

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 872

Hybrid Elephant Herding Optimization and Flamingo Search

Algorithm for Effective load Balancing in Cloud Computing

Mr. Syed Muqthadar Ali1*, Dr. N. Kumaran2, Dr. G. N. Balaji3

Submitted: 27/04/2023 Revised: 28/06/2023 Accepted: 06/07/2023

Abstract: Cloud computing has many challenges, such as server failures, loss of confidentiality, improper workloads still limit the

performance of cloud systems in real-world scenarios. Due to this, numerous research works are being carried out to improve the

limitation of existing systems. Among them, load balancing seems to be a major issue that degrades the performance of the cloud

industry, so optimal load balancing with optimal task scheduling is required. With the aim of attaining optimal load balancing by

efficacious task deployment, in this manuscript Hybrid Elephant Herding Optimization and Flamingo Search Algorithm is proposed for

effectual load balancing in cloud environment (LBS-CE-Hyb-EHO-FSA). The aim of proposed LBS-CE-Hyb-EHO-FSA is to enhance

the population initialization and search space exploitation for activating the predominant load balance among the virtual machines (VMs)

in the clouds. It includes the weighted task scheduling procedure depending on the optimization issue formulated utilizing the parameters

of makespan, energy consumption and data center cost. Here, LBS-CE-Hyb-EHO-FSA is proposed for exploiting the merits of Elephant

Herding Optimization (EHO) algorithm and Flamingo Search Algorithm (FSA) in order to achieve superior results in all dimensions of

cloud computing. In this, LBS-CE-Hyb-EHO-FSA achieves the allocation of Virtual Machines (VMs) to incoming tasks of cloud, when

the number of currently processing tasks of a specific VM is reduced than cumulative number of tasks presently processing by other VMs

in the cloud. It also attains potential load balancing process, then difference between the processing time of all individual virtual

machine and the mean response time (MRT) incurred by the complete virtual machine. Finally, the simulation experiment of proposed

LBS-CE-Hyb-EHO-FSA is conducted using Cloudsim platform. Here the proposed method provides 23.35%, 15.06%, 21.77%, 27.82%,

14.31%, 19.23% lower Mean Execution Time and 38.22%, 40.21%, 19.30%, 25.46%, 19.25%, 21.14% lower mean response time

comparing to the existing models.

Keywords: Cloud environment, Elephant herd optimization, Flamingo Search Algorithm, Load balancing, Mean response time.

1. Introduction

Generally, the cloud computing is a significant role for

facilitating as a game-changer in most of the operations

that involves resource intensive applications, such as

operating modes, collaborative capacities, end-user

services, service provisioning [1]. The main aim of the

cloud services is to provide end-users with quick access to

the virtual machines. The load balancing is focused on

upgrading the performance with minimal cost and energy

consumption [2]. When raised the count of overloaded

VMs in the network, the performance of the cloud

environment is substantially lessened [3-5]. Outages and

unavailability of tasks are also caused by overloaded VMs,

resulting in a decline in the degree of system usage in

public cloud. Nearly, 60% energy consumes through the

data centres that keep idle server.[6, 7] The advantage of

cloud computing is a well-organized load balancing tactic

contains low waiting time, propinquity, real time

interaction and occupy more. Also, its disadvantage is

energy consumption, load balancing rate and delay. These

drawbacks motivated to do this research work. In this

manuscript, the Hybrid Elephant Herding Optimization and

Flamingo Search Algorithm are proposed for efficient

Load Balancing in the cloud environment.[8-10] This,

LBS-CE-Hyb-EHO-FSA is proposed to exploit the merits

of traditional EHO algorithm and FSA, in order to achieve

superior results in all dimensions of cloud computing. This

proposed LBS-CE-Hyb-EHO-FSA prevented the

shortcomings of the existing metaheuristic algorithms in

attaining superior load balance between the physical

machines.

The key contributions of this manuscript are described

below,

• Hybrid Elephant Herding Optimization (HEHO) [11]

and Flamingo Search Algorithm (FSA) [12] are both

metaheuristic optimization algorithms that have been

used in various applications such as job scheduling,

task allocation, and load balancing. When combined,

HEHO and FSA can provide an efficient solution for

load balancing in a cloud environment.

1*Research Scholar, Department of Computer Science and Engineering,
Annamalai University. Annamalainagar, Chidambaram 608002, Tamil

Nadu, India
1*Email: smuqthadarali34@gmail.com
2Assistant Professor, Department of Computer Science and Engineering,

Annamalai University. Annamalainagar, Chidambaram 608002, Tamil

Nadu, India
2Email: kumaran81@gmail.com
3Associate Professor, School of Computer Science and Engineering,

Vellore Institute of Technology, Vellore, Tamil Nadu, India
 3Email:balaji.gnb@gmail.com

* Corresponding Author Email: smuqthadarali34@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 873

• Cloud computing is a popular paradigm for delivering

computing resources as a service via the internet. One

of the key challenges in a cloud environment is to

ensure that the workload is evenly distributed across

the available resources. Load balancing can help to

optimize resource utilization, improve system

performance, and ensure that the user's requirements

are met.

