
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  543 

An Intelligent 64-bit parallel CRC for high-speed communication 

system applications 

Ajay Sudhir Bale1, Karmanyaraj Singh Yadav2, Mahboob Alam3, Abhinav Shrivastava4, Raj A. Varma5, 

Rajdeep Singh Solanki6 and Mamta B. Savadatti*7 

 

Submitted: 27/05/2023         Revised: 07/07/2023           Accepted: 24/07/2023 

Abstract: In the networking context, CRC plays a critical function in detecting mistakes. It is essential to improve the pace of CRC creation 

in order to keep up with the speed of data transmission. The cyclic redundancy check is well-known among engineers (CRC). Many people 

are becoming aware that it is used to identify bit mistakes in communication channels and that it is fundamentally a residual of the modulo-

2-long division operation. These linear feedback shift registers (LFSRs), which process data serially, often are used in the hardware 

implementation of CRC calculations as a crucial technique for dealing with data mistakes. This CRC code’s serial computation cannot 

reach a high throughput. The throughput of CRC computations may be substantially increased by using constant concurrent CRC 

calculations. The CRC-16BISYNC protocol, CRC32 for error detection in Ethernet; CRC8 for ATM; CRC-CCITT for the X-25 set of 

rules, disc storage, XMODEM, and SDLC are all examples of applications that utilize CRCs of various types. We have focused on the 

main features and the trends of 64bit parallel CRC architecture and applications. 

Keywords: Redundancy check, Error control coding, Shift register, Parallel CRC calculation. 

1. Introduction 

Cyclic redundancy check (CRC) is an error-detecting 

algorithm [11] that is often used in virtual networks and 

unintentional changes. A fast test cost is applied to each 

block of information that enters those structures, and this 

cost is dependent entirely on the remainder of a polynomial 

department in their contents. CRC technology, also known 

as Cyclic (CRC), may be used to verify the integrity of a 

process in the context of facts or facts compression. It has 

utilised within the communication community as well as the 

information garage period, among other places. 

The Cyclic Redundancy Check (CRC) is a strong coping 

with data mistakes that is extensively used in data 

transmission and storage systems. A wide range of other 

areas, including the testing of integrated circuits and defect 

detection, have also benefited from this technology. 

 

The cyclic redundancy test (CRC) is widely used in 

networking settings to determine whether or not errors were 

introduced at some point across physical connections. In this 

article, we demonstrate that the CRC computation is 

performed at some point during the routing packets by 

means of, which include a body header and a body trailer, 

respectively. CRC code is located on the inside of the body 

trailer, next to the bumper. As a result of our research, we 

discovered that the finest unique fields located at the 

commencement of a body are changed as the body travels 

via interconnecting devices. The process of error correction 

returns to computers. When the 7-bit ASCII character set 

was used on certain computers, 8-bit check bits were 

employed to ensure that the characters were delivered 

properly. A character's bottom 7 bits are set to 1 if there are 

an odd number of 1s in the lower 7 bits; otherwise, the 

character's 8th bit is set to 0. Despite the fact that this is a 

simplified method, some key principles shared with CRC 

are as follows: 

Check data has been added to the data to be sent (duplicate). 

This is not a comprehensive list. Detects particular faults 

that are intended to be checked. It is specifically designed to 

properly identify every one-bit mistake in each seven-bit 

block of data, but it has the potential to fail if more severe 

data corruption occurs. The receiver calculates the data it 

gets from the sender using the same CRC method that was 

used by the sender. A successful transmission or 

compression operation is indicated by a computed value that 

is equal to or greater than the code check of the frame. The 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Dept. of ECE, New Horizon College of Engineering, Bengaluru, India 

ajaysudhirbale@gmail.com; ORCID ID :  0000-0002-5715-9739  
2 Viterbi School of Engineering , (Electrical and Computer Engineering ),  

University of Southern California ( USC ) , California; ksyadav@usc.edu 
3 Manav Rachna International Institute of Research and Studies 

Faridabad; mahboobalam.fet@mriu.edu.in  
4 Assistant Professor, Symbiosis Law School (SLS), Symbiosis 

International (Deemed University) (SIU), Vimannagar, Pune, 

Maharashtra, India; abhinav.shrivastava@symlaw.ac.in 
5 Assistant Professor, Symbiosis Law School (SLS), Symbiosis 

International (Deemed University) (SIU), Vimannagar, Pune, 

Maharashtra, India; raj.varma@symlaw.ac.in 

 6 Assistant professor, Medi-caps university indore, Computer science 

department, rajdeep.solanki@medicaps.ac.in;  
7Dept. of ECE, New Horizon College of Engineering, Bengaluru, India 

mamta.savadatti@gmail.com;; ORCID ID :  0000-0003-0679-7084 

* Corresponding Author Email: mamta.savadatti@gmail.com  

mailto:rajdeep.solanki@medicaps.ac.in


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  544 

linear feedback register structure, which is used to 

implement the traditional CRC method, is used to 

implement the algorithm. Because it is a serial coding 

technique, it is simple to understand and put into practise. 

