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Abstract: A summary of the many techniques used for this comprehensive review study aims to classify and detect synthetic aperture 

radar (SAR) images. SAR images have become more well-liked as a result of their adaptability and use in remote sensing activities such 

as planning, surveillance, and search and rescue regardless of the weather. The conversion of radar scatter returns to images and subsequent 

analysis for composition determination make it difficult to interpret these images efficiently. SAR images have been effectively categorized 

in the past for a variety of uses, with the possibility for further expansion across other SAR image types. In particular, feature extraction 

and SAR image categorization using Convolutional Neural Networks (CNNs) show potential. 
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1. Introduction 

SAR, a sophisticated microwave imaging radar, makes it 

easier to continuously identify and locate important objects 

[1]. SAR produces images with exceptional resolution 

regardless of the weather or lighting. The detection and 

categorization of ground targets, notably ships, have 

significantly improved because to this technology. Diverse 

methods Techniques for target recognition in SAR imagery 

have been developed as a result of ongoing developments in 

SAR technology. The Constant False Alarm Rate (CFAR) 

segmentation method is one of the methodologies that 

researchers have carefully investigated for SAR target 

segmentation techniques [2]. 

Nevertheless, difficulties like speckle noise and misleading 

target signals make manual analysis of SAR images time-

consuming. Studies focusing on recognizing and detecting 

maritime targets have received more attention in the field of 

remote sensing. The need for maritime surveillance is 

expanding across a number of businesses, including the 

shipping and military sectors, which is why there is a surge 

in interest. 

The variety of applications in this field have Due to the 

dearth of real samples for categorizing marine objects, 

earlier research frequently used simulated SAR images. 

However, reliable ship identification using remote sensing 

data is essential for important tasks including traffic 

monitoring, stopping illegal smuggling, and improving 

effective fisheries management.  

1.1 Background  

The application of SAR imaging for object recognition and 

surveillance has clearly gained attention lately. The 

introduction of spaceborne SAR satellites like TerraSAR-X, 

RadarSat-2, and GF-3 has sparked an increase in interest in 

this area. These satellites deliver SAR images with different 

resolutions covering various geographical areas. There is a 

need to more thoroughly examine the characteristics of a 

wider range of targets, even though the current research in 

SAR-based marine target classification has mainly 

concentrated on prominent vessels like oil tankers, cargo 

ships, and container ships, each of which exhibit distinctive 

characteristics as described in previous investigations [3]. 

The distinctive scattering characteristics of different types of 

ships have been successfully used in earlier investigations 

[4] Support vector machines (SVM) and sparse 

representation classifiers have proven to be adept at 

attaining accurate categorization [5]. In addition, thorough 

investigations have shown that classification accuracy can 

be as high as 97.5% when three different ship classes are 

differentiated using methods like dictionary learning and 

histograms of oriented gradients (HOG) [6] Numerous 

studies have focused on combining the benefits provided by 

traditional machine learning (ML) classifiers, realizing the 

need of carefully constructing features [7]. 

1.2 Stimulation 

Because SAR images have so many uses across so many 

different industries, research and analysis into object 

detection in surveillance have become more and more 

important, including defense, border security, and disaster 

management. With the ability to see through objects like 

walls, dust, and clouds, SAR images are preferable to optical 

images because they can be used in all types of weather. The 

speckle noise, complex scattering mechanisms, and low 

1Dept of E&TC Pune Institute of Computer Technology, Pune, Dept of 

E&TC Sandip Institute of Technology & Research Centre Nashik, 

pawar.sushant@gmail.com. 
2Professor, Pune Institute of Computer Technology, Pune, 

principal@pict.edu. 

 

mailto:pawar.sushant@gmail.com
mailto:Email%3Aprincipal@pict.edu


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 552–573 |  553 

contrast in SAR images do, however, also provide some 

unique challenges. For effective object detection algorithms 

specifically designed for SAR images, a thorough 

understanding of these topics is essential. Effective SAR 

object detection algorithms may lead to better threat 

identification, better situational awareness, and improved 

disaster response. 

1.3 Ship detection and SAR technology 

SAR imaging has a wide range of applications due to its high 

precision capabilities, including mine detection, 

oceanography, and terrain categorization  [8]. Additionally, 

it works well for finding concealed things and monitoring 

oil pollution on the ocean's surface.  

A SAR image, which typically has a resolution of 0.2 to 100 

meters, provides a 2-dimensional depiction of the 

reflectance of microwaves in the region being photographed. 

SAR sensors are used, and they offer certain characteristics 

not seen in optical sensors, such as: 

• SAR is an active imaging technology that can function 

without the need for sunlight.  

• SAR makes use of microwave frequencies, which can 

pass through a variety of barriers, like addressing the 

soil, snow, vegetation, and clouds. 

• By utilizing polarization to improve imaging, SAR can 

learn more about the structures of the things being shot. 

• SAR interferometry can be used since SAR is a 

coherent imaging technique. On the other hand, the 

presence of speckles makes it challenging to interpret 

SAR images [9]. 

At the moment, image creation and decision-making are 

separated during the SAR processing process.  

SAR simulation systems come in two varieties: 

1. To build an image, raw data on the rate of absorption 

from systems that replicate SAR imaging systems must 

be processed [10]. 

2. SAR image simulation systems. 

Due to its all-weather capabilities, SAR has proven to be 

extremely useful for monitoring huge maritime areas, giving 

it a unique advantage over competing technologies like 

visible light, infrared, and multi-/hyperspectral 

photography. The successful application of SAR-based 

maritime monitoring depends greatly on ship classification, 

which has recently attracted a lot of attention. 

1.4 Objectives 

• Researching and examining SAR images in relation for 

surveillance, object detection. 

• To evaluate current approaches and research the 

variables that contribute to successful or unsuccessful 

SAR image identification of moving objects. 

• Examine the potential uses of SAR imaging for 

surveillance and security activities. 

• Examine several image processing methods to enhance 

the quality of SAR images and advance object detection 

for surveillance. 

1.5 Scope of the review 

SAR is a crucial technology with numerous uses in both the 

military and the civilian worlds, which stands for SAR. In 

military settings, SAR is frequently employed for tasks 

including target identification, combat monitoring, and 

precise targeting. In contrast, SAR is mostly utilized in 

civilian applications to monitor the Earth's surface, issue 

catastrophe warnings, and assess the maritime environment 

[11]. SAR technology developments have continually 

improved the detection and identification of ground targets, 

such as cars, ships, and specialized structures, which are of 

great importance. With several potential applications in 

emergency management, security, and military operations, 

ongoing research on SAR imaging processing for object 

recognition and surveillance remains active. It is expected 

that more developments in this area will take place as more 

complex algorithms and methods for the interpretation of 

SAR data emerge, taking advantage of the expanding 

accessibility of SAR imagery. 

2. Detecting ship from SAR images 

Although earlier research on SAR-based ship identification 

has provided useful insights, it has mostly focused on ship 

localisation in Open Ocean as opposed to coastal areas. 

Unique difficulties arise from the complex task of locating 

and recognizing ships in ports and coastal waterways. 

Complexity is increased by the wide variety of ship types, 

each with unique size, design, and navigational 

characteristics, especially when AIS transponder-less ships 

are present. Given the complicated and busy ship traffic in 

these areas, the creation of novel approaches is essential to 

effectively handle these complexity [12]. 

For ship detection in SAR images, a number of algorithms 

have been developed, Target identification has been done 

using a variety of methodologies, including CNN-based 

techniques, feature-oriented methods, and CFAR-based 

ones [13] [14] [15][16],. approaches Statistical models for 

maritime clutter, such as the Rayleigh distribution [17], 

Gamma distribution [18], and K-distribution, are employed 

in CFAR-based approaches, making it simple to calculate 

detection thresholds [13] Following sea-land segmentation, 

these techniques are typically employed to lessen false 

alarms brought on by land-based items like roads and 

houses. CFAR-based systems can suffer in low contrast 

environments even when they lack classification layers for 

target discrimination. In contrast, feature-based methods, as 

described in [14] offer a powerful substitute that makes use 

of gradient data coupled with Haar-like traits and the Radon 

transform. The first sea-land segmentation's impact can be 
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reduced by excluding land pixels. 