• HEHO is inspired by the herding behavior of elephants

and uses a combination of local and global search

strategies to find optimal solutions. FSA, on the other

hand, is based on the flocking behavior of flamingos

and uses a collective intelligence approach to find the

best solution. By combining the strengths of both

algorithms, a hybrid approach can be developed that is

more robust and effective than either algorithm alone.

• The HEHO-FSA hybrid algorithm can be used for load

balancing in a cloud environment by considering the

workload distribution across the available resources.

The algorithm can be used to optimize the allocation of

tasks or virtual machines to different nodes, based on

factors such as the CPU utilization, memory usage, and

network traffic. By using HEHO and FSA together, the

algorithm can quickly converge to an optimal solution

while avoiding local optima.

• In summary, the HEHO-FSA hybrid algorithm can

provide an efficient solution for load balancing in a

cloud environment by combining the strengths of both

algorithms. The algorithm can help to optimize

resource utilization, improve system performance, and

ensure that the user's requirements are met.

Rest of the manuscript is described as; section 2 specifies

the literature review of different researches related to

efficient Load Balancing of Cloud Environment. Section 3

defines the proposed methodology. Section 4 represents

the results and discussion. At last, section 5 concludes the

manuscript.

2. Literature Review

Various research works were previously presented in the

literature associated to effective load balancing process in

cloud computing. A few research works are reviewed in

this section, Kaur, and Kaur, [13] have suggested a hybrid

heuristic-metaheuristic based load balancing optimization

in cloud environment. It attains higher mean response time.

Balaji et al., [14] have presented LBS-CE-ACSO. Here,

the presented algorithm increases the system resource

usages of virtual machine and decrease the usage of power.

For load balancing, it exhibits reduced energy utilization,

conversely, the memory utilization is higher. Devaraj et al.,

[15] have presented the hybridization of firefly and

enhanced multiple objective particle swarm optimization

for energy efficient load balancing in cloud computing

environments. It provides least average response time with

higher makespan. Prassanna and Venkataraman, [16] have

presented an adaptive regressive holt–winters workload

prediction with firefly optimized lottery scheduling to load

balance in cloud environment. It provides better task

scheduling performance with higher makespan. Ziyath, and

Senthilkumar, [17] have presented meta-heuristic

optimization applied task scheduling with load balancing

technique for cloud infrastructure services. It provides

minimum energy consumption and higher data center cost.

3. Proposed Methodology

Here, the Hybrid elephant herding optimization algorithm

and the Flamingo Search Algorithm are proposed for

facilitates the effective load balancing process in cloud

computing (LBS-CE-Hyb-EHO-FSA). The block diagram

of proposed LBS-CE-Hyb-EHO-FSA method is given in

Figure 1. The detailed discussion regarding LBS-CE-Hyb-

EHO-FSA are given below,

User 1 User 2 User n

Web service

Load

balancer

Data centers

Virtual

Machine 1

Virtual

Machine 2 Virtual

Machine n

Allocation of

virtual machine

according to

arrival time Weight

assigned to

tasks

Allocation of

resource

according to

cloud broker

For optimizing makespan,

energy consumption and

data center cost

Hybrid Elephant

Herding and

Flamingo Search

Optimization

Algorithm

Fig 1: Block diagram of proposed LBS-CE-Hyb-EHO-

FSA method

3.1 System model

The system model employed to implement the proposed

LBS-CE-Hyb-EHO-FSA scheme contains ‘ k ’ hosts or

cloud data centres represents set },........,{: 21 kcccC =

including ‘ m ’ count of VMs is signified using

},......,{)()2()1(rMMMM VVVV = and ‘ m ’ represents the

count of tasks that is portrayed through

},.......,,{)()2()1(mSSSS TTTT = . The tasks submit to cloud

computing platform using the accessible cloud brokers.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 874

These tasks submit to the clouds and it is emphasized by a

collection of factors },.,{)(iiiiis tatlttetftt = which presents

task final stage, threshold time essential for task

implementation, length and arrival time on cloud

environment. The entire collection of factors is transmitted

into
)(iMV . The proposed LBS-CE-Hyb-EHO-FSA method

focus mainly on under and over-utilization virtual

machines, tasks’ makespan, datacentre cost and energy

consumes, ‘)(iTaskPT ’ emphasis the implementation time

of tasks utilizing Equation (1).


=

=

m

i

ijmTask SPT

1

)(

(1)

where nj 1

where ijS denotes the number of processors. The capacity

of virtual machine)(jCAPVM depending on bandwidth (

)(jPEBW), million instructions/sec()(jPEMIPS),

processing count ()(jPEPC) corresponding to the

processing components of clouds is computed using

Equation (2).

)()()()(jPEjPEjPEjCAP PCMIPSBWVM =

(2)

The load has feasibility allocated to every virtual machine

VMLOAD is scaled using Equation (3).

),(

),(

)(tVSR

tTTasks
LOAD

iM

TN
VM =

(3)

In Equation (3), total number of tasks),(tTTNTasks and

service rate),()(tVSR iM of VMs at time t . The sum of

task load allocated to the entire set of VMs activating at the

cloud utilizing Equation (4).