The calculation time, on the other hand, is very sluggish 

when using the traditional CRC method. High-speed data 

transmission is not possible with this device. The parallel 

CRC [3-5] method is capable of meeting the demands of 

high-speed data transmission. Parallel CRC is a popular 

technique that may be implemented in either software or 

hardware. A consequence of the sluggish processing speed 

of software, algorithms have been implemented in many 

communication devices by hardware in order to achieve 

high throughput. According to the concept of conventional 

serial CRC algorithms, the MATRIX-based parallel CRC 

PIPELINE Method is a high-speed coding algorithm that is 

based on a matrix. 

The method has the potential to decrease circuit latency 

while simultaneously increasing data processing speed. 

CRCs may be produced in two ways: by hand or by 

computer. A. The creation of serial CRCs. B. Generation of 

CRCs in parallel. LFSRs (linear feedback shift registers) are 

often used in hardware implementations of CRC 

computations because they allow data to be processed in a 

sequential manner. Serial calculation of CRC codes, on the 

other hand, is not capable of providing high throughput. 

This article discusses the creation of parallel CRCs in the 

64-bit domain. Although a parallel CRC with 32 bits 

generates gigabits/sec, it is not appropriate for high-speed 

applications such as Ethernet because of its limited size. 

1.1. Serial CRC generation 

In this instance, the CRC verification is done in a sequential 

manner. Only one bit and each clock pulse are used as data 

input. When there is a wait between subsequent data inputs 

and the information is encoded with the identical CRC 

value, the outcome will be 0; otherwise, the outcome will 

show a non-zero number. We will then be able to tell 

whether the information is valid or distorted by using this 

form.[1] 

. 

Fig. 1.  Flip-Flop connected to form IO Shift register 

A linear feedback shift register (LFSR) circuit is usually 

used to do CRC computations, and it is often constructed in 

VLSI (Very-Large-Scale Integration) technology, which 

can only process one bit per cycle. computations have lately 

gained popularity, and one byte or several bytes may often 

be handled in parallel, depending on the situation. When 

attempting to achieve parallelism, it is common practice to. 

Unfortunately, the parallelism techniques increase the 

length of the worst-case temporal route, resulting in 

speedups that are less than optimal in. Furthermore, as the 

degree of parallelism grows, so does the amount of space 

and power that must be allocated to the system. A new 

approach to integrating CRC hardware is required as a 

consequence, and we are seeking for a solution that would 

while still using a reasonable amount of space and power. 

CRC may be generated in dualistic ways: 

1. Serial CRC generation 

2. Parallel CRC generation 

1.2. Hardware Implementation of CRC 

When it comes to the hardware implementation of CRC 

calculations, linear feedback shift registers (LFSRs) come 

in handy since they handle data serially. In contrast, the 

serial computation of CRC codes is incapable of achieving 

high throughput. Therefore, in order to resolve this issue, we 

are moving to Parallel CRC generation (PCR). A 32-bit 

parallel CRC may produce gigabits per second, but it is not 

as appropriate as Ethernet due to its limited memory 

capacity. In conventional is used to do the CRC 

computation, which is accomplished by treating each bit of 

the message one by one. Figure 1 illustrates a common serial 

CRC that makes use of LFSRs. There are a total of 32 

registers; the middle ones have been removed sake of 

brevity. It is the XOR operation that is shown in the picture, 

which is a combinational logic operation. One bit is 

transferred into the memory with each clock pulse. In the 

same manner that manual long division works, this circuit 

operates as well. The XOR gates in Fig. 1 are responsible 

for holding the that correspond to the stated. However, while 

method to calculating CRCs is usually done in hardware, it 

is possible to implement this algorithm in software provided 

the amount of bit-by-bit processing required is not 

excessive. 