 

Fig 1. shows the architecture of a CFAR- and deep-

learning-based detector. 

2.1 Overview of  algorithms to detect ship  

In terms of ship detection studies, SAR photography is in the 

forefront [19] Hu et al. [20] first presented the Cumulative 

Projection Curve (CPC) technique in their quest to improve 

detection close to coastal areas. This method helps to 

identify smaller vessels close to port coasts by quantifying 

the degree of intersection between several categories. By 

creating a hierarchical approach that performs the dual 

functions of diagnosing and segmenting color images 

containing ships, Hong et al. [21] improved the discipline. 

Their method includes using Bayes classification, Principal 

Component Analysis (PCA) to categorize floating objects, 

and wavelet-based approaches for noise reduction. 

However, other studies has cast doubt on the effectiveness 

of statistically based techniques like PCA [22]. In addition, 

the use of SAR images for ship identification has been 

investigated in a number of studies, with some of them 

making use of the wavelet domain [23] .In light of this, RGB 

camera images are not covered. Dao-Duc et al. [24] 

described a method that makes use of a deep learning 

architecture similar to Alex-Net. To train the network, more 

than 130,000 real images of ships from 35 different 

categories were used. According to reports, the accuracy 

scores for both the Top1 and Top5 were between 80% and 

95%. Fast-RCNN was suggested as a ship detection method 

by Japhet et al. [25] [26]. Fast RCNN uses a CNN 

architecture and is distinguished by its quick training and 

testing procedure [27]. 400 images were used in the study 

for both testing and training, and an outstanding overall 

accuracy rate of 87% was attained. Huang and team [28] 

introduced the BvSB-ADN technique, which combines deep 

learning with active learning. With little training data, this 

novel method delivers high detection accuracy. It is possible 

to choose the best deep network training samples using this 

approach. RBM, or Restricted Boltzmann Machine, was a 

feature of the network used in this study.  

2.2 Features of the detection method are extracted 

2.1.1 Intensity-Based Features: In their study, by [29] 

proposes the LSMDRK (Local Saliency Map with Dual-

channel Radar Knowledge) ship identification method, 

which obtains an impressive overall accuracy rate of 

87%.There are two main steps to the strategy. First, the 

system's descriptive capabilities are enhanced by 

polarimetric target breakdown during the feature extraction 

phase. Second, during the detection step, a saliency map is 

produced using a saliency detection approach. Then, local 

maximum detection is applied to this saliency map. 

Ultimately, the optimum detection outcomes are intended to 

be achieved via an adaptive threshold technique. The 

experimental outcomes indicate that the proposed approach 

outperforms conventional detection methods in accurately 

identifying subtle objects and minimizing false alarms. 

Using a dataset provided from RADARSAT-2, the 

effectiveness of the suggested technique is assessed. 

2.1.2 Shape-Based Feature: Using two cascades—one 

based on automatically obtained data and the other on 

form—the authors of the article article [29], propose a 

method for detecting ships. A deep neural network 

autoencoder is used in the technique to automatically extract 

crucial information. In addition to Yandex and Google 

Maps, the researchers also used a tiny portion of images 

downloaded from the internet for algorithm testing and 

training. A UAV (unmanned aerial vehicle) can identify 

good ships with recall and precision of 0.95 and 0.94, 

respectively, when shape- and feature-based cascades are 

used in conjunction.The proposed strategy performs roughly 

as well as or slightly better than current state-of-the-art 

methods, according to the experiment findings. 

2.1.3 Features Based on Texture: The researchers present 

a novel approach to ship detection in their work [30]that 

tackles the shortcomings of current approaches while taking 

into account large and challenging terrain. The suggested 

method improves performance under challenging 

circumstances with significant inshore background 

interference and varied object imaging features by including 

a scattering-keypoint-guided network. Dealing with the 

problem of imaging variability is the main objective of this 

method. Researchers created the GaoFen-3 ship detection 

dataset to assess the detector's adaptability and robustness. 

They used a SAR ship detection dataset that was openly 

accessible as well to illustrate how well the suggested 

improvements worked. The results of the experiments 

conducted on these two datasets demonstrate that the 

proposed approach is in line with the state-of-the-art in ship 

detection. 

2.1.4 Features of Polarimetric: In their work [31], The 

researchers carefully evaluate the drawbacks of the current 

network designs for target identification, focusing on the 

ineffective use of polarimetric data, the ineffective 

recognition of small-scale targets, and the laborious sea-land 

segmentation techniques that increase the likelihood of false 

alarms. To solve these issues, the researchers provide a 

number of options. Their strategy begins by creating a 

skilled single low-level path aggregation network, intended 

to overcome the complexities involved in locating small 
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targets. Through a semantic augmentation module, the 

network combines sophisticated single-scale feature 

mappings for detection, effectively reducing false alarms at 

the feature level. In addition, an adaptive dual-polarimetric 

feature fusion method is presented, which carefully selects 

multichannel features from dual-polarimetric 

decomposition to maximize effectiveness and reduce 

redundancy. A segmentation layer is seamlessly 

incorporated into the architecture to increase the network's 

effectiveness and reduce false alarms brought on by ground 

interference. A crucial step in establishing shared learning 

between the detection and segmentation layers is the 

incorporation of a unified loss function for the thorough 

training of both the feature extraction and feature fusion 

modules. Researchers have curated a special dataset for 

polarimetric SAR detection and segmentation to 

demonstrate the effectiveness of their suggested method. 

The dataset incorporates annotations from LS-SSDDv1 

Null, covering areas like small vessel identification and sea-

land separation. Through experiments on this dataset, the 

researchers validate the superiority of their suggested 

method over traditional techniques. 

2.1.5 Hybrid Features: A hybrid model for ship recognition 

is presented in the study by [32] and incorporates 

classification, location, and segmentation tasks. An original 

boundary-box localization method makes use of an 

improved Intersection over Union (IoU) metric. This novel 

method not only links the training and evaluation phases, but 

also improves object positioning accuracy. To assess the 

effectiveness of the suggested hybrid model, a specially 

curated Synthetic Aperture Radar (SAR) dataset specialized 

to ship detection is used. Each ship sample in this collection 

has a resolution of 256 pixels in the range and azimuth 

dimensions, and it has been painstakingly annotated by 

skilled SAR analysts. Based on actual data, the proposed 

hybrid model significantly improves ship recognition 

accuracy, especially in difficult situations. Its vital role in 

reducing false alarms and boosting overall ship detection 

efficacy is further demonstrated by its significantly lower 

false positive rate when compared to competing models. 

2.1.6 Statistical Features: In order to improve the portrayal 

of small targets in SAR images, a unique strategy is 

presented in  [33] In order to partition the SAR images, this 

method uses a split convolution block (SCB). The network's 

ability to detect and represent these smaller targets is 

enhanced by using the smaller sub-images that are created 

as inputs. To preserve spatial information throughout the 

dimensionality reduction process, the feature pyramid 

network (FPN) combines a spatial attention block (SAB). 

The efficiency of evaluating multi-resolution SAR images, 

particularly in complex backdrops, is investigated in this 

work using datasets from Sentinel-1 and GaoFen-3. The 

outcomes show that the detection of small targets in these 

datasets is effectively improved by the SCB and SAB 

approaches. Together, these two modules produce a notable 

1% improvement in mean Average Precision (mAP) and a 

significant 0.0216 improvement in the F1 score, resulting in 

a notable improvement in overall performance. A 

comparison with modern one-stage and two-stage object 

identification systems is also included in the study. The 

recommended approach outperforms SSD, YOLOv3, and 

Faster R-CNN in terms of mAP values, highlighting its 

benefits, particularly in enhancing the detection of small 

targets inside SAR images. 