=

=

n

j

jVMVMC LOADLOAD

1

)()(

(4)

where)(jVMLOAD represents the count of loads in VM, n

denotes the count of tasks. The time incurred for

processing the tasks is submitted to the total count of

virtual machines exist in the cloud environment, and it is

presented in Equation (5)

)(

))((

)_
jVM

jVMC

VMTOTAL
CAP

LOAD
TP =

(5)

where)(jVMCAP denotes the virtual machine capacity,

)_VMTOTALTP represents the processing time of VM. The

execution of every task is allocated to individual virtual

machines computed utilizing Equation (6), (7).

)(

)(

iFract

i

Exec
CPU

Tl
Time =

(6)

)(

)(

)(
jVM

iVM

VMI
CAP

LOAD
TP =−

(7)

where ExecTime specifies the task execution time,)(iTl

denotes the average length of tasks that is submitted to the

particular virtual machine,)(iFractCPU represents the

fractional capacity,)(VMITP − denotes the processing time

of VM. The ending time of individual task allocates to

particular virtual machine is computed in terms of

execution time as well as starting time receiving to the

clouds depending on Equation (8).

ExecnTSnTS TimeSTimeTF +=)()(
(8)

where)(nTSTF represents the finishing time of tasks,

)(nTSSTime represents the execution start time. The

decision variable)(ijVARDS deemed to allocate the

incoming tasks to the associated virtual machines utilizing

tasks processing time labelled in Equation (9).

ii

ii
ijVAR

ttetftif

ttetftif
DS




=

0

1
{)(

(9)

here the makespan means the overall time to complete the

task with respect to proficient allocation of virtual

machines. This factor of makespan required to be

optimally lessened. The objective fitness function focuses

on lessening the tasks makespan enters inside the cloud

computing environment and it is specified in Equation

(10).

)(
,

ij
VMjTs

S ftMaxMinM
jS 

=

(10)

Let
ijft represents the time of finishing that is acquired by

)(sST task above the virtual machine)(jVM , SM represents

the minimal makespan of task and
jS VMjTs

Max
 ,

denotes the

makespan of the tasks incoming to cloud computing. If

energy consumptions enters based on the task execution

)(sST above the virtual machine)(jVM represents)(sTaskEC

.The energy consumption rate ()(_ sTaskECRate) is

acquired by the virtual machine with the time of task

execution (TimeExec) to the corresponding virtual machine

is assessed by equation (11)

= TimesTasksTask ExecECRateEC =)()(_

(11)

The cumulative energy consumptions of each virtual

machine are used for processing the tasks is assessed by

Equation (12).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 875


= =

=

k

i

s

j

ijsTaskj ECVMTEC

1 1

)_()()(

(12)

where)()(jVMTEC denotes the cumulative energy

consumption for each virtual machine. The objective

function concentrates on the energy consumption utilizing

Equation (13).

)(()(jCon VMTECMinE =

(13)

where ConE represents the objective function for energy

consumption and)(()(jVMTECMin denotes minimization

of cumulative energy consumptions. Additionally, the

datacentre cost specifies other parameter is considered for

task scheduling to the virtual machine is depend on its

availability is determined by equation (14).

UNTIPERjjCost CostVMVMDC −=)()()(

(14)

here)()(jCost VMDC denotes the data centre cost of VM

and UNITPERCost − specifies the cost acquired to utilize one

kilo watt energy using data center at the operations of

cloud. Therefore, the objective function focuses less

datacentre cost that is determined in equation (15).

)(()(cos jCosttC VMDCMinD =

(15)

At last, the above mentioned objective function is

expressed as makespan (SM), the energy consumption (

ConE), data center cost (tCD
cos) are based on the below

equation (16-18)

1

1

=
=

s

i

ij ,

VVMTt jsS )()(,((16)

In equation (16), the aforementioned constraints

emphasizes a single task is needed to be assigned to every

separate virtual machines.

i

k

i

iS etdT 
=1

0(,

VVMTt jsS )()(,((17)

In equation (17), the time for performing the task is lesser

than complete deadline for the specific task through the

virtual machine.

Th

k

i

iTaskisTask UPPTPT
k

−
=1

2
)()_()(

1

(18)

In equation (18), calculates the standard deviation of load

is less than higher values of threshold in virtual machine

allocation. Also, the load balancing procedure is depending

on the degree of imbalance that is represented in Equation

(19)

)(

)()(
_Im

sTask

sTasksTask

Mean

MinMax
Degreeb

−
=

(19)

where Degreeb _Im denotes the imbalance degree,

)(sTaskMax ,)(sTaskMin and)(sTaskMean specifies the

maximal, minimal, mean count of tasks are presented in

cloud environment.

3.2 Systematic steps for proposed LBS-CE-Hyb-EHO-

FSA scheme

The LBS-CE-Hyb-EHO-FSA approach utilize the multi-

objective function to decide the allocation and re-allocation

of newer/older task with suitable virtual machine/host.

After allocates the task to them, the allocation and

reallocation depends upon primitive constraints for

emphasizing the load of virtual machine is higher than the

value of upper limit. If large number present in virtual

machines, then determines the constraint of deadline.

Additionally, the task migration from heavily and lightly

loaded virtual machine is necessary for

deadline/completion time. Here, select the virtual machine

along minimal value of higher deadline task, when higher

the completion time of receiving or re-allocating task.

