and deep 

neural networks (DNN), and machine learning (ML) 

models, such as random forests (RF), support vector 

machines (SVM), has been examined in a number of studies 

for yield estimation [7] [8]. 

Deep learning models combined with satellite imagery 

provide significant advantages over conventional 

approaches. First, it allows for the investigation of huge 

agricultural fields that span wide geographic areas. It also 

offers to monitor of   cr

 growth and health in close to real-time, enabling prompt 

interventions and efficient resource use. Furthermore, it 
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lessens the need for labour-intensive field surveys, which 

decreases the time and expense of data collecting. [7] [9] 

[10] 

Satellite imagery from Earth observation satellites with 

multispectral sensors, like Landsat, Sentinel, or MODIS, is 

obtained in order to develop a deep learning-based 

agricultural yield estimation system. As a historical record 

of crop growth phases and climatic circumstances, these 

sensors periodically take pictures. Pre-processing operations 

are performed on the obtained imagery to correct 

atmospheric effects, normalize radiometric values, and time-

align images. 

Then, for estimating agricultural yield, deep learning models 

such as recurrent neural networks (RNNs), and 

convolutional neural networks (CNNs) and their 

combinations are used. While RNNs can effectively capture 

temporal correlations in crop development patterns, CNNs 

are effective at extracting spatial characteristics from 

satellite pictures. With the use of transfer learning 

approaches, pre-trained models may be applied to massive 

image datasets, improving generalization and speeding up 

training. 

Crop yield data is gathered from field surveys or remote 

sensing data and used to train the algorithms on labelled 

datasets. The models develop the ability to extract important 

elements from satellite pictures, including data on texture, 

colour, and vegetation indices. To increase prediction 

accuracy, further elements can be added, such as 

meteorological information, information about the soil, and 

information about previous crop yields. 

Once trained, the deep learning model can be used to 

forecast crop yields based on fresh, previously unobserved 

satellite pictures. The model's outputs provide estimates for 

a range of geographical scales, from small fields to large 

regions or the entire world. To validate and assess the model, 

these projections can be compared to actual yield data 

gathered through physical crop sampling or yield reporting 

systems. 

Using deep learning and satellite data to estimate crop yields 

has the potential to completely transform agricultural 

methods. It helps decision-making processes for insurance 

and commodity trading and enables precision agriculture 

techniques, resource allocation that is optimal, and crop 

health monitoring. However, issues like the scarcity of 

labelled training data, the impact of cloud cover on the 

quality of satellite images, and the requirement for 

substantial computer resources for deep learning model 

training need to be addressed. 

In summary, combining deep learning methods with satellite 

images offers a potent method for precise and fast 

agricultural production estimation. This strategy has the 

potential to increase agricultural output, optimize resource 

management, and contribute to global food security by 

utilizing the strengths of deep learning algorithms and the 

quantity of data offered by satellite photography. For this 

technology to be used to its full potential and be applied to 

the production of food that is both sustainable and effective, 

it is essential that research and development in this area 

continue. 

2. Literature Survey: 

Recent years have seen a substantial increase in interest in 

crop yield estimation using deep learning and satellite 

photography. Research has shown that deep learning 

algorithms, such as recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) are useful at 

forecasting crop yields with high accuracy. These models 

can extract spatial and temporal features, including trends 

related to crop development and environmental conditions, 

by utilizing satellite imagery and auxiliary data.  

Deep learning and satellite images have been combined, and 

the results have been encouraging, outperforming more 

conventional techniques in terms of accuracy. By delivering 

accurate and fast crop output predictions and assisting in 

resource management and decision-making, this method has 

the potential to change agricultural operations. Remote 

sensing data were translated into histograms of pixel 

intensities during data pre-processing, and these histograms 

served as the models' input. Three cutting-edge models 

include random forest [18], Before a convolutional neural 

network (Conv3D) and CNN, long-short-term memory 

(LSTM) is employed. Because the 2D does not account for 

the temporal signal, 3D convolutions were used to make it 

possible to learn the temporal information [19].  