2.1.7 Scale-Variant Features: The goal of SARFNet, a 

novel learning strategy presented in [34], is to detect objects 

in SAR images. It uses adaptive feature selection to 

efficiently capture significant object properties at various 

scales. The paper assesses the efficacy of SARFNet through 

thorough examinations of publically available datasets 

particularly created for SAR object recognition. The results 

show that SARFNet performs better in terms of detection 

accuracy than the other approaches. SARFNet outperforms 

other cutting-edge methods in terms of quantitative 

performance indicators, which is particularly clear in its 

performance on the HRSID dataset, where it attained a 

remarkable average accuracy (AP) of 64.1%. These results 

demonstrate SARFNet's superiority over earlier approaches 

and demonstrate how well it can improve object detection 

accuracy in SAR images. The inclusion of an adaptive 

feature selection procedure by SARFNet, which makes it 

possible to more efficiently gather scale-related information, 

is credited with improving detection performance. 

2.1.8 Deep Learning-Based Features: According to the 

research by reference [35], the SARFNet (Scale-Aware 

Pyramid Network) has been developed as a cutting-edge 

learning methodology for object detection within SAR 

images. Through the use of an adaptive feature selection 

process, SARFNet successfully captures distinctive and 

practical properties of objects at various scales. Using 

publicly available datasets created expressly for SAR object 

detection, comparative experiments are conducted to assess 

SARFNet's performance. The results clearly demonstrate 

that SARFNet outperforms other techniques in terms of 

detection accuracy. When it comes to quantitative 

evaluations, SARFNet comes out on top, displaying 

remarkable performance, especially on the HRSID dataset, 

where it achieved an astounding average accuracy (AP) of 

64.1%. These results demonstrate SARFNet's superiority to 

earlier approaches, enhancing the accuracy of object 

detection in SAR imagery. The proposed strategy is 

thoroughly compared to proven methods that are already in 

use to determine its viability. The experimental findings 

clearly show the suggested method's superior performance 

in both offshore and inshore settings, underscoring its 

adaptability and strength in a variety of difficult 

circumstances. A promising method for spotting ships in 

SAR images is introduced by the deep learning network 
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suggested in reference [35] The accuracy and robustness of 

ship detection are improved by this method, which combines 

data from the spatial and frequency domains. 

2.3 Classification methods 

2.3.1 Thresholding: In their article, [36] introduces a 

straightforward framework with two approaches for quick 

recognition in SAR images. The simple setup described in 

[36] provides a workable option for quick identification 

inside SAR images.This network's introduction is essential 

for identifying possible targets because it reduces false 

alarms and significantly improves overall performance. The 

SSDD offshore dataset and the FUSAR-Ship-Detection 

dataset, both free to use, are used to assess the system's 

effectiveness. The comparative analysis evaluates the 

suggested framework's performance and computational 

complexity in comparison to the Multi-CFAR approach and 

YOLO-v4. The framework significantly outperforms Multi-

CFAR, as evidenced by improvements of 14.43% on the 

SSDD offshore dataset and 7.36% on the FUSAR-Ship-

Detection dataset. The promise of the framework for real-

time SAR image processing applications is demonstrated by 

the integration of threshold and false alarm rejection neural 

networks, which improves accuracy and efficiency. 

2.3.2 Clustering: In reference by [37] a brand-new ship 

identification method known as M-DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) was 

presented. To improve ship detection, this technique makes 

use of the SEPD (Spatial Enhanced Pixel Descriptor) 

format. The effectiveness of M-DBSCAN is thoroughly 

assessed and contrasted to more established intensity-based 

clustering techniques like fuzzy c-means and k-means. The 

comparison uses the common intensity threshold-based 

detector with a constant false alert rate. The study covers a 

wide range of challenging situations, such as sidelobes, 

identifying small or faint targets, and moving objects. To 

record these events, high-resolution imaging is frequently 

used. The outcomes constantly show that the method 

outlined in reference [37]  demonstrates remarkable 

performance under a variety of circumstances, highlighting 

its suitability for ship detecting tasks. The substantial 

improvement that can be seen when using both M-DBSCAN 

and the SEPD format for pixel clustering is particularly 

noteworthy. The method uses a density-based clustering 

algorithm that combines spatial information to handle 

complex circumstances and improve detection accuracy. 

Beyond the effectiveness of threshold-based approaches and 

current intensity-based clustering algorithms, the thorough 

investigation described in [37]  suggests a viable route for 

ship detection, particularly in complicated scenarios 

intrinsic to high-resolution SAR data. The combination of 

M-DBSCAN and the SEPD representation is an example of 

how this strategy can significantly improve ship 

identification. 

2.3.3 Template matching: The technique described in [35]. 

which aids in accurate ship detection, consists of three basic 

components. Initially, hierarchical spatial characteristics are 

acquired using the Feature Pyramid Network (FPN). In 

order to provide exact spatial multiscale features for ship 

targets and successfully capture their spatial characteristics, 

the FPN uses a top-down design. The emphasis then changes 

to pinpointing the rotation-invariant characteristics that SAR 

ship targets possess inside the frequency domain. This uses 

a polar Fourier transform, which is skilled at capturing the 

frequency characteristics of these objects, is used to do this. 

Then, a brand-new network is presented to combine spatial 

frequency properties. To effectively acquire compact feature 

representations spanning many domains, this innovative 

network constantly modifies the configurations of sub-

networks. This method's invention significantly improves 

ship detection accuracy by the thoughtful application of 

multidimensional domain data. The efficiency of the 

suggested methodology is thoroughly evaluated using the 

well-established SAR ship detection dataset (SSDD) [35]. 

The experimental results support the suggested approach's 

superiority to popular CNN-based algorithms. This benefit 

is especially noticeable when detecting ship targets with 

varied sizes and rotations, even in complex backdrop 

settings. In order to produce accurate ship detection results, 

the methodology described in [35] skillfully blends 

hierarchical spatial attributes, rotation-invariant frequency 

features, and spatial frequency characteristics. Notably, the 

SSDD dataset evaluation of the suggested technique 

indicates its superior performance than earlier CNN-based 

algorithms. This is clear even in difficult situations with ship 

targets that have complicated backgrounds and differing 

sizes and rotations. 

2.3.4 Support Vector Machine: The research discussed in 

[38] suggests a technique for ship detection based on block 

division. Using this method, the image is divided into tiny 

chunks that accurately represent ship and non-ship locations. 

This block-based method, as opposed to pixel-based ones, 

enhances region characterisation and is efficient in terms of 

processing. The blocks are categorized using Support Vector 

Machine (SVM), a supervised learning method, based on 

color and texture data. Color features capture the chromatic 

characteristics of the regions, while texture features capture 

the subtleties of the spatial pixel distribution. Blocks that 

were incorrectly categorised are then corrected, and a 

recovery procedure is started to recover the ships that were 

found. With a classification accuracy of up to 96.98%, the 

combination of color and texture features provides 

outstanding precision in separating ship blocks from non-

ship components. Furthermore, the approach's accuracy 

reaches a remarkable 98.14% during the last stage of ship 

detection. 

2.3.5 Machine Learning: The research described in [39]  

incorporates a wide range of AI and machine learning 
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techniques [40], including Random Forest, Decision Tree, 

Naive Bayes, and CNN, in the aim of developing a reliable 

ship recognition model. The experiment's two main goals 

are to investigate efficient detection techniques and provide 

solutions for the difficulties involved in ship detection. 

Empirical results clearly demonstrate Random Forest's 

accuracy advantage over all other evaluated models. 

Random Forest performs better than Decision Tree and 

Naive Bayes, which is an important point of distinction. Its 

accuracy rates for RGB and HSV are 97.20% and 98.90%, 

respectively, in contrast to the statistics for Decision Tree 

and Naive Bayes, which are 92.43% and 96.30% for RGB 

and HSV, respectively. CNN also gets accuracy ratings of 

90.45% for RGB and 98.45% for HSV. In the end, the 

Random Forest model's outstanding effectiveness is 

revealed, producing amazing results with accuracy scores of 

97.20 for RGB and 98.90 for HSV. The relevance of the 

method put out in  [39] reverberates in the field of artificial 

intelligence and offers a fresh viewpoint on ship detection. 