Besides, the virtual machines with higher as well as

medium deadline tasks have chosen while the incoming or

re-allocating task completion time is medium. The virtual

machine group is totally depending on VM existing load.

VMs present in over-loaded virtual machine group for

removing the task and it waits till it identifies the potential

virtual machine for the allocation on subsequent iterations.

The virtual machines are allocated in under-loaded group

for the waiting task that required to be reallocated.

3.3 Hybrid elephant herding optimization and

Flamingo Search Algorithm based load balancing

process

In cloud computing scenario, EHO and FSA is proposed to

attain suitable balance of virtual machine along with the

objective function depending on makespan (SM), energy

consume (ConE), cost of data center (
tCD

cos
) for LBS-

CE-Hyb-EHO-FSA is delineated, its corresponding flow

chart is specified in Figure 2. The hybridization of two

metaheuristic algorithms such as Elephant Herding

Optimization (EHO) and Flamingo Search Algorithm

(FSA) can provide several advantages over using either

algorithm alone. Some potential benefits of this

hybridization include:

• Improved Global Exploration: EHO is known for its

strong local search capabilities, while FSA is good at

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 876

global exploration. By combining the two, we can

benefit from both algorithms' strengths to improve the

search process, ensuring a more thorough exploration

of the solution space.

• Better Convergence: Combining EHO and FSA can

lead to faster convergence to optimal or near-optimal

solutions. EHO's local search capability can help

refine solutions found by FSA, leading to improved

convergence.

• Robustness: The hybridization of EHO and FSA can

increase the algorithm's robustness, making it less

prone to getting trapped in local optima. The

combination of different search strategies can help the

algorithm escape local optima and find better

solutions.

• Applicability: The hybridization of EHO and FSA

can make the algorithm more versatile and applicable

to a wider range of problems. EHO and FSA have

been successfully applied to a variety of optimization

problems in different fields. Combining them can help

extend their applicability even further.

Overall, the hybridization of EHO and FSA can lead to an

algorithm with better performance, faster convergence,

improved robustness, and wider applicability.

Firstly, the hybrid EHO and FSA creates the uniform

distribution initial population of elephant and flamingo.

Then, the parameters are generated randomly, after the

process of initialization, and it calculates the fitness

function. While using the herd behaviour of elephants

together with foraging behaviour of Flamingo optimizes

the makespan (SM), energy consume (ConE), cost of data

center (
tCD

cos
) is used for efficient load balancing in the

cloud environment. The optimum solution is updated by

the Hybrid EHO and FSA. Then, the above mentioned

procedure is repeated until met the feasible solution. The

step-wise process is specified below,

Step 1: Initialization

The process of elephant and flamingo is initialized. The

populations of the elephant and flamingos are considered

as Mq ,........,3,2,1= and the location of elephant and

flamingos is considered as Nn ,........,3,2,1= , which are

initialized.

Step 2: Random Generation

The input parameters randomly created after the

initialization process. Hence, the values

of best fitness for each elephant and flamingo are selected

based on the explicit hyper-parameter situation.

Step 3: Fitness Function

After initialized values, the arbitrary count of resolution is

created. Then, fitness function is scaled using the given

equation (20)

)](

),(),([

cos tC

ConS

DcenterData

EConsumeEnergyMMakespanMinimizefunctionFitness =

(20)

Step 4: Herding behaviour of elephants for minimizing

SM and ConE

In this step, for each elephant is recognized by their

position in the search space. Assume that, an elephant clan

specifies id . Next position consist of several elephant j in

the clan is updated, using the below equation (21),

() saaaa jdidibestjdijdinew −+= ,,,,, 

(21)

where in the clan id , jdinewa ,, specifies the new position for

individual j , dibesta , denotes the best solution in clan id

that is founded at this time, in clan id , jdia , specifies the

old position of the individual j . Parameters such as

]1,0[ specifies the scale indicator which designates the

authority for matriarch ci on jdia , ,]1,0[s specifies

random variable with uniform distribution. Every clan id ,

from the position updation, makespan (SM) is decreased

by using the equation (22)

dicenterS aM ,= 

(22)

where]1,0[ represents the factor that impact dicentera ,

on the updated individual, C denotes the average

dimension of search space which follows the calculation of

centre clan id , cdicentera ,, for
thc dimension problem for

minimizing energy consumption ConE is shown in

equation (23)


=

=

c

j

cjdi
d

Con a
in

E

1

,,
,

1

(23)

where inca ddicenter ,1 ,  specifies number of elephants in

clan id , dia , j , c specifies the
thc elephant individual

dia , j .

Step 5: Foraging behaviour of flamingo for lessening

tCD cos

Foraging behaviour of flamingo decreases is specified as

tCD cos and it is discussed in equation (24).

() KXXbggXbXD i
pq

i
q

i
q

i
pqtC /.. 2.121cos  +++=

(24)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 877

where the position of the channel from)(thp secondary

transmitter to)(thq secondary receiver epitomizes 1+i
pqX in

the)1(+i iterations, i
pqX epitomizes position of channel in

thi iteration, K depicts diffusion factor. Also,
21,

indicates random number [-1 or 1],
21, gg are the random

value as [0,1] is followed by the standard normal

distribution factor. Additionally, the best fitness value is

mentioned as i
qXb of flamingos foraging behavior.