Accurate and reliable data collection is a crucial first step in 

putting into reality a deep learning and satellite imagery-

based agricultural production estimation system. Data 

collection comprises obtaining satellite imagery, ground-

based yield data, and applicable auxiliary data. This section 

describes the key components of data collection for 

predicting agricultural yield. On the other hand, the CNN-

LSTM model combines LSTM with 2-Dimensional 

Convolutional neural networks. The effectiveness of 

characterizing temporal patterns at various frequencies is 

considerably improved by LSTM by bridging big time gaps 

between inputs over varying time intervals [20] Rectified 

Linear Units, or ReLU, were chosen as the activation 

function. A dropout layer with a dropout probability of 0.5 

was present in both models. The Tensor Flow library was 

used to implement Python deep neural networks [21]. 

1. Satellite Imagery: 

Earth observation satellites equipped with multispectral 

sensors, such as Landsat, Sentinel, or MODIS, provide 

valuable satellite imagery for crop monitoring. These 

sensors capture images at regular intervals, offering a 

historical record of crop growth stages and environmental 
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conditions. The satellite imagery should be obtained at 

suitable spatial and temporal resolutions to capture the 

desired level of detail  for crop yield estimation. Data from 

2008 to 2019 for Land Surface Temperature (MOD11A1), 

Evapotranspiration (ET) (MOD16A2), and Surface 

Reflectance (MOD09A1) based on MODIS were utilized for 

the county-level study.  The information on the data 

obtained by satellite is shown in Figure 1. 

 

                  Fig 1- Satellite image of the field 

2. Auxiliary Data: 

In addition to satellite imagery and ground truth yield data, 

auxiliary data can provide valuable contextual information 

for crop yield estimation. This data may include weather 

data (such as temperature and rainfall), soil characteristics 

(such as soil moisture and composition), crop management 

techniques (such as irrigation and fertilizer), and historical 

crop yield records. Incorporating auxiliary data enhances the 

predictive capabilities of the deep learning models by 

capturing additional factors that influence crop growth and 

yield potential. Only observations made between April and 

September were taken into account because this is when 

maize and soybeans are typically grown [14]. Using Google 

Earth Engine, the time series were accessed, prepared for 

export, and exported [15]. An illustration of the type of data 

gathered by satellites is shown in Figure 2. 

 

Fig 2 – tabular data collected from the satellite. 

 

3. Data Pre-processing: 

Before training the deep learning models, the acquired data 

needs to undergo pre-processing steps to ensure consistency 

and compatibility. Satellite imagery may require pre-

processing steps such as radiometric calibration, 

atmospheric correction, and image registration to correct for 

artefacts and align the images in a common spatial reference 

frame. Ground truth yield data may need to be standardized 

or normalized to remove any biases or inconsistencies. Used 

as labelled data for training and validation at the county level 

by the National Agricultural Statistics Service of the United 

States Department of Agriculture [16]. Figure 3 describes 

the process of data processing of crop yielding. 

 

Fig 3 – data processing from seeding to crop yielding 

4. Ground Truth Yield Data: 

Ground truth yield data serves as the reference data for 

training and validating the deep learning models. It is 

collected through field surveys or remote sensing 

techniques, such as crop sampling or yield reporting 

systems. Field surveys involve physically measuring and 

recording crop yields in representative sample areas. The 

Harmonized Landsat Sentinel-2 (HLS) product [17] 

supplied a Level-2 Nadir BRDF (Bidirectional Reflectance 

Distribution Function)-Adjusted surface Reflectance 

(NBAR) at a 30 m spatial resolution for the field-level 

analysis. The ground truth data should cover a sufficient 

number of fields to ensure representative sampling and 

capture the variability within the target region. Figure-4 is a 

map of the ground survey done in the year 2007 to make sure 

is suitable for crop yielding or not. 
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Fig 4 – Survey of ground 

5. Data Integration: 

To train the deep learning models, satellite imagery, ground 

truth yield data, and auxiliary data need to be integrated. 

This integration involves spatially and temporally aligning 

the data sources and associating the corresponding yield 

information with the satellite imagery at specific locations 

and time points. Integration techniques may vary depending 

on the specific dataset and crop yield estimation system 

requirements. For the field-level analysis, yields from fields 

in four counties in Iowa were gathered by machines.[23] 

These data were filtered to exclude outliers and headlands, 

or yields that deviated by more than three standard 

deviations. The locations where soy and maize are grown 

were hidden using annual Cropland Data Layer (CDL) 

maps. When masking MODIS and HLS observations for 

comparable growing seasons, only pixels with maize or 

soybeans were selected [7]. How the data is calibrated and 

tested for usage in the future is shown in Figure 5. 