The goal of the project is to develop a reliable ship 

recognition model by the thorough integration of AI and 

machine learning techniques like CNN, Decision Tree, 

Naive Bayes, and Random Forest. The research achieves its 

main objectives by methodically examining efficient 

detection strategies and tactical responses to innate detection 

difficulties. The empirical findings highlight Random 

Forest's superior accuracy performance compared to the 

other models under consideration. Random Forest 

outperforms Decision Tree and Naive Bayes, achieving 

accuracy rates of 97.20% for RGB and 98.90% for HSV, vs 

92.43% for RGB and 96.30% for HSV, respectively, and 

96.82% for RGB and 97.18% for HSV. CNN also receives 

accuracy ratings of 90.45% for RGB and 98.45% for HSV. 

The Random Forest model ultimately proves to be the most 

effective, offering outstanding precision with accuracy 

scores of 97.20 for RGB and 98.90 for HSV. The method 

put forth in  [39]  is of utmost importance in the field of 

artificial intelligence since it offers a novel viewpoint on 

ship identification techniques. 

2.4 Evaluation metrics 

The suggested method [3]  uses the Faster-RCNN  [24] and 

SSD  [41]  models to show the improvements in ship 

detection. The evaluation findings, shown in Table 2, 

highlight the MR-SSD method's exceptional performance in 

areas including recall, precision, and the F1 score. 

Comparing the suggested technique to SSD, which only 

caused 8 false alerts, reveals a substantial decrease in false 

alarms. Faster-RCNN recognizes targets less accurately than 

the indicated method, but it still produces the same amount 

of false alarms, lowering its F1 rating. The proposed method 

outperforms existing approaches for precise localization of 

a range of maritime targets in large-scale SAR images. 

TABLE I.  RESULTS OF LARGE-SCALE SAR IMAGE 

DETECTION USING SEVERAL CNN MODELS ARE PRESENTED 

IN [3]. 

Method  Tf Td Tg F1 

(%) 

Recall 

(%) 

Precision 

(%) 

MR-

SSD  

8 122 128 94.57 95.31 93.85  

SSD    22 121 128 89.30 94.53 84.62 

Faster-

RCNN    

8 119 128 93.33 92.97 93.70 

TABLE II.  DIFFERENT ALGORITHMS' AVERAGE 

PRECISION ACROSS DIFFERENT TARGETS (%) [3] 

Met

hod  

Wind

mill 

(%) 

To

wer 

m

AP 

Platf

orm 

Tan

ker 

Car

go 

Conta

iner 

SSD    86.34 74.

55 

85.

62 

89.9

6 

86.4

6 

89.

37 

87.08 

Fast

er-

RC

NN    

78.19 68.

79 

82.

09 

89.6

1 

86.7

0 

89.

47 

79.78 

MR-

SSD  

88.04 80.

07 

87.

38 

90.4

3 

87.2

8 

89.

77 

88.69 

TABLE III.  DETECTOR PERFORMANCE 

DEVELOPMENT ON THE SSDD DATASET 

Refer

ence 

Y

ea

r 

Aver

age 

Preci

sion 

Time Refer

ence 

Y

ea

r 

Aver

age 

Preci

sion 

Tim

e 

[42] 20

17 

78.8

% 

173 

ms 

[43] 20

20 

90.7

% 

13.6

ms 

74 

FPS 

[44] 20

19 

89.7

6% 

10.9

38ms 

[45] 20

20 

94.6 

% 

258

FPS 

3.9

ms 

[46] 20

19 

90.1

6% 

21ms     

3. Classification of a ship in SAR images 

Historical research has primarily focused on using image 

processing and computer vision techniques to extract 

relevant information from visible spectrum images. This 

project becomes challenging, especially when it comes to 

categorizing ships in aerial images. The features collected 
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are then used as inputs for supervised classifiers. 

The two primary categories of ship classification are coarse-

grained classification and fine-grained classification. Ships 

are categorized into bigger groups like military and 

commercial vessels in coarse-grained categorization. This 

classification is further aided by the subcategorization of 

ships into classes including fishing vessels, container 

vessels, sailing vessels, and coast guard vessels [47] [48], as 

well as the distinction between moving and stationary ships 

[47]. To evaluate the effectiveness of coarse-grained ship 

classification algorithms, the BCCT200 dataset, a common 

benchmark, is widely used. Classes like as barge, cargo, 

container, and tanker are included in this dataset [49]. The 

experiment [50] focused on categorizing ship fleets using 

satellite images with a spatial resolution of 10 meters is an 

exception to the rule that most of these algorithms are 

designed for images with spatial resolutions greater than 4 

meters. Images with spatial resolutions greater than 2 meters 

are frequently used for ship categorization at a finer 

scale[51] [52]. 

Conventional methods for coarse-grained ship classification 

initially mainly involved comparing the collected ship 

features to an existing database. Gabor filters and multi-

scale finished local binary patterns have gained popularity 

as major feature descriptors since the BCCT200 dataset was 

introduced. This combination makes it easier to extract both 

specific and general features [53] [54]Convolutional neural 

networks (CNNs) have been a popular method for accurate 

categorization of various ship types in the context of fine-

grained ship classification [55] 

3.1 Overview of methods for ship classification 

The standard method in [56] called for the classification of 

ships using artificial or medium-resolution SAR images. 

The researchers in [57] used polarimetric SAR (PolSAR) 

and polarimetric interferometric SAR (PolInSAR) as a 

primary tool to investigate ship categorisation. It should be 

noted that the study by Touzi et al. [57] pioneered the use of 

coherent target decompositions, allowing the 

characterization of ships using PolSAR data. Additionally, 

by using PolInSAR data, the authors of  [58], classified ships 

based on their 3D geometry representation and extrapolated 

height data. Although PolSAR and PolInSAR show 

encouraging findings, their practical application is 

accompanied by technological difficulties caused by 

particular system requirements that are frequently 

unorthodox for satellite sensors. Single polarimetric 

imagery-based ship categorization emerges as a practical 

solution to these problems as a result. Even though there has 

been some preliminary research [59] into exploiting high-

resolution TerraSAR-X images, this investigation was 

confined to a limited number of extensively classified 

targets. 

In recent years, a number of studies have created various 

ship detection and categorization systems. Zhu et al.'s [60] 

extraction of several high-dimensional local features from 

potential ship targets is classified using SVM. Two of these 

features are texture and shape. Bi et al.  [61]  presented a 

hierarchical salient-region-based technique that finds 

regions and captures properties in order to create a specific 

SVM classifier for ship detection. Similar to this, Xia et al. 

[62] suggested a method for ship detection that, after 

segmenting sea and land regions, combines Local Binary 

Patterns (LBP) features with an SVM classifier. By utilizing 

numerous factors and classifiers, these techniques have 

shown promising results in ship detection and classification. 

There are, however, few studies that have looked at both 

coarse- and fine-grained ship classification. Notably, a 

major barrier to ship classification continues to be the lack 

of a consistent annotation structure for ship categories. 

3.2 Feature extraction techniques 

SVM has become a popular approach in recent studies for 

examining ship classification and identification. For 

example, Zhu et al. [60] developed a ship categorization 

technique based on high-dimensional local data retrieved 

from possible ship targets, which included characteristics 

like shape and texture. The hierarchical salient-region 

analysis-based technique to ship detection developed by Bi 

et al.  . [63] integrates SVM and characteristics from 

particular regions. In order to discriminate between sea and 

land and identify ships, Xia et al. [62]  used Local Binary 

Patterns (LBP) features and an SVM classifier. Yang et al.'s 

approach 's [64] combined estimated features from extracted 

regions to choose potential ships by utilizing sea surface 

homogeneity analysis and a linear function. Last but not 

least, Marques et al. [65] presented a method for locating 

vessels in aerial image sequences that makes use of a UAV-

mounted sensor. This method used blob extraction in 

conjunction with spatial and temporal feature analysis to 

categorize regions as being linked with ships or not. 

However, conventional CNNs struggle to extract features, 

particularly in the confined parameter space of shallow 

layers. This could result in low resolution and few features 

for small targets. When faced with densely clustered small 

targets, conventional multi-scale target detection algorithms 

find it difficult to get satisfactory results. For the network to 

perform better at detection under these difficult conditions, 

feature extraction capabilities must be improved.  