Initialization

Random generation

Fitness function

Herding behaviour of elephants for minimizing

and

Foraging behaviour of flamingo for

minimizing

Halting criteria

Termination

tCD cos

SM

ConE

Yes

No

Fig 2: Hybrid elephant herding with Flamingo Search

optimization Algorithm to optimize (SM), (ConE) and (

tCD
cos

)

Step 6: Termination

In this step, the optimal makespan (SM), energy

consumption (ConE) and cost of data center (tCD
cos)

values are repeated the step three, until the halting criteria

is met to load balance in the cloud computing.

4. Result and Discussion

The section describes the experimental results for hybrid

EHO and FSO based efficient load balancing in the cloud

environment. The simulations are done in CloudSiM API

3.0.3. The evaluation matrices, like Mean Response time

under various counts of tasks, mean response time under

various executable instruction lengths, mean execution

time under different count of tasks, count of migrated tasks

under increasing count of virtual machines and count of

migrated tasks under increasing count of tasks are analyzed

to validate the performance of the proposed method. The

simulation setup parameters are considered for

implementing the proposed LBS-CE-Hyb-EHO-FSA

method is tabulated in Table 1.

Table 1: Simulation Parameters

Category Parameter Cost

Cloudlets
Count of cloudlets 100-1000

Task Distance 2000-20000

Data center

Virtual machine

scheduler
Time-Shared

Count of hosts 2-10

 Count of data centres 20

Virtual

Machine

(VM)

Cloudlet Scheduler Time-Shared

Bandwidth 500-1200

Required number of

processor elements
1-4

Processor Speed

4000-8000

MIPS

Number of virtual

machines
50

Memory space available

in each virtual machine

256-2018 Mb

4.1 Performance Evaluation

The evaluation metrics like mean response time, mean

execution time and makespan are considered.

4.1.1 Mean Response Time

Mean response time is a metric used to measure the

performance of computer systems and networks. It refers

to the average time it takes for a system to respond to a

request or task. The response time is calculated as the time

elapsed between the initiation of a request and the receipt

of a response. Mean response time is obtained by

calculating the average of response times over a period of

time or a set of requests. It is expressed in equation (25),


=

=

v

nsk

ks vRRTMRT

1,1

)(

(25)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 878

where sRT represents the service time of a request, kR

denotes the response time of request and v denotes the

service time of the task.

4.1.2 Mean Execution Time

Mean execution time is a metric used to measure the

performance of computer programs and algorithms. It

refers to the average time taken by a program or algorithm

to complete its execution over a period of time or a set of

inputs. It is measured using the below equation (26),











=

executedtasksofNumber

TimeExecutionTotal
MET

(26)

4.1.3 Makespan

Makespan refers to the amount of time required to

complete a set of tasks or jobs on a given machines. It is

the duration between the start of the first task and the

completion of the last task. In other words, makespan

represents the total time taken by a system to process a set

of jobs from start to finish. Minimizing the makespan is

often a key objective in scheduling problems as it can help

to optimize resource utilization and improve overall system

efficiency and it is calculated using the below equation

(27),














=


N

CTMax
Makespan

)(

(27)

here CT specifies the task completion time, N specifies

the count of VMs.

Figure 3-12 shows the performance analysis of proposed

LBS-CE-Hyb-EHO-FSA method is compared with

existing methods, like load balancing optimization based

on hybrid heuristic-metaheuristic techniques in cloud

environment (LBS-CE-PEFT-ACO) [13], an energy

efficient load balancing on cloud computing using adaptive

cat swarm optimization (LBS-CE-ACSO) [14],

hybridization of firefly and improved multi-objective

particle swarm optimization for energy efficient load

balancing in cloud computing (LBS-CE-FIMPSO) [15]

and adaptive regressive holt–winters workload prediction

with firefly optimized lottery scheduling for load balancing

in cloud environment(LBS-CE-NMT-FOLS) [16],

Machine learning model design for high performance

cloud computing & load balancing resiliency: An

innovative approach (LBS-CE-XGB) [18] and intelligent

Decision-Making of Load Balancing Using Deep

Reinforcement Learning and Parallel PSO in Cloud

Environment (LBS-CE-DRL- PPSO) [19].

Fig 3: Performance of Mean Response time under different

count of tasks

Figure 3 shows the performance of mean response time

under various counts of tasks. Here the proposed LBS-CE-

Hyb-EHO-FSA method provides 12.08%, 11.03%, 22.06%

10.02%, 3.62% and 15.09% lower mean response time for

number of tasks 100; 33.15%, 41.03%, 32.06%, 11.02%,

6.09% and 17.05% lower mean response time for number

of tasks 300; 24.30%, 32.10%, 33.12%, 21.02%, 19.27%

and 31.12% lower mean response time for number of tasks

500; 33.15%, 21.08%, 6.07%, 11.95%, 15.31% and

22.13% lower mean response time for number of tasks 700

compared with existing methods like LBS-CE-PEFT-

ACO, LBS-CE-ACSO, LBS-CE-FIMPSO, LBS-CE-NMT-

FOLS, LBS-CE-XGB and LBS-CE-DRL- PPSO

respectively.