Parallelizing CRC computation has been a significant 

emphasis in recent years due to the increasing need for faster 

processing rates in today's applications. To improve the 

system's overall performance, Cheng and Partii investigated 

and combined it using the pipelining and retiming 

approaches. Due to their use of operations such as 

multiplication and division on the generating polynomial, 

the parallel long [12]. BCH encoders are very efficient in 

speeding up the parallel linear feedback shift register 

(LFSR) computation. Unfortunately, the expense of putting 

this plan into action is very substantial. Campobello and 

colleagues devised a linear systems theory-based method to 

unrolling the serial implementation, which they published in 

2011. In this method, the underlying premise is that the 

packet size is a multiple of the CRC input size. When 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  545 

message fragments are out-of-order, an incremental method 

for computing the CRC on the fragments is possible. Each 

incoming its part independent of the arrival of any other 

segments, to the message's CRC at the time of arrival, 

enabling the message to go straight to the top-layer protocol 

without any further processing. Additionally, a method to 

compute the CRC in parallel has been presented by a 

number of software-based algorithms, and the concept is 

still widely employed today. Walma developed a hardware-

based approach that concentrates on computation in order to 

increase throughput. For CRC computation, the Linear 

Feedback Shift Register (LFSR) is one of the most well-

known hardware alternatives available (LFSR). LFSRs are 

made up of a small number of flip-flops (FFs) and logic 

gates. Because of fundamental design, the bits may be 

processed in a serial fashion. Some applications, such as 

high-speed data transfer, are totally insufficiently served by 

this serial implementation due to its insufficient speed. 

Consequently, the CRC is calculated in parallel, with 

consecutive units of w bits being processed at the same time 

as one another. It is both necessary and beneficial to do so. 

Only two layers of gates are required to construct parallel 

CRC hardware, which is the same as for any other 

combinatorial circuit. Protocols are employed in 

communication networks to meet the ever-increasing 

demands for speed that are placed on them. As a 

consequence, ASIC-based circuits can keep up with the 

increasing demands for performance. This is most likely 

going to continue to be the case in the foreseeable future. It 

is essential to achieve the required processing speed since If 

analysis remains incomplete at wire velocity, packets will 

be refused. As novel protocols, including IEEE 802.11n 

WLAN and UWB (Ultra-Wide Band), offer significantly 

greater throughput requirements, have emerged in recent 

years, new protocols [21] with even higher throughput 

requirements are expected to emerge in the near future as 

well. For example, IEEE 802.3ak (10 Gbps) was 

standardized in 2003, and currently work has started on 

standardizing IEEE 802.3 (100 Gbps) in the same year. As 

a result, fulfilling these requirements is becoming an 

increasingly significant concern. Most communication 

protocols use CRC as an effective method of detecting 

transmission problems, and as a result, high-speed CRC 

computation is required. In to handle these high throughput 

CRCs an acceptable frequency, it is necessary to process 

multiple bits in parallel and pipeline route via which the data 

is sent. 

2. Related Work  

[1] The present state of the network environment is 

characterized by high-speed data transmission. Cyclic 

redundancy check (CRC) is a technique identifying 

mistakes in data transfer that is absolutely necessary. Data 

transmission rates are difficult to achieve, and speed and 

synchronization are required to accelerate CRC creation. 

Following the serial structure, we provided a recursive 

phrase, which was then used to generate the parallel 

structure. We propose a [17] 64-bit parallel CRC that is 

based on a F matrix of order 32 of the generating 

polynomial, as described in this work. The suggested 

architecture is hardware efficient, and the number of cycles 

needed to create a generative polynomial CRC of the same 

order is decreased by 50% compared with the previous 

design. The Xilinx ISE simulator is used to functionally 

verify the whole design from start to finish. Circular 

redundancy checking is widely utilized as an essential 

technique for addressing data problems in a variety of 

disciplines, including data transmission areas such as and 

data reduction. LFSRs (linear feedback shift registers) are 

often hardware implementations of CRC computations 

because they allow data to be processed in a sequential 

manner. Serial calculation of CRC codes, on the other hand, 

is not capable of providing high throughput. Parallel CRC 

calculation, on the other hand, has the potential to 

substantially increase the throughput of CRC computation. 

CRC32, for example, has a 32-bit parallel computational 

performance that may reach several gigabits per second 

when used in parallel. High-speed applications like as 

Ethernet, on the other hand, are now insufficient.  

[2] This paper offers a Fast Cyclic Redundancy Check 

(CRC) method that executes CRC computations in all 

message lengths, regardless of the message length. No 

matter how long the message is, the chosen message 

algorithm chops it into blocks first, regardless of its length. 

Each block has a fixed size equal to the degree of the 

generating polynomial, which is the same for all of them. 