Yang et al. [65]  proposed an inventive visual search engine-

based ship detecting technique in a later study. They used a 

global contrast approach to highlight important details using 

local consistencies and geometric properties. An SVM was 

then used to classify these discovered regions. Another 

unique method used by Tang et al. [63] combined non-

convolutional deep neural networks, the Extreme Learning 

Machine, and deep learning algorithms with wavelet 

coefficients from the JPEG2000 compressed domain. The 
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raw image underwent initial preprocessing that laid the 

groundwork for ship location, including techniques like 

image augmentation and sea-land segmentation based on 

wavelet coefficients. A region proposal network (RPN) was 

used in recent work [66] to locate exact ship locations after 

CNNs were used for characteristic extraction and 

characteristic extraction. Zhao et al. suggested a specific 

coupled CNN in their study [67] that was designed for SAR 

ship detection in limited and crowded conditions. In terms 

of both detection accuracy and processing speed, our 

method performed better than the traditional CFAR 

detection algorithm. The suggested detectors worked at 

various scales and took into account different target sizes by 

using feature maps from various CNN layers. The CNN's 

thinner layers concentrated on gathering fine-grained data, 

improving the detection precision of tiny targets. On the 

other hand, bigger targets profited from the lower layers' 

extraction of more abstract elements, which made it easier 

to recognize them [68]. 

3.3 Classification methods 

TABLE IV.  VARIOUS SAR IMAGE CLASSIFICATION METHODS PROPOSED BY VARIOUS AUTHORS 

Data on Ship Trajectory 

Research 

Methodology 

 

Advantages Limitations 

 

Marine Traffic Pattern 

Mining[69] 

Analyzing the movement 

patterns of ships for 

navigation and route 

planning 

Improves navigation and 

route planning for 

commercial and military 

vessels 

Limited application to 

specific industries 

 

Maritime Anomaly 

Detection[70] 

Detecting abnormal 

behaviour in ship 

trajectory data 

 

Helps identify potential 

threats to national 

security and prevent 

illegal activities 

 

Limited application to 

security and surveillance 

industries 

Ship Classification[71] Classifying ships based 

on trajectory data 

 

Can satisfy the 

requirement of identifying 

hazy types of objects in 

historical trajectory data 

Limited accuracy in 

regions where ship types 

are not distinguishable 

Creating a Classification System 

for Fishing Boats and Cargo 

Ships [72] 

Putting out a system for 

separating fishing vessels 

from cargo ships using 

actual AIS data 

Satisfies the demand for 

targets of unclear types in 

historical trajectory data 

Limited to fishing boats 

and cargo ships 

Compressed Trajectories and 

Kernel-Based Ship 

Classification[73] 

Compressing trajectories 

and using kernel methods 

for ship classification 

 

Retains stop and move 

information and can be 

used for ship 

classification 

 

Unsuitable for ships 

travelling at a high rate of 

freedom in a large area of 

the sea 

Polynomial Fitting and 

Adaptive Neuropathy-Fuzzy 

Inference System[74] 

Ship classification using 

polynomial fitting and 

ANFIS based on 

trajectory features 

 

Uses the inherent form 

features of trajectories to 

avoid the influence of 

geography 

Discards temporal 

dimension and requires 

proper trajectory 

partitioning, which may be 

difficult for large datasets 

or long durations. 

    

TABLE V.  ACCURACY RATES (%) ACHIEVED BY VARIOUS EXISTING METHODS FOR CLASSIFICATION [3] 

Ship types ConvNet [75] KNN CNN-ML 

[76] 

CNN-NB[77] SVM  MT-CNN 

Container 77.78 60.61 79.83 75.93 38.89 94.44  
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Tower 94.44 61.69 95.83 86.11 61.11 100.0  

Tanker 65.79 65.37 73.68 63.16 75.00 88.16    

Windmill 92.55 95.39 93.62 74.47 97.87 98.94   

Boat 83.65 89.45 91.35 88.46  79.81 94.23 

Average 82.27 70.58 90.41 80.96 71.80 95.20    

Cage 97.47 68.06 98.73 98.73 68.09 100.0  

Platform 87.27 62.76 92.73 83.64 45.45 90.91  

Cargo 69.48 54.26 92.21 77.92 70.13 94.16   

3.4 Evaluation metrics 

The key performance indicators in Table 6 include 

precision, recall, F1 score, classification accuracy, and 

validation accuracy. These measurements are used to 

carefully assess how many units are present in the 

completely connected layers and their impact. According to 

the results, the difference in the number of units has a 

negligible effect on the classification performance measures 

including training accuracy, validation accuracy, and F1 

score. Following the process of fine-tuning, additional 

refinement is used to improve the ship categorization model. 

The McNemar test is carried out to thoroughly evaluate the 

models' efficacy [78][79]. The computed p-value is greater 

than 0.05, indicating that there are no statistically significant 

differences between the models. The deployment of the 

model with the fewest embedded neural units (32) reduces 

overfitting and streamlines network complexity. 

TABLE VI.  ILLUSTRATION OF THE UTILIZATION OF VARYING UNIT QUANTITIES WITHIN THE FULLY CONNECTED LAYERS TO 

ASSESS THE SHIP CLASSIFICATION MODEL, WHICH IS CONSTRUCTED UPON THE VGG16 ARCHITECTURE [80] 

The Number 

of Units 

Average 

Precision (%) 

Average F1 

Score 

Validation 

Accuracy (%) 

Training 

Accuracy (%) 

Average 

Recall 

128   96.24 0.9628 96.09 100 0.9632 

256   97.81 0.9778 97.92 100 0.9774 

64   97.81 0.9778 97.79 100 0.9774 

4096   97.00 0.9705 97.01 100 0.9710 

32   97.85 0.9779 97.66 100 0.9774 

TABLE VII.  AIS-BASED SHIP MOVEMENT CLASSIFICATION USING CNN [81]: 

Size of Batch Accuracy (%) Precision (%) Recall (%) F1-Score  AUC 

64 71.51 93.57 64.72 76.34 81.20 

32 77.66 92.35 61.96 76.38 81.15 

16 70.25 91.48 62.00 76.35 81.08 

The demand for skilled algorithms capable of classifying a ship's AIS data into distinct movement categories, including 

static, routine navigation, and maneuvering, has increased as a result of the expanding use of AIS data in marine 

transportation. As a result, numerous research projects have developed approaches that use labeled features for classification 

[74]. 

4. Latest progress In Sar-Based Ship Detection and 

Classification 

The application of traditional statistical pattern recognition 

algorithms founded in Bayesian Theory stands out as a 

highly favored technique in the context of decoding SAR 

images, presenting the potential for optimal solutions [82]. 

The successful integration of these methods into the 

interpretation of SAR images depends on the careful 

selection of an appropriate statistical distribution to describe 

the SAR image data [83]. As a result, scholarly interest in 

statistical modeling of SAR images has increased over the 
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past ten years, making it a lively and actively researched 

field [80].  The success of SAR image applications is 

significantly impacted by this statistical modeling project. It 

first improves our understanding of the fundamental ideas of 

terrain dispersion.  

Additionally, it expands on insightful ideas that are useful in 

a variety of contexts, such as target recognition and 

identification [41], edge detection [84], segmentation [85], 

classification [86], and the lowering of speckle noise in SAR 

data. Its ability to combine statistical models with Inverse 

Synthetic Aperture Radar (ISAR) target databases to 

produce various SAR images with distinctive aspects 

including aspect, terrain composition, geographic 

placement, and Signal-to-Clutter Ratio (SCR) is a 

noteworthy accomplishment. Incorporating statistical 

modeling and ISAR databases allows for the production of 

sizable datasets, which aids in the building of trustworthy 

algorithms for SAR image interpretation [87]. The use of 

traditional statistical pattern recognition algorithms based on 

Bayesian Theory is currently a prominent method for 

interpreting SAR images, ensuring the promise of optimal 

results [82]. The key to these methods' success is the careful 

selection of an appropriate statistical distribution for 

modeling SAR image data [83]. Evidently, the statistical 

modeling of SAR images has seen a rise in scholarly 

attention over the past ten years, making this area of research 

both active and dynamic [80]. Applications of SAR images 

are significantly impacted by statistical modeling. It 

improves our understanding of the basic ideas behind terrain 

dispersion and broadens the applicability of its advantages. 