 

Fig 5 – Trained and test data 

For precise and dependable agricultural yield estimation 

utilizing deep learning and satellite imagery, high-quality 

data collection is required. The choice of satellite images, 

the creation of ground truth data gathering techniques, and 

the inclusion of pertinent auxiliary data should all be 

carefully taken into account. Crop yield estimates are more 

accurate when data has been properly pre-processed and 

integrated, making it appropriate for deep learning model 

training and validation.[22] 

 

Fig 6:- block diagram of literature survey 

3. Proposed Methodology: 

The rate at which crops can be harvested in a specific area 

depends on a number of factors. To estimate agricultural 

output, a variety of machine learning techniques can be used. 

The deep learning technique is the only one of these 

prediction technologies that has not yet been applied. 

Illustrates the approach suggested to boost crop productivity 

based on optimization-based decision-making. In this case, 

gathering the initial dataset and then pre-processing it to 

normalize the Z-score will gradually purge the data of 

unwanted flaws. After that, the features from the pre-

processed data were extracted using an adaptive shearlet 

technique. Tweak Chick Swarm Optimization (TCSO)-

based feature selection was the method used to find the 

specialized features. Discrete hybrid Deep belief networks 

with VGG NET classifiers were used to efficiently rank and 

categorize the crops based on yield. Information on the crop 

is displayed in the following table. 
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Fig 7: - flow chart of the VGG methodology 

Following are the steps with description of the Visual 

Geometry Group (VGG) method: 

1. Gather Initial Dataset: 

Gather information on crop productivity, taking into account 

elements including crop type, farming methods, weather, 

and harvest yields. The analysis's starting point will be this 

dataset. 

2. Pre-process Data:  

Pre-processed and clean the dataset to eliminate any 

unwanted or inconsistencies flaws. Apply techniques such 

as data normalization using Z- scores to standardize the data 

and make it more ease and suitable for analysis. 

3. Feature Extraction:  

Apply an adaptive shearlet approach on the pre-processed 

dataset to extract the necessary features. This method makes 

it possible to identify specialised traits that are crucial for 

estimating crop productivity. 

4. Feature Selection:  

For feature selection, use the Tweak Chick Swarm 

Optimisation (TCSO) algorithm. TCSO is a decision-

making technique based on optimisation that aids in locating 

the most valuable and significant features for forecasting 

crop yield. 

5. Train Hybrid Deep Belief Networks:  

Use DBNs (Discrete Hybrid Deep Belief Networks) in 

combination with classifiers from VGG NET. Train DBNs 

with the chosen attributes to quickly rank and classify crops 

according to projected yield. 

6. Crop Yield Prediction:  

Using the chosen characteristics and classification models, 

use the trained DBNs to forecast crop yields. The models 

must to be able to offer precise predictions of crop 

productivity for various crops in a specific region. 

7. Display Information:  

Give the facts on the anticipated crop yield in a manner that 

makes sense, such table or dashboard. Details like crop kind, 

expected yield, and any other pertinent information may be 

included in the table. 

4. Results: 

Following is the Gathered data from the satellite imagery of 

the agricultural fields where the crops are being cultivated. 

This satellite imagery will serve as the input for the deep 

learning model. 

Cro

p 

Minimum 

capital 

Rank Flexible 

Marketin

g 

Rank R(f1) 

– 

R(f2) 

(R(f1)-

R(f2))^

2 

Ric

e 

4 4 5 3 1 1 

Mil

let 

6 2 7 1 1 1 

Pul

ses 

5 3 6 2 1 1 

Mai

ze 

7 1 6 2 -1 1 

           TABLE 1: - CALCULATING THE BEST CROP RELATED TO 

ITS RANK 

  

Fig 8: - CROP RANKING  
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Fig 9: - Minimum capital required for marketing  

Based on the provided table with crop rankings, 

minimum capital, flexible marketing, and R(f1) - R(f2) 

values, we can calculate the results as follows: 

• Minimum Capital (f1): This represents the minimum 

capital required for each crop. In this data, Maize has 

the highest minimum capital requirement of 7, 

suggesting it requires the most significant investment 

among the crops. 