Then it conducts a CRC computation using just the parallel 

chunked block lookup table and combines the result using 

the XOR operation, which completes the process. That 

which caused the pipeline to become an issue was the input 

from previous implementations. With SMIC0.13mCMOS 

technology, the suggested method overcomes this issue and 

performs a 32-bit CRC pipeline computation with a high 

level of accuracy. This method can calculate data rather than 

the whole width of the input rather than the entire width of 

the input. In addition, our algorithm has extremely low 

latency in the pipeline, and by utilizing this approach, we 

can quickly increase the only parallelism while only having 

a small effect on the overall time. Using simulations, it has 

been shown pipeline CRC is more efficient than the existing 

pipeline CRC implementation. 

By comparing the to the received CRC, an error was 

discovered. The CRC method adds just the bit with the 

smallest number of messages (32 bits for CRC32), making 

it particularly effective at identifying single mistakes and 

bursts of errors. CRC32 is a 32-bit CRC algorithm. 

Demonstrate your ability to execute. I'll demonstrate. Given 

that CRC algorithms are good at error detection and are 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  546 

straightforward to implement in hardware, CRC algorithms 

are extensively employed today to identify digital data 

corruption that may occur during the creation, transmission, 

and storage of digital data. Furthermore, CRC just found a 

new use of a standard for general purpose mobile 

communication systems, f1which is used to identify the 

length of variable-length message communications 

messages, which was previously unknown. 

Presented in this paper are theoretical findings that may be 

used to the implementation of high-speed hardware for 

parallel CRC checksums. The serial implementation [3] that 

has been extensively published in the literature and then 

defined a recursive expression that derives from a parallel 

version that was also well documented. Contrary to earlier 

efforts, this latest draught is more efficient and compact 

while remaining independent of the technology utilized in 

its execution. The result we propose is that the number of 

bits parallelized may polynomial in our example. Finally, 

we have created a high-level parametric code that can build 

circuits on its own when just given the input of Polynomial 

and no other parameters. Cycle redundancy checks are 

extensively utilized as a strong method of communicating 

data and dealing with data mistakes from storage devices 

because of their simplicity. Furthermore, it is applicable to 

a wide range of other fields, such as integrated circuit testing 

and logic fault detection. Another well-established hardware 

method [16] for CRC computations is the Linear Feedback 

Shift Register (LFSR), which comprises of a logic gate with 

multiple flip-flops and is one of the most often used 

hardware alternatives (FF). The bits are handled in sequence 

by this straightforward design. The speed of this is 

completely inappropriate in certain circumstances, such as 

high-speed data transmission, when it is absolutely 

necessary. The parallel computation of CRC, in which units 

of w bits are processed at the same time, is desirable or 

necessary in such a situation. 

This method is based when an Ethernet frame is sent from a 

router or interconnect device, only the tiny portions at the 

beginning of the frame are changed, rather than the whole 

frame. Our fast CRC update technique has been enhanced to 

include parallel CRC calculation, and it can be scaled to 

accommodate the number of bits that are processed in 

parallel as needed. This technique may also help to decrease 

the amount of data flow and the amount of power used by 

the CRC compute unit. In addition, this white paper offers 

proof of the effectiveness of a fast CRC update method for 

accuracy. 

The review [4] offers a Fast Cyclic Redundancy Check 

(CRC) method that executes CRC computations in parallel 

for all lengths, regardless of the message length. No matter 

how long the message is, the chosen message algorithm 

chops it into blocks first, regardless of its length. Each block 

has a of the generating polynomial, which is the same for all 

of them. Then it conducts a CRC computation using just the 

parallel chunked block lookup table and combines the result 

using the XOR operation, which completes the process. 

That which caused the pipeline to become an issue was the 

input from previous implementations. With 

SMIC0.13mCMOS technology, the suggested method 

overcomes this issue and performs a 32-bit CRC pipeline 

computation with a high level of accuracy.  

[6] High-speed IP lookup engines are required because of 

the quick growth in network link speeds. Trie-based designs 

are ideal options for high-throughput pipeline solutions. The 

tri-levels to the pipeline stages will, however, unequally 

share the memory among them. To address this issue, 

several fresh pipeline architectures have been put up. 

However, that non-linear pipeline topology brings with it a 

host of brand-new performance problems, such as decreased 

throughput and variable latency. For trie-based IP lookups, 

this article offers a linear pipeline architecture. Our 

architecture achieves high throughput of one query every 

clock cycle while maintaining evenly distributed memory. 