Target recognition and identification [41], edge detection 

[84], segmentation [85], classification [86], and the 

reduction of speckle noise in SAR images are all included in 

this.  

While the classification of ships using optical vision has 

gotten comparably little attention [84], the field of SAR ship 

classification has recently undergone substantial exploration 

and evaluation [82] [88]. However, improvements in optical 

sensors have effectively overcome some of the drawbacks 

of SAR-based techniques. The primary objective of this 

study is to improve classification precision in order to meet 

the real-time requirements of ship monitoring. The 

incorporation of a transformer in CRTransSar [89], a 

ground-breaking method designed for ship detection in SAR 

images, is an important development in this area. On the 

Ship Detection Dataset (SSDD), this technique has earned a 

stunning 97% Average Precision (AP), demonstrating its 

extraordinary accuracy. Transformers are ready to become a 

crucial study area in this field, displaying their enormous 

potential, thanks to the revolutionary advances shown in the 

context of SAR ship identification. This method 

demonstrated its extraordinary accuracy with a stunning 

97% Average Precision (AP) on the Ship Detection Dataset 

(SSDD). Transformers are in a prime position to have a big 

impact on the course of this domain's future thanks to their 

outstanding performance in SAR ship identification. 

4.1 CFAR (Constant False Alarm Rate) Based 

advancement 

The widely used CFAR approach modifies the threshold 

value by taking into account the statistical characteristics of 

the nearby clutter in order to maintain a constant false alarm 

rate. To describe marine clutter, many CFAR-based 

strategies have used theoretical models such the Gaussian, 

Rayleigh, and K distributions. However, the variation of the 

distribution of maritime clutter under real-world 

circumstances is a serious issue for CFAR and cannot be 

properly simulated with a fixed function. This issue has been 

addressed by the use of adaptive CFAR methods. 

The adaptive CFAR strategy uses a variety of techniques, 

including the analysis of data in focused geographic areas, 

Making probability density curves and setting pixel 

segmentation thresholds in accordance with the desired false 

alarm rate are also steps in the procedure. Occasionally, 

background noise in SAR images can be reduced by using 

the Rayleigh distribution model. The fact that some clutter 

backgrounds might contain non-Rayleigh elements could 

limit the method's applicability. The author of [90] suggests 

a two-parameter CFAR detection method that provides 

increased versatility to get over this restriction. 

The most widely used method for target segmentation in 

SAR image processing is adaptive threshold or CFAR 

detector [91], which finds high-value pixels by comparing 

pixel values with the nearby background. Several 

techniques, including CFAR segmentation, have been 

looked at and discussed for SAR target segmentation [92]. 

The Beamlet-based SAR image target detection 

methodology, the CFAR algorithm, and the use of two-

dimensional principal component analysis for feature 

extraction have all been thoroughly investigated in the field 

of target detection in SAR imaging. Within the context of 

SAR image identification tasks, these approaches have 

produced encouraging results in obtaining robust target 

segmentation and detection rates results [93]. CFAR stands 

out as a notable and well-known algorithm among these 

methods. Its origins can be traced back to ship target 

detection testing carried out at the Ottawa Defence Tests 

Centre, which were first presented by Wackerman C. et al. 

in 2001 [90]. The CFAR method creates a distribution model 

using data from focused areas, builds a probability density 

curve based on this model, and then establishes a pixel 

segmentation threshold in line with a predefined false alarm 

rate. The application of this criterion demonstrates 

effectiveness in precisely identifying targets in SAR images 

with elevated grey values. 

However, the majority of the recent work on SAR image 

target detection has been directed toward enhancing 
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recognition rates and creating fundamental algorithms. 

There hasn't been enough focus on target recognition 

methods for SAR images that can adapt to complex 

backgrounds and take into account target distortion during 

detection. To adequately address these issues, further in-

depth practical examination and research are required. 

4.2 Fusion of images of multiple sensors 

Multiple sensors working together should improve the 

precision of ship identification and classification in SAR 

images, it has been hypothesized. Using the complementary 

strengths of both sensors, the pairing of optical and SAR 

imagery, for instance, enhances ship recognition and 

classification. SAR imaging contains data on ship shape and 

size, whereas optical photography only provides exact 

information on color and texture [94] [95] [27]. Diverse 

sensors, including the Automatic Identification System 

(AIS) and Long-Range Identification and Tracking (LRIT), 

have been synergistically linked with SAR technology in an 

effort to improve ship detection and classification 

capabilities. This fusion of sensor data reduces false alarms 

while simultaneously improving the accuracy of ship type 

identification. The challenging task of aligning and 

registering data from disparate sensors as well as the 

requirement for advanced data fusion and analysis 

algorithms present difficulties in this sensor fusion 

technique. Despite these difficulties, research into the 

integration of numerous sensors to improve SAR-based ship 

identification and classification is still ongoing [96]. 

Researchers are actively working on developing answers to 

these issues, improving the fusion processes in the process 

to ultimately increase the overall effectiveness of ship 

detection and classification systems. 

4.3 Automatic target recognition 

With several applications in surveillance, homeland 

security, and military operations, automatic target 

recognition (ATR) is a well-known and developing subject 

of study [97]. The direction of current research is clearly 

toward the effectiveness and dependability of radar ATR 

through the use of SAR images. A wide range of variables, 

including shadowing effects, environmental interactions, 

and the projection of a three-dimensional image onto an 

inclined plane, play a crucial role in this realm, with the 

target's aspect playing a key role. Radar cross sections 

(RCS) are a particularly sensitive element of SAR images 

because of this aspect-dependent aspect dependent [98]. 

Additionally, the ability to recognize and distinguish 

between targets in SAR imaging exhibits a large fluctuation 

depending on the target's aspect. 

Due to its quick execution and capability for global 

optimization, the Genetic Algorithm (GA) has acquired a lot 

of momentum as a preferred method for addressing the 

difficulty of target detection in SAR images [99]. The work 

of Lin and Bhanu Bhanu [100], who developed a novel 

feature selection method based on the GA paradigm, 

provides an example of this application. This algorithm 

expertly chooses the best features for target discrimination 

in SAR images by utilizing the inherent benefits of GA. 

ATR algorithms that are dependable and effective for SAR 

imaging are constantly being developed. To improve target 

discrimination effectiveness and heighten the precision of 

ATR systems based on SAR technology, researchers are 

carefully investigating a variety of approaches, including 

genetic algorithms among others. 

4.4 Unsupervised / Deep learning approaches 

The development of deep learning-based object detection 

methods in computer vision has had a substantial impact on 

SAR researchers who previously had trouble accessing SAR 

images [101][40]. The resurgence of deep learning is the 

result of three key developments: increasing processing 

power, easy access to vast amounts of data, and algorithmic 

improvements. The first publicly available Standardised 

Ship Detection Dataset (SSDD) in 2017 helped researchers 

overcome the limitations of conventional algorithms by 

providing them with standardised data and evaluation 

standards. This innovation addressed the field's issues with 

comparability and data scarcity. Because deep learning-

based procedures outperform more conventional CFAR-

based ones, they have become more popular among 

researchers. The active and collaborative attitude of the 

computer vision community has further accelerated the 

progress in this domain. The launch of SSDD signaled the 

start of the deep learning era for SAR ship identification, 

presenting new opportunities and igniting research in the 

field. 

 

Fig 2. The lifespan of Deep learning method in SAR image 

detection and classification [102]. 

By incorporating a restricted Boltzmann machine into neural 

networks, Hinton [103], who is credited with the invention 

of deep learning, brought about a paradigm change. This 

innovative idea contributed to considerable improvements in 

computer vision tasks including object detection, 

segmentation, and categorization, which primarily use RGB 

images [104]. Deep learning models' range of use recently 

expanded to include SAR imagery as well [105]. Nogueira 
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et al. [105] developed three methods using well-liked 

Convolutional Neural Networks (ConvNets) on optical and 

multispectral datasets, demonstrating the efficacy of 

combining finely-tuned features with an SVM classifier. 