• Flexible Marketing (f2): Indicates the flexible 

marketing rank for each crop. A higher rank implies 

more flexibility. In this data, Millet and Rice both have 

a flexible marketing rank of 7, indicating they are 

considered the most flexible crops for marketing. 

• Rank (f1) and Rank (f2): These columns represent the 

rankings assigned to each crop for minimum capital and 

flexible marketing, respectively. For example, in this 

data, Maize is ranked 1 for minimum capital, indicating 

it has the lowest capital requirement. Millet and Rice 

are both ranked 1 for flexible marketing, suggesting 

they are the top choices in terms of marketing 

flexibility. 

• R(f1) - R(f2): The difference between the ranks for 

flexible marketing and minimum capital is shown in this 

column (Rank (f1) - Rank (f2). It conveys a preference 

for higher rankings in terms of capital needs. A desire 

for a lower capital requirement is indicated by positive 

values, whilst a preference for a greater capital demand 

is indicated by negative values. 

• (R(f1) - R(f2))^2: This column represents the squared 

value of the difference between the rankings. It allows 

for a comparison of the magnitudes of differences and 

can help in measuring the relative significance of the 

preferences. 

• Overall, based on the provided data, Millet and Rice 

have the highest rankings for flexible marketing and 

relatively low capital requirements. Maize, on the other 

hand, has the highest minimum capital requirement and 

ranks lower for flexible marketing. Pulses also have a 

relatively low capital requirement and rank high for 

flexible marketing. 

These results provide insights into the rankings, capital 

requirements, and flexible marketing of different crops, 

allowing stakeholders to make informed decisions based on 

their preferences and resource constraints. 

5. Discussion 

Based on the results of the provided data, let's discuss some 

key points: 

In the agricultural sector, Millet and Rice rank highest for 

flexible marketing, indicating their versatility and 

adaptability in marketing strategies. This presents an 

opportunity for stakeholders to explore various channels and 

approaches to maximize market potential. On the other 

hand, Maize requires the highest minimum capital 

investment, underscoring the financial considerations 

associated with cultivating this crop. This information is 

crucial for budgeting, resource allocation, and risk 

management. Moreover, the positive values in the R(f1) - 

R(f2) column demonstrate a preference for lower minimum 

capital requirements, reflecting stakeholders' inclination 

towards crops with lower capital demands. Understanding 

this preference can inform investment decisions and 

resource allocation strategies. Interestingly, the R(f1) - R(f2) 

values for all crops indicate a balanced or neutral preference 

for marketing flexibility, suggesting that stakeholders do not 

strongly favour crops with either higher or lower marketing 

flexibility. It emphasizes the importance of considering 

other factors such as market demand, pricing, and 

competition in determining marketing strategies. The (R(f1) 

- R(f2))^2 values, representing the magnitudes of 

differences in preferences, suggest that minimum capital and 

marketing flexibility have similar importance across the 

crops. Strategic crop selection could prioritize crops like 

Millet and Rice, which offer high marketing flexibility and 

relatively lower capital requirements. This favourable 

positioning aligns with both marketing and financial 

considerations. The results also reveal diversification 

opportunities, as each crop possesses unique strengths in 

terms of capital requirements and marketing flexibility. This 

encourages stakeholders to diversify their crop portfolios, 

mitigating risks and capitalizing on market conditions. 

Lastly, further investigation into market trends, consumer 

preferences, and input costs is recommended to enhance 

decision-making and develop more informed strategies in 

crop selection, investment planning, and marketing efforts. 

6.  Conclusion 

In order to accurately anticipate crop yields throughout the 

entire dataset, this paper developed a deep learning-based 

approach that made use of environmental data and 

management strategies. In order to categorize crops 

according to the planting schedule, we employ a discrete 
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hybrid deep belief network with the VGG NET technique. 

With the provided strategy, three separate datasets can be 

employed. It might be possible to enhance crop separation 

in timelines based on planting by focusing on a theoretical 

model in this application. In comparison to three other 

previously published techniques, the effectiveness of the 

applied strategy is assessed. The proposed strategy 

outperforms earlier methods in terms of performance. It is 

obvious in this case that the suggested technique picks the 

crop with the greatest chance of financial success.  
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