It allows additional flexibility in how tree nodes can be 

mapped to pipeline phases and supports NOPs. On 

commercialized FPGAs, we tested our designs and cutting-

edge solutions to gauge their performance. 80 Gbps post-

location and path throughput, up to two times that of the 

benchmark solution. Without interfering with active IP 

lookup processes, progressive route updates are supported 

and can be scheduled  

RCAM based and SRAM based solutions. The IP lookup 

results of the TCAM based engine clock, but the to the low 

speed of TCAM1. SRAM is superior to TCAM. However, 

conventional SRAM-based engines need cycles to do a 

lookup. The usage of pipelines can considerably increase 

processing speed, as numerous academics have noted. It is 

straightforward to map each tri-level to a separate pipeline 

stage having separate memory, processing, and logic for tri-

based IP lookups. One IP packet only passes through one of 

the pipeline's many phases. can be found for one clock 

period [18]. However, this method distributes the challenge 

nodes disproportionately across the various pipeline stages. 

This has been identified as a major problem in pipeline 

architecture. An imbalanced pipeline requires more time to 

access larger memory stages that contain more tri-nodes. It 

is also updated more frequently in proportion to the number 

of trinodes stored in local memory. Intensive root inserts, a 

large stage can lead to a memory overflow. Therefore, it 

becomes a frequently used bottleneck like this and can affect 

the [13] overall performance of pipeline 

3. Methods 

3.1. Existing method 

Serial CRCs are traditionally generated using linear 

feedback shift registers, which are utilized in the 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  547 

conventional method of generating them (LFSR). The 

binary divisions are the most important operation performed 

by the LFSR while performing CRC calculations. When 

doing binary divisions, a sequence of shifts and subtractions 

may be utilized to get the desired result. In modulo 2 

arithmetic, multiplication is equivalent to AND (indicated 

by the letter "&" in this article), while binary-addition and 

binary-subtraction are equal to bit-wise XOR (&). 

CRCs may be produced in one of two ways: by hand or by 

computer. 

A. Serially generated CRC generation. 

B. Parallelly generated CRC generation. 

For most of the part, CRC calculations are performed in 

hardware using LFSRs (linear feedback shift registers), 

which have been designed to process data in a serially-based 

method. In contrast, the serial computation of CRC’s code 

is incapable of achieving high throughput. Consequently, 

we have been moving towards parallel CRC generation in 

order to resolve such issues. 

In this instance, the CRC check is performed in a serial 

manner. It is anticipated that the data input will be single 

(binary), and that there will be one data input for each clock 

pulse. It is necessary to wait between successive data inputs. 

The outputs will become zero (0) if the data is encoded with 

the same CRC’s value, or it will become a non-zero value if 

the data is not. 

The CRC circuit can be implemented using shift registers 

and XOR gates because CRC computations are performed 

in GF (2). The linear feedback shift register (LFSR) based 

CRC generator is a popular name for this technique. [19] 

The degree of the generating polynomial determines the 

number of flip-flops required to construct the shift register. 

The same architecture can be utilized by both the transmitter 

and the receiver to generate and verify CRC codes. With a 

generating polynomial of degree k, k flip-flops are required 

to create an LFSR-based CRC generator. All of the flip-

flops in an LFSR-based CRC circuit use the same clock and 

clear signals. The coefficients in the generator polynomial 

are denoted by pi's in the illustration. The XOR of the output 

of the (i - 1) th flip-flop and the output of an AND gate with 

D and xk−1 as input is used to calculate the i ’th flip-input. 

Flip flop's It is equivalent to a shift operation if either of the 

coefficient’s pi is zero 

 

Fig. 2.  Basic LFSR Architecture with polynomial degree k 

[9] 

Only a single bit of the input stream is moved in at a time in 

the LFSR-based circuit. As a result, (m + k) number of clock 

cycles will be required to calculate the CRC-k function of 

an m-bit long message. 

There are a variety of approaches to generating CRCs at the 

same time. 

a. Table based procedure for Calculating the CRC of 

Pipelined Data. 

b. Update the CRC in a short period of time 

c. F matrix centered Parallel CRC creation.[14] 

d. Algorithm for unfolding, retiming, and pipelining. 

Because of the heavy pipelining, the LUT base design 

delivers a smaller memory LUT. Input, LUT3, LUT2, and 

LUT1 are all part of the table foundation architecture. LUT3 

is made up of input CRC values followed by 12-bytes of 

zeros, an LUT2 made up of 8 bytes, and an LUT4 is made 

up of 4 bytes. Essentially, this approach can increase 

throughput. There is no requirement for a lookup table in the 

rightmost block. Because CRC-32and 4-byte blocks are 

assumed in this architecture. The CRC value of a binary 

string is the string itself if its length is less than the degree 

of the CRC generator. Because the rightmost block 

corresponds to A4, it has no following zero and hence has 

the same CRC as the block. 