Fig 4: Performance of Mean Response time under different

executable instruction lengths

Figure 4 shows the Performance of Mean Response time

under different executable instruction lengths Here the

proposed LBS-CE-Hyb-EHO-FSA method provides

43.65%, 38.97%, 38.97%, 33.12%, 12.62% and 24.09%

lower mean response time for instruction length 0.2;

46.86%, 38.97%, 40.12%, 38.97%, 5.09% and 29.05%

lower mean response time for instruction length 0.6;

56.86%, 53.86%, 42.56%, 32.86%, 26.72% and 39.12%

lower mean response time for instruction length 1; 34.75%,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 879

56.86%, 34.32%, 37.75% 15.31% and 22.13% lower mean

response time for instruction length 1.4 comparing to the

existing LBS-CE-PEFT-ACO, LBS-CE-ACSO, LBS-CE-

FIMPSO, LBS-CE-NMT-FOLS, LBS-CE-XGB and LBS-

CE-DRL- PPSO models respectively.

Fig 5: Performance of Mean Execution Time under

different count of tasks

Figure 5 shows the performance metrics of mean execution

time under various counts of tasks. Here the proposed

LBS-CE-Hyb-EHO-FSA method provides 54.75%,

37.86%, 12.32%, 43.76%, 22.62% and 34.09% lower mean

execution time for number of tasks 100; 37.76%, 46.87%,

45.12%, 49.86% 21.22% and 19.21% lower mean response

time for number of tasks 300; 24.30%, 32.10%, 33.12%,

21.02%, 19.27% and 31.12% lower mean response time

for number of tasks 500; 44.65%, 38.65%, 34.87%,

36.86%, 32.15% and 21.31% lower mean response time

for number of tasks 700 comparing to the existing LBS-

CE-PEFT-ACO, LBS-CE-ACSO, LBS-CE-FIMPSO,

LBS-CE-NMT-FOLS, LBS-CE-XGB and LBS-CE-DRL-

PPSO models respectively.

Fig 6: Count of migrated tasks under increasing count of

virtual machines (number of tasks=200)

Figure 6 shows the performance metrics of Count of

migrated tasks under increasing count of virtual machines

(number of tasks=200). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 37.84%, 36.86%, 45.86%,

36.86%, 12.09% and 13.21% lower number of migrated

tasks for increasing count of virtual machine 3; 39.12%,

38.75%, 43.86%, 37.86%, 12.22% and 35.19% lower

number of migrated tasks for increasing count of virtual

machine 5; 24.30%, 32.10%, 33.12%, 21.02%, 19.27% and

31.12% lower number of migrated tasks for increasing

count of virtual machine 7; 39.12%, 38.75%, 43.86%,

37.86%, 24.07% and 11.25% lower number of migrated

tasks for increasing count of virtual machine 8 comparing

to the existing LBS-CE-PEFT-ACO, LBS-CE-ACSO,

LBS-CE-FIMPSO, LBS-CE-NMT-FOLS, LBS-CE-XGB

and LBS-CE-DRL- PPSO models respectively.

Fig 7: Count of migrated tasks under maximizing count of

virtual machines (number of tasks=400)

Figure 7 shows the performance metrics of Count of

migrated tasks under increasing count of virtual machines

(number of tasks=400). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 43.64%, 36.86%, 45.75%,

39.75%, 21.32% and 18.74% lower number of migrated

tasks for increasing count of virtual machine 3; 56.67%,

53.75%, 48.97%, 35.86%, 18.37% and 29.07% lower

number of migrated tasks for increasing count of virtual

machine 5; 56.34%, 37.97%, 54.86%, 46.86%, 59.01% and

18.79% lower number of migrated tasks for increasing

count of virtual machine 7 compared with existing

methods like LBS-CE-PEFT-ACO, LBS-CE-ACSO, LBS-

CE-FIMPSO, LBS-CE-NMT-FOLS, LBS-CE-XGB and

LBS-CE-DRL- PPSO respectively.

Fig 8: Count of migrated tasks under maximizing count of

VMs (number of tasks=600)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 880

Figure 8 shows the performance metrics of Count of

migrated tasks under increasing count of virtual machines

(number of tasks=600). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 20.56%, 25.74%, 32.32%,

36.75%, 19.57% and 25.37% lower number of migrated

tasks for increasing count of virtual machine 3; 26.86%,

31.23%, 43.86%, 42.86%, 28.07% and 9.07% lower

number of migrated tasks for increasing count of virtual

machine 5; 21.38%, 32.75%, 29.07%, 31.96%, 31.89%

and 27.51% lower number of migrated tasks for increasing

count of virtual machine 7 comparing to the existing LBS-

CE-PEFT-ACO, LBS-CE-ACSO, LBS-CE-FIMPSO,

LBS-CE-NMT-FOLS, LBS-CE-XGB and LBS-CE-DRL-

PPSO models respectively.