This tendency was demonstrated by them. In a different 

investigation, Bentes et al. [77] assessed the use of CNNs 

for ship classification using TerraSAR-X images. Deep 

learning's ability to automatically extract distinguishing 

characteristics from SAR images eliminates the need for 

manual feature extraction, selection, and classifier 

optimization, which is its main advantage. Deep learning is 

a viable option for processing SAR images because this 

automated approach saves time and requires less human 

involvement. 

5. SAR-BASED SHIP DETECTION AND 

CLASSIFICATION APPLICATIONS 

The Search for Unidentified Maritime Objects (SUMO) 

algorithm is a dedicated method designed to precisely detect 

ships in satellite SAR images. Developed over a 15-year 

span, this technique utilizes an extensive dataset of SAR 

images captured by diverse L-, C-, and X-band satellites. 

Rigorous benchmark assessments have verified SUMO's 

robust performance across a spectrum of SAR image 

modalities, encompassing Spotlight to ScanSAR, and 

resolutions spanning 1 to 100 meters. SUMO excels in ship 

detection of varying sizes and types, demonstrating a keen 

understanding of radar imaging limitations [106]. 

The effectiveness of CNNs and other deep neural networks 

in ship recognition and categorization tasks has recently 

been demonstrated by solid evidence. Notably, Zou and Shi 

[107] developed the SVD network, a new architecture that 

combines a three-layer CNN and two layers for feature 

extraction. Ship pixels are represented by a probability map 

within a separate layer of the CNN, which is then subjected 

to a linear SVM classifier. Scenes acquired by the VRSS-1 

and GaoFen-1 satellites were used to demonstrate the 

effectiveness of this method, with equally distributed 

training data from each satellite. Lin et al.'s [108] 

customised application of the ResNet architecture is another 

important addition. This modification focuses especially on 

the difficulties associated with identifying and localizing 

inshore ships in crowded harbor environments. Targets are 

positioned closer together in this scenario. Using 

information from Google Earth and GaoFen-2 satellite 

photography, the proposed technique underwent a thorough 

review. 

SAR, an effective remote sensing technique, is capable of 

detecting and classifying ships even under unfavorable 

weather and lighting circumstances. SAR-based ship 

detection and classification has several applications in both 

the civilian and military domains. The following are the 

main applications of SAR-based ship detection and 

classification: 

1. Maritime surveillance and security: SAR technology 

may be used to effectively monitor sea traffic, identify 

potential risks to national security early on, and follow 

illegal activities like smuggling and piracy. 

2. SAR's ability to quickly identify missing or troubled 

ships helps search and rescue operations, enabling quick 

and effective rescue missions. 

3. Environmental awareness: Using SAR helps with the 

constant monitoring of ecological threats including 

marine pollution, oil spills, and other ecological 

calamities. Rapid responses and mitigation measures 

are accelerated as a result. 

4. Effective fisheries management: SAR's capabilities can 

be used to identify and continuously monitor fishing 

vessels in order to enforce fishing laws and prevent 

illicit fishing activities. 

5. Improved navigation and route plotting: Commercial 

and military ships can make use of SAR's real-time 

information on ship trajectories and sea dynamics to 

optimize navigation and route choices. 

6. SAR tracking can improve risk assessment and 

mitigation for insurance underwriting. 

7. Scientific investigation: SAR technology is invaluable 

for understanding surface winds, ocean currents, and 

various oceanographic events. As a result, it provides 

crucial information for scientific research. 

6. Challenges and Future Directions 

The Chinese GaoFen-3 (GF-3) satellite's development of 

high-resolution SAR imaging has revolutionized maritime 

surveillance and made it possible to track marine organisms. 

Conventional methods, however, have trouble gathering the 

necessary information for precise differentiation and 

identification of various maritime subjects within SAR 

images. We suggest using a CNN model as a solution to 

solve these problems. This method, which focuses on 

locating maritime targets at the patch level, uses a complex 

system to find marine items among huge SAR datasets. By 

utilizing the strength of deep learning and CNNs, our 

suggested method intends to improve the accuracy and 

efficacy of classifying and detecting marine targets in SAR 

imagery. 

In the study by [3], detailed feature analysis and the 

development of test datasets resulted in the discovery of 

eight different types of marine targets within GF-3 SAR 

images. A specific CNN model is created to meet this 

classification difficulty[16]. The method makes use of a 

network design with three pooling layers, six convolutional 

layers, and two fully connected layers for patch-level 

classification. Single Shot Multi-box Detector with Multi-

Resolution Input (MR-SSD), a novel technique for locating 

maritime targets, is presented. Stages including sea-land 

segmentation, multi-resolution cropping, MR-SSD-based 

detection, coordinate mapping, and projected box 

consolidation are part of the methodology that has been 
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developed. The efficiency of these strategies in reliably 

categorizing and recognizing marine targets, effectively 

addressing issues raised by SAR imaging, has been 

validated by experimental evaluations on the GF-3 dataset 

[3]. 

The research [3] divides marine targets into eight separate 

classifications using feature analysis and test datasets. A 

special CNN model is created for the job of patch-level 

classification, consisting of six convolutional layers, three 

pooling layers, and two fully linked layers. For the purpose 

of finding marine targets, the Single Shot Multi-box 

Detector with Multi-Resolution Input (MR-SSD) is also 

being developed. The study [3] is able to classify maritime 

targets into eight classes using methods such overlapping 

cropping, sea-land segmentation, and MR-SSD-based 

detection. The suggested CNN model is tailored for patch-

level classification and has six convolutional layers, three 

pooling layers, and two fully connected layers. 

Deep learning approaches have the ability to address the 

issues described before, according to research by Cheng and 

Han [109]. By promoting the adoption of deep learning-

based solutions in this domain, our study is in line with this 

trajectory. New developments are necessary as we advance. 

This involves creating new types of data and increasing the 

number of examples in the training dataset. In addition, we 

intend to explore optimization techniques through field 

experiments targeted at ship categorization. 

6.1 Limitations of current methods 

The processing of SAR images for object recognition in 

surveillance applications has advanced significantly, 

however existing approaches still have a number of 

drawbacks. 

The lack of established techniques for the analysis and 

interpretation of SAR data is a significant limitation. The 

complexity of SAR data frequently makes it difficult to 

understand, and analysts may use a variety of processing 

methods and analytical frameworks. As a result, there may 

be discrepancies and errors in the identification and 

classification of objects. 

The difficulty of distinguishing indistinguishable objects in 

SAR images is another persistent problem. For instance, it 

can be difficult to reliably discriminate between certain 

items in SAR imaging due to their similar radar signatures, 

such as trucks and tanks. 

Another disadvantage is the dependency of the current SAR 

object recognition and categorization methods on human 

ability and expertise. Many existing systems require manual 

categorization and object identification in SAR images, 

which can be time-consuming and biased. 

In the end, a variety of environmental factors including 

weather, geography, and air interferences can affect how 

effective SAR object detection and categorization systems 

are. These factors have the potential to skew the SAR signal, 

which would reduce the accuracy of item identification and 

categorization. 

Current technologies face two major difficulties when it 

comes to the identifying and categorization of ships using 

optical spaceborne imaging. They are subject to 

meteorological factors including cloud cover and oceanic 

disturbances, unlike infrared and SAR images. Additionally, 

the processing and analysis of optical images become 

increasingly complex due to their higher resolution and the 

significant amount of data they produce. Meanwhile, finding 

the optimal balance between performance and complexity is 

still a challenge [63].

 

TABLE VIII.  CHALLENGES INHERENT IN NUMEROUS APPROACHES SUGGESTED FOR SHIP CLASSIFICATION USING SAR IMAGES 

Model used Findings Research gap Accuracy Dataset (Year) 

Efficient phase 

filtering algorithm 

[110] 

Method's effectiveness in 

reducing phase noise, 

preserving fringes, and 

decreasing computation time. 