Combining the results of XOR and LUT4 together, as well 

as the outputs from LUT4, i.e., the CRC of the value from 

the iteration with the previous 16 bytes of zeros 

concatenated. Results from the output of LUT4 being used 

to check for a repeatability of the value from the prior 

iteration with 16-bytes of zeros concatenated. We include a 

pre-XOR stage immediately before the four-input XOR - 

gate in order to reduce the length of the critical path and 

improve performance [20]. Additional blocks can be added 

without cumulating the critical path of the pipeline, allowing 

the algorithm to become more scalable. The pre-XOR stage 

is comprised of a XOR-gate (2 i/p) and a delay of LUT4, 

with a throughput of 16 bytes per cycle. The pre-XOR stage 

is comprised of the following components.

 

Fig. 3.  LUT based CRC [10] 

Parallel processing is a technique for boosting throughput 

by producing many outputs at the same time. Retiming is a 

technique  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  548 

for boosting the clock-rate of a circuit by minimising the 

critical route computation time as in figure 3 

Instead of computing CRC for all of the data bits each time, 

the quick CRC update algorithm calculates CRC for only 

the bits that have changed. There are several methods for 

generating parallel CRCs, each with its own set of benefits 

and drawbacks. Table-based architecture necessitates the 

use of a pre-calculated LUT; hence it will not be utilized for 

generalized CRC generations. Fast-CRC update techniques 

necessitate the use of a safeguard to retain the old CRC as 

well as the data. The number of iterations bound rises as the 

architecture unfolds. 

In pipelined systems, as in figure 4, the most effective 

critical-path is minimized by adding pipeline latches along 

the perilous data channel. This may be used to 

simultaneously increases the clock-frequency and sample 

the speed, and to simultaneously decrease the current power 

consumption, depending on the application. The iteration 

bound is defined as the sum of all loop boundaries 

multiplied by a certain number of iterations. The loop-bound 

efficiency is defined as ‘t/w’, where t is the loop's 

computation time and w denote the number of delayed 

elements inside the loop. 

Retiming is a method for relocating delay components in a 

circuit without it affecting the I/O characteristics of the 

circuit. It helps to reduce the critical path of the system by 

keeping the system's latency constant. Retiming is a 

technique used in synchronous circuit design that has a 

broad variety of applications.  

These submissions include decreasing the clock period of 

the circuit, decreasing the number of registers in the circuit, 

lowering the power consumption of the circuit, and logic 

synthesis. In order to increase the clock rate of a circuit, it 

may be utilized to reduce the calculation time of the critical 

route [15]. This route is the one with the longest calculation 

time among all zero-delay pathways, and the time it takes to 

calculate reflects the circuit's lower limit on the total clock 

period. The critical route and the iteration limit are the two 

factors that have an impact on the frequency with which 

operations are performed. The Floyd Warshall method, as 

well as the algorithm given in, are used to determine when 

to retire.  

 

Fig. 4.  Basic LFSR Architecture [11] 

As depicted in figure 5, d represents serial data input, Q 

represents the current state (produced CRC), Q' represents 

the future state, and p represents the generator polynomial. 

The following equations describe how the basic LFSR 

design works. 

After a (k+ms) cycle, a Frame Check Sequence (FCS) will 

be generated, (k denotes the number of data-bits while m 

denotes the ranking of the generating polynomial). If the 

order of the generator polynomial is 32 for a 32-bit serial 

CRC, the serial CRC will be created after 64 cycles. 

The highest order of G, corresponds to the most important 

bit of P, p32(x)i.e., coefficient of x32. Similarly, order p31 

is the figure of x31, which in this case is a zero. The next 

bits are positioned in the  

 

Fig. 5.  Stages in a Pipeline CRC 

same order as the coefficients in G(x). P is referred to as the 

generator, as it is the only polynomial that corresponds with 

the generating polynomial G(x). 

The following are the basic steps in calculating CRwC: 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  549 

• An unsigned-binary integer D, which could be a few 

hundreds of bits long, is seen as the message to be 

safeguarded. In this work, the length of D is indicated 

by k. 

• D is appended with m-0s. This task can be thought of 

as a 2m multiply function that yields D * 2*m. 

• Using modulo 2 arithmetic, generator P divides the 

binary number D *2m. The remainder of this 

procedure is represented by C, which is an m-bit CRC 

code. 

• The CRC-code called as C is appended to the extended 

message, bring about in result of D * 2m + C, which 

will be sent. In fact, addition of C is the same as trading 

the appended m-0s with C, thus no real addition is 

required. 

• Finally, if no transmission mistakes occur, the residual 

should be 0 at the Receiving end while completing the 

CRC on D*2m+C. 