Fig 9: Count of migrated tasks under maximizing the count

of tasks (count of virtual machine=2)

Figure 9 shows the performance metrics of Count of

migrated tasks under maximizing the count of tasks (count

of virtual machine=2). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 45.64%, 37.86%, 37.86%,

36.86%, 15.24% and 24.30% lower count of migrated

tasks for increasing count of tasks 200; 26.74%, 32.75%,

37.86%, 36.21%, 14.27% and 51.13% lower number of

migrated tasks for increasing count of tasks 600; 49.97%,

48.75%, 27.75%, 39.97%, 36.07% and 34.22% lower

number of migrated tasks for increasing count of tasks 800

comparing to the existing LBS-CE-PEFT-ACO, LBS-CE-

ACSO, LBS-CE-FIMPSO, LBS-CE-NMT-FOLS, LBS-

CE-XGB and LBS-CE-DRL- PPSO models respectively.

Fig 10: Count of migrated tasks under increasing count of

tasks (number of virtual machine=4)

Figure 10 shows the performance metrics of Count of

migrated tasks under maximizing the count of tasks (count

of virtual machine=4). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 13.55%, 17.98%, 5.14%,

11.17%, 23.34% and 19.27% lower count of migrated

tasks for increasing count of tasks 200; 4.62%, 19.57%,

16.58%, 35.98%, 21.34% and 43.21% lower number of

migrated tasks for increasing count of tasks 600; 26.526%,

38.458%, 19.52%, 35.45%, 29.34% and 15.47% lower

number of migrated tasks for increasing count of tasks 800

comparing to the existing LBS-CE-PEFT-ACO, LBS-CE-

ACSO, LBS-CE-FIMPSO, LBS-CE-NMT-FOLS, LBS-

CE-XGB and LBS-CE-DRL- PPSO models respectively.

Fig 11: Count of migrated tasks under maximizing count

of tasks (count of virtual machine=6)

Figure 11 shows the performance metrics of Count of

migrated tasks under maximizing the count of tasks (count

of virtual machine=6). Here the proposed LBS-CE-Hyb-

EHO-FSA method provides 32.14%, 57.77%, 19.354%,

55.357% 23.34% and 19.27% lower count of migrated

tasks for increasing count of tasks 200; 58.23%, 78.378%,

52.63%, 69.66%, 19.56% and 29.51% lower number of

migrated tasks for increasing count of tasks 600; 25.63%,

69.66%, 31.11%, 19.65%, 19.07% and 15.47% lower

number of migrated tasks for increasing count of tasks 800

comparing to the existing LBS-CE-PEFT-ACO, LBS-CE-

ACSO, LBS-CE-FIMPSO, LBS-CE-NMT-FOLS, LBS-

CE-XGB and LBS-CE-DRL- PPSO models respectively.

Fig 12: Performance of makespan

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 881

Figure 12 shows the performance metrics of makespan.

Here the proposed LBS-CE-Hyb-EHO-FSA method

provides 41.15%, 22.15%, 60.96%, 15.22%, 24.15% and

14.25% lower makespan for tasks 10; 35.59%, 21.12%,

13.12%, 11.15%, 32.15% and 19.24% lower makespan for

tasks 20; 16.52%, 51.03%, 14.33%, 31.88%, 24.01% and

61.09% lower makespan for tasks 30; 10.12%, 32.03%,

12.96%, 17.05%, 25.54% and 31.33% lower makespan for

tasks 40 comparing to the existing LBS-CE-PEFT-ACO,

LBS-CE-ACSO, LBS-CE-FIMPSO, LBS-CE-NMT-

FOLS, LBS-CE-XGB and LBS-CE-DRL- PPSO models

respectively.

5. Conclusion

Hybrid Elephant Herding Optimization and Flamingo

Search Algorithm are successfully implemented in this

manuscript for efficient Load Balancing in a cloud

environment. The simulation results proves that the

proposed method performance is better under evaluation

metrics, viz MRT under various count of tasks and

executable instruction lengths, Mean Execution Time

under various count of task, count of migrated tasks with

various count of virtual machine, count of migrated tasks

with various count of tasks. Here, the performance of

proposed method LBS-CE-Hyb-EHO-FSA attains

16.04%, 15.56%, 23.43% and 8.507% low MRT under

different count of tasks, 13.99%, 11.09%, 12.78% and

8.47% low MRT under different count of tasks at 200 and

15.93%, 56.34%, 23.12% and 9.42% low scheduling time

MRT under different count of tasks at 400 compared to

the existing LBS-CE-PEFT-ACO, LBS-CE-ACSO, LBS-

CE-FIMPSO and LBS-CE-NMT-FOLS methods.

References

[1] A. Kaur, B. Kaur, and D. Singh, 2019. Meta-

heuristic based framework for workflow load

balancing in cloud environment. International

Journal of Information Technology, vol. 11, no.1,

pp. 119-125.

[2] S.K. Mishra, B. Sahoo, and P.P. Parida, 2020. Load

balancing in cloud computing: a big picture.Journal

of King Saud University-Computer and Information

Sciences, vol. 32, no. 2, pp.149-158.

[3] V. Arulkumar, and N. Bhalaji, 2021. Performance

analysis of nature inspired load balancing algorithm

in cloud environment. Journal of Ambient

Intelligence and Humanized Computing, vol. 12, no.

3, pp. 3735-3742.

[4] S.M. Ali, N. Kumaran, and G.N. Balaji, 2022. A

hybrid elephant herding optimization and harmony

search algorithm for potential load balancing in

cloud environments. International Journal of

Modeling, Simulation, and Scientific

Computing, vol. 13, no. 5, p. 2250042.