The proposed approach 

lacks a comparison with 

other existing noise-

filtering methods 

95% (2011) 

Sparse 

representation 

classification 

(SRC) in feature 

space [111] 

Emphasis is placed on 

extracting meaningful data 

and employing 

dimensionality reduction 

methods to enhance ship 

characterization and reduce 

dictionary dimensions in 

SRC. This approach enhances 

algorithm efficiency and 

elevates ship recognition 

Extraction of more 

features to define the 

ships, experimentation 

on a huge data 

collection in various 

scenarios, and 

optimisation algorithms 

of the sparse 

representation 

92% TerraSAR-X SAR 

ship (2013) 
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accuracy 

Single-pol SAR 

images [56] 

Address the absence of a 

viable solution and achieve 

precise ship classification 

using a solitary SAR channel 

Additional tests are 

required since value is 

indeterminate 

70 % (2015) 

TEXTURE-

BASED VESSEL 

CLASSIFIER 

[112] 

Minimizing noise and 

background interference to 

optimize the influence of 

vessel information 

Addressing cases of 

low classification 

certainty and enhancing 

classification outcomes 

through a more 

advanced decision-

level classification 

approach 

85.64% Electro-optical 

satellite image 

(2015) 

A novel Gabor 

feature-based 

CNN [113] 

Demonstrates superior 

performance compared to 

CNN results and certain other 

conventional object 

recognition techniques 

Future advancements 

are expected to 

introduce exceptional 

models, with a focus on 

simplification rather 

than further complexity 

81.53% ImageNet10 (2016) 

6.2 Future research directions 

SAR image processing has been transformed by deep 

learning applications in classification and segmentation 

[114]. While the majority of recent research focuses on ship 

detection, distinguishing between non-ship objects such 

icebergs that mimic ships receives less attention [115]. 

Future research aims to enhance SAR target detection 

algorithms by utilizing advanced deep learning models and 

techniques to effectively differentiate between icebergs and 

ships. This effort seeks to overcome the challenge posed by 

distinguishing these objects. 

Our forthcoming endeavors encompass the integration of 

geographic attributes into our classification system to 

advance our research. This integration aims to refine ship 

positioning accuracy in optical aerial images. By 

incorporating positional data, we anticipate enhancing the 

spatial understanding and localization capabilities of our 

classification system, leading to more precise ship placement 

identification. The implications span various applications, 

including maritime traffic management, navigation, and 

surveillance systems. Furthermore, exploring alternative 

sensors like SAR holds potential for scenarios where visible 

spectrum photography is unfeasible, such as nighttime 

operations. Investigating numerous sensor combinations in a 

multimodal context is also on the agenda. Apart from ship 

identification, our objective is to extract precise ship 

locations using saliency estimation techniques. We also 

intend to expand the MASATI dataset by contributing 

additional images, bolstering its size and augmenting model 

performance. To expedite this process, we contemplate the 

utilization of semi-supervised approaches [116]. 

6.3 Rising patterns and technological advancements 

The field of SAR image analysis for object detection in 

surveillance applications is rapidly evolving alongside 

emerging trends and technologies. A recent advancement 

involves the utilization of ML and AI algorithms to analyze 

SAR images. Through pattern recognition in SAR images, 

these algorithms enhance object detection accuracy. 

Furthermore, enhanced SAR imaging techniques, such as 

polarimetric SAR (PolSAR) and interferometric SAR 

(InSAR), have gained prominence. PolSAR aids in 

identifying object size, shape, and orientation, while InSAR 

provides height information. 

Considerable research is underway in the realm of new SAR 

platforms and sensors. For instance, unmanned aerial 

vehicles (UAVs) or drones equipped with SAR sensors 

provide high-resolution images for identifying objects and 

conducting surveillance in challenging environments. 

Additionally, an emerging trend involves the fusion of SAR 

data with other data types like optical or thermal images. 

This integration enhances scene depiction, object 

identification, and classification accuracy. 

The ship detector, also known as SUMO [107], is a 

collection of software-implemented algorithms that may 

locate ships using either fully automatic or semi-automatic 

approaches in satellite radar imagery. Its primary objective 

is to minimize operator involvement while facilitating the 

utilization of satellite radar images for marine surveillance. 

The Vessel Detection System (VDS), which employs 

satellite images to enhance the fisheries management 

system's self-reporting capabilities, was initially created 

with a fisheries control purpose  [117]. Now part of the 
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SUMO application areas is maritime security and safety. 

The SUMO program includes a broad range of algorithms 

that address the various ship identification process sub-

tasks. The Interactive Data Language (IDL) was used to 

implement earlier versions of SUMO, however the majority 

of the current versions are created in Java. Additionally, test 

versions have been created using MATLAB. 

This review's goal is to categorize and evaluate several 

methodologies that are targeted primarily towards SAR 

image categorization. We try to determine the best 

suggested approaches in this subject of research by 

reviewing similar research fields.

TABLE IX.  RECENTLY USED DATASETS IN THE DETECTION AND CLASSIFICATION OF SAR IMAGES 'S [64] 

Author Dataset Description 

[118] NWPU VHR-10 The first publicly accessible dataset made to evaluate how well 

objects can be found in remote sensing images 

[119] Airbus Ship Detection The Kaggle-hosted satellite image challenge of ship detection. 

[120] Fine-Grained Ship Detection 

(FGSD) 

The most comprehensive labelled dataset for ship recognition 

and classification in remote sensing images will soon be 

released. 

 

 

Fig 3. The datasets used most recently for categorizing and recognizing ships in SAR images, as well as the accuracy of 

their tasks. 

7. Conclusion 

This article briefly outlines the current obstacles and 

constraints associated with object detection and 

classification in SAR images for surveillance applications. 

While there has been substantial research on SAR 

classification algorithms, there remains potential for 

enhancing system quality. In order to perform object 

detection and classification in SAR images for surveillance 

purposes, there are currently a number of challenges and 

limitations that must be overcome. There is no consistent 

structure for data extraction from different radar frames in 

the current SAR categorization methods. These algorithms' 

dependencies on domain-specific data, which are essential 

for improving categorization in specific use cases, 

contribute to their complexity. It is difficult to modify them 

for diverse SAR images. To establish a dependable system 

for SAR object detection and surveillance, further research 

is necessary to enhance the precision and effectiveness of 

SAR categorization algorithms. 

7.1 Key findings summary 

The results of the tests done on the papers under review 

corroborate the findings of this study. These observations 

lead to some important conclusions, including the following: 

• Earlier studies have shown a distinction between 

the decision-making process and SAR image 

processing. 

• Depending on the precise requirements of the 

instrument built for its intended use, multiple 

methods can be used to distinguish targets from 

problematic objects. 

• The enhancement of the SAR object categorization 

system's efficacy can be achieved through the 

synergistic integration of logical multi-approach 

and multi-concept training methods. This strategy 

optimally leverages diverse concepts and 

approaches, resulting in improved classification 

and search outcomes. 

• In SAR image categorization, CNNs have 

demonstrated appreciable improvements in object 

1 6
18

38
54 54

6

0

20

40

60

Datasets that are widely used for SAR image 

categorization and detecting tasks 

Current datasets used for ship 

identification and classification tasks
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identification models for a variety of objects. 

CNNs are the method of choice for identifying 

SAR images because to their higher accuracy 

compared to competing techniques. 

7.2 Implications for future research 

• One noteworthy technique that deserves special 

attention is the Anchor-Free Detector. 

• The Benefits of Starting Detector Training from 

Scratch. 

• Detector necessitates a number of additional 

activities.  

• Finding little ships is really intriguing. 

• Create a simplified detection network with this 

objective in mind. 

7.3 The value of SAR-based ship detection and 

classification 

1. SAR-based ship detection and classification offers a 

quick, affordable way to keep track of marine activity 

and protect maritime security. 

2. Piratery, smuggling, and illicit fishing are just a few of 

the illegal activities that can be identified and stopped 

with the aid of SAR-based ship detection and 

classification systems. 

3. In urgent search and rescue operations, ship 

identification and classification using SAR procedures 

is essential. 

4. SAR technology's ability to detect and classify ships 

precisely and accurately has the potential to greatly 

improve maritime security and safety measures around 

the world. 
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