• Based on the preceding discussion, the main operation 

of CRC calculations is binary divisions. A series of 

shifts and subtractions can be used to perform binary 

divisions. Furthermore, totaling and deduction are 

similar to bitwise XOR in modulo-2-arithmetic, while 

multiplication is equivalent to AND. As a result, shifts 

and bitwise XOR can be used to do binary divisions in 

modulo 2 arithmetic. Shifts and bitwise XOR, or 

binary divisions, are performed via linear feedback 

shift registers (LFSRs). The serialized and analogous 

CRC computation implementations grounded on 

LFSRs are detailed in the following sections. 

4. Simulation  

Beginning with the most significant bit (MSB) and 

concluding with the m0 appended to the data message, these 

message data are moved from the leftward. When all of the 

messages have been moved in, the balance of the binary-

division, i.e., the CRC encryption, is stored in the shift 

registers. The LFSRs are thought to be a time-invariant 

linear arrangement that operates in discrete time. 

 

Fig. 7.  RTL Schematics for CRC_64_bit_top 

Evaluation for Area & Delay report is shown in Table 1 and 

simulation review as in Figure 8-10, These implementations 

are done using Xilinx by considering the inputs and data 

after referring to [22]. 

Table. 1.  Area & Delay 

 Area Delay(ns) Delay(ns) 

Parallel CRC 32 32 32 

 

 

                         Fig. 8. RTL Schematics- CRC Test 

 

Fig. 9.  RTL Schematics- CRC Test 

 

Fig. 10.  Simulation Output for CRC 

5. Conclusion 

In this work we are generating CRC code by employing a F 

matrix parallel CRC generation method. By comparing with 

the traditional method of serial CRC generation method we 

are going to get the high throughput and fewer delay. In 

proposed architecture 64 bits are parallel processed and 

order of generator polynomial is 32-bits. This generated 

CRC codes are employed in the Ethernet protocols and 

where the high-speed devices are utilized in the 

communication systems. Based on the results of the relevant 

survey, it is clear that serial execution is not favored if high-

speed data transfer is essential. As a result, we've moved to 

a less-time-consuming parallel method of execution. The 

trade-offs among adaptability, efficiency, and cost that are 

allowed by conventional diverse designs based on 

microprocessors and digital signal processors (DSPs) have 

been expanded upon by CRC. 

References 

[1] Mathukiya, H. H., & Patel, N. M. (2012). A Novel 

Approach for Parallel CRC Generation for High 

Speed Application. 2012 International Conference on 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  550 

Communication Systems and Network 

Technologies. doi:10.1109/csnt.2012.131  

[2] Y. Sun and M. S. Kim, “High performance table-

based algorithm for pipelined CRC calculation,” J. 

Commun., vol. 8, no. 2, pp. 128–135, 2013, doi: 

10.12720/jcm.8.2.128-135. 

[3] Campobello, Giuseppe et al. “Parallel CRC 

Realization.” IEEE Trans. Computers 52 (2003): 

1312-1319. 

[4] C. Cheng and K.K. Parhi, "High-Speed Parallel CRC 

Implementation Based on Unfolding, Pipelining and 

Retiming", IEEE Trans. Circuits and Systems-II: 

Express Briefs, 53(10), pp. 1017-1021, Oct. 2006 

[5]  P. S. Hajare and K. Mankar, “Design and 

Implementation of  

Parallel CRC Generation for High Speed 

Application,” IOSR J.  

VLSI Signal Process. (IOSR-JVSP, vol. 5, no. 3, p. 1, 

2015, doi:  

10.9790/4200-05320105. 

[6]  P. Sushma, “64-bit parallel CRC Generation for High 

Speed Applications,” Int. J. Comput. Appl. Inf. 

Technol., vol. 5, no. I, pp. 29–34, 2014. 

[7] W. Jiang and V. K. Prasanna, “A memory-balanced 

linear pipeline architecture for trie-based IP lookup,” 

Proc. - 15th Annu. IEEE Symp. High-Performance 

Interconnects, HOT Interconnects, pp. 83–90, 2007, 

doi: 10.1109/HOTI.2007.10. 

[8] M. Dasari, “Design and Implementation of Parallel 

CRC Generator for 64-Data Bit,” vol. 1, no. 

December, pp. 151–156, 2014. 

[9] J. Kang, J. S. An and B. Wang, "An Efficient FEC 

Encoder Core for VCM LEO Satellite-Ground 

Communications," in IEEE Access, vol. 8, pp. 

125692-125701, 2020, doi: 

10.1109/ACCESS.2020.3007923. 