[5] S. Govindaraju, W.V.R. Vinisha, F.H. Shajin, and

D.A. Sivasakthi, 2022. Intrusion detection

framework using auto‐metric graph neural network

optimized with hybrid woodpecker mating and

capuchin search optimization algorithm in IoT

network. Concurrency and Computation: Practice

and Experience, vol. 34, no. 24, p.e7197.

[6] P. Arivubrakan, and K. Ramasubramanian, 2023.

Multi-Objective Cluster Head based Energy Aware

Routing Protocol using Hybrid Woodpecker and

Flamingo Search Optimization Algorithm for

Internet of Things Environment. International

Journal of Information Technology & Decision

Making.

[7] S.R. Deshmukh, S.K. Yadav, and D.N., Kyatanvar,

2021. Load balancing in cloud environs: Optimal

task scheduling via hybrid algorithm. International

Journal of Modeling, Simulation, and Scientific

Computing, vol. 12, no. 02, p. 2150008.

[8] C.T. Yang, S.T. Chen, J.C. Liu, Y.W. Chan, C.C.

Chen, and V.K. Verma, 2019. An energy-efficient

cloud system with novel dynamic resource

allocation methods. The Journal of

Supercomputing, vol. 75, pp. 4408-4429.

[9] V.K. Verma, K. Ntalianis, C.M. Moreno, and C.T.

Yang,2019Next-generation Internet of things and

cloud security solutions. International Journal of

Distributed Sensor Networks, vol. 15, no. 3, p.

1550147719835098.

[10] C.T. Yang, C.K. Tsung, N.Y. Yen, and V.K. Verma,

2022. Special Issue on Innovative Applications of

Big Data and Cloud Computing. Applied

Sciences, vol. 12, no. 19, p. 9648.

[11] W. Li, and G.G. Wang, 2022. Elephant herding

optimization using dynamic topology and

biogeography-based optimization based on learning

for numerical optimization. Engineering with

Computers, vol.38,(Suppl 2), pp.1585-1613.

[12] W. Zhiheng, and L. Jianhua, 2021. Flamingo search

algorithm: a new swarm intelligence optimization

algorithm. IEEE Access, vol. 9, pp. 88564-88582.

[13] A. Kaur, and B. Kaur, 2019. Load balancing

optimization based on hybrid Heuristic-

Metaheuristic techniques in cloud

environment.Journal of King Saud University-

Computer and Information Sciences.

[14] K. Balaji, P.S. Kiran, and M.S. Kumar, 2021. An

energy efficient load balancing on cloud computing

using adaptive cat swarm optimization. Materials

Today: Proceedings.

[15] A.F.S. Devaraj, M. Elhoseny, S. Dhanasekaran, E.L.

Lydia, and K. Shankar, 2020. Hybridization of

firefly and improved multi-objective particle swarm

optimization algorithm for energy efficient load

balancing in cloud computing environments.Journal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 872–882 | 882

of Parallel and Distributed Computing, vol. 142, pp.

36-45.

[16] J. Prassanna, and N. Venkataraman, 2021. Adaptive

regressive holt–winters workload prediction and

firefly optimized lottery scheduling for load

balancing in cloud.Wireless Networks, vol. 27, no.

8, pp. 5597-5615.

[17] S. Ziyath, and S. Senthilkumar, 2021. MHO: meta

heuristic optimization applied task scheduling with

load balancing technique for cloud infrastructure

services.Journal of Ambient Intelligence and

Humanized Computing, vol. 12, no. 6, pp.6629-

6638.

[18] N.K. Kamila, J. Frnda, S.K. Pani, R. Das, S.M.

Islam, P.K. Bharti, and K. Muduli, 2022. Machine

learning model design for high performance cloud

computing & load balancing resiliency: An

innovative approach. Journal of King Saud

University-Computer and Information

Sciences, 34(10), pp.9991-10009. Nov..

[19] A. Pradhan, S.K. Bisoy, S. Kautish, M.B Jasser, and

A.W. Mohamed, 2022. Intelligent Decision-Making

of Load Balancing Using Deep Reinforcement

Learning and Parallel PSO in Cloud

Environment. IEEE Access, vol. 10, pp.76939-

76952.

[20] Perez-Siguas, R. ., Matta-Solis, H. ., Millones-

Gomez, S. ., Matta-Perez, H. ., Cruzata-Martinez, A.

., & Meneses-Claudio, B. . (2023). Comparison of

Social Skills of Nursing Students from Two

Universities of Lima. International Journal on

Recent and Innovation Trends in Computing and

Communication, 11(2), 14–19.

https://doi.org/10.17762/ijritcc.v11i2.6105

[21] Jones, D., Taylor, M., García, L., Rodriguez, A., &

Fernández, C. Using Machine Learning to Improve

Student Performance in Engineering Programs.

Kuwait Journal of Machine Learning, 1(1).

Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/vie

w/101

[22] Aoudni, Y., Donald, C., Farouk, A., Sahay, K. B.,

Babu, D. V., Tripathi, V., & Dhabliya, D. (2022).

Cloud security based attack detection using

transductive learning integrated with hidden markov

model. Pattern Recognition Letters, 157, 16-26.

doi:10.1016/j.patrec.2022.02.012