[10] Tran, D., Aslam, S., Gorius, N., & Nehmetallah, G. 

(2021). Parallel Computation of CRC-Code on an 

FPGA Platform for High Data Throughput. 

Electronics, 10(7), 866. 

doi:10.3390/electronics10070866 

[11] G. Dai, W. Xie, X. Du, M. Han, T. Ni, and D. Wu, 

“Memristor-Based D-Flip-Flop Design and 

Application in Built-In Self-Test,” Electronics, vol. 

12, no. 14, p. 3019, Jul. 2023, doi: 

10.3390/electronics12143019. 

[12] Sun, Y., & Kim, M. S. (2010). A Table-Based 

Algorithm for Pipelined CRC Calculation. 2010 IEEE 

International Conference on 

Communications. doi:10.1109/icc.2010.5501903 

[13] W. Jiang and V. K. Prasanna, "A Memory-Balanced 

Linear Pipeline Architecture for Trie-based IP 

Lookup," 15th Annual IEEE Symposium on High-

Performance Interconnects (HOTI 2007), Stanford, 

CA, USA, 2007, pp. 83-90, doi: 

10.1109/HOTI.2007.10. 

[14] R. O. S. Juan and H. S. Kim, "Utilization of DSP 

algorithms for Cyclic Redundancy Checking (CRC) 

in Controller Area Network (CAN) controller," 2016 

International Conference on Electronics, Information, 

and Communications (ICEIC), Danang, Vietnam, 

2016, pp. 1-4, doi: 

10.1109/ELINFOCOM.2016.7562991. 

[15] Panda, G., Satapathy, S. C., Biswal, B., & Bansal, R. 

(2018). Microelectronics, Electromagnetics and 

Telecommunications. Fourth ICMEET, 802. 

[16] N. N. Qaqos, "Optimized FPGA Implementation of 

the CRC Using Parallel Pipelining Architecture," 

2019 International Conference on Advanced Science 

and Engineering (ICOASE), Zakho - Duhok, Iraq, 

2019, pp. 46-51, doi: 

10.1109/ICOASE.2019.8723800. 

[17] Y. Huo, X. Li, W. Wang and D. Liu, "High 

performance table-based architecture for parallel 

CRC calculation," The 21st IEEE International 

Workshop on Local and Metropolitan Area Networks, 

Beijing, China, 2015, pp. 1-6, doi: 

10.1109/LANMAN.2015.7114717. 

[18] Das, "Block-Wise Computation of Cyclic 

Redundancy Code Using Factored Toeplitz 

Matricesin Lieu of Look-Up Table," in IEEE 

Transactions on Computers, vol. 72, no. 4, pp. 1110-

1121, 1 April 2023, doi: 10.1109/TC.2022.3189574. 

[19] J. Cho and W. Sung, "Efficient Software-Based 

Encoding and Decoding of BCH Codes," in IEEE 

Transactions on Computers, vol. 58, no. 7, pp. 878-

889, July 2009, doi: 10.1109/TC.2009.27. 

[20] Y. -K. Chang, F. -C. Kuo, H. -J. Kuo and C. -C. Su, 

"LayeredTrees: Most Specific Prefix-Based Pipelined 

Design for On-Chip IP Address Lookups," in IEEE 

Transactions on Computers, vol. 63, no. 12, pp. 3039-

3052, Dec. 2014, doi: 10.1109/TC.2013.109. 

[21] Sun, Yan & Kim, Min. (2010). A Pipelined CRC 

Calculation Using Lookup Tables. 1 - 2. 

10.1109/CCNC.2010.5421679. 

[22] Hajare, P. S., & Mankar, K. (n.d.). Design and 

implementation of parallel CRC generation for high-

speed application. https://doi.org/10.9790/4200-

05320105 

[23] Harsh, S. ., Singh , D., & Pathak , S. (2021). Efficient 

and Cost-effective Drone – NDVI system for 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1715568
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1715568
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1715568
https://doi.org/10.9790/4200-05320105
https://doi.org/10.9790/4200-05320105


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 543–551 |  551 

Precision Farming. International Journal of New 

Practices in Management and Engineering, 10(04), 

14–19. https://doi.org/10.17762/ijnpme.v10i04.126 

[24] Vadivu, N. S., Gupta, G., Naveed, Q. N., Rasheed, T., 

Singh, S. K., & Dhabliya, D. (2022). Correlation-

based mutual information model for analysis of lung 

cancer CT image. BioMed Research International, 

2022, 6451770. doi:10.1155/2022/6451770 

 

 

https://doi.org/10.17762/ijnpme.v10i04.126

