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Abstract: The use of chest X-ray (CXR) in diagnosing respiratory diseases such as covid-19 and viral pneumonia has gained popularity 

due to its safe and non-invasive nature. However, interpreting CXR images as it is highly dependent on the expertise and experience of the 

radiologists may lead to inter-observer variability. A thorough analysis which in most cases takes some time then needs to be performed 

to get a final correct decision on whether a patient is indicated for a respiratory disease or not. Thus, research on devising more effective 

and efficient schemes to assist radiologists in the identification of respiratory diseases from CXR images is considered extremely important. 

In the previous studies, the convolutional neural network (CNN) based models demonstrate their capability to detect respiratory diseases 

not only they are found faster and reliable but also they are able to give a considerable high classification accuracy. In an attempt to obtain 

the general CNN based model capable of giving the best classification accuracy, sensitivity, and specificity on respiratory diseases from 

CXR images, in this paper powerful pretrained deep CNN models namely VGG16, DenseNet121, InceptionV3, Xception, and 

InceptionResnetV2 are computationally experimented on three different datasets. Dataset 1 is generated by combining images from 

Covid19 Radiography Database and Chest X-ray COVID-19 Pneumonia Dataset. Dataset 2 is created by combining images from Curated 

Chest X-ray Image Dataset, COVID-19 Pneumonia Normal Chest X-ray Images, and Chest X-ray COVID-19 Pneumonia Dataset. 

Meanwhile dataset 3 is taken from COVID-QU-Ex Dataset. State of the art accuracy of the pretrained CNN models is achieved by fine 

tuning the parameters of the convolutional layers of the base models and followed by feeding the high-level feature maps extracted from 

each corresponding base model into global average pooling (GAP) layer prior to classifying the respiratory diseases by fully connected 

layers. The highest average testing accuracy score as high as 99.2% is achieved by the InceptionV3 on multi-class CXR images. 

Keywords: Covid-19, CNN, Chest X-ray, Fine-tuning, Pneumonia. 

1. Introduction 

The use of chest X-ray (CXR) in diagnosing respiratory 

diseases such as covid-19, tuberculosis, and viral 

pneumonia has gained popularity due to its safe and non-

invasive nature. CXR provides a static image of the chest, 

allowing physicians and radiologists to assess lung 

morphology and detect pathological changes [1]. However, 

CXR interpretation can be challenging due to the 

complexity of the image features and the variability of 

visual interpretation. Interpreting CXR images is a 

subjective process that depends on the radiologist's 

expertise and experience. A study by Ali, et al [2] found that 

there is a considerable variation in the interpretation of CXR 

images by radiologists, and this may lead to diagnostic 

errors. Moreover, the use of CXR in detecting covid-19 

especially in the early stage of the disease may result in low 

sensitivity and specificity [3].  To overcome these 

drawbacks, researchers have turned to convolutional neural 

networks (CNN) based models to develop automated 

methods for CXR interpretation. CNN based classifier 

models have shown promising results in identifying and 

diagnosing various respiratory diseases including viral 

pneumonia and COVID-19 with a considerable high 

classification accuracy and speed [4]. These models can 

learn complex image features and patterns from a large 

amount of data, reducing the subjective nature of CXR 

interpretation [5]. 

With the emergence of the convolutional neural networks 

(CNN) methodologies, the image features are automatically 

extracted and the learning process is carried out more 

deeply. CNN offer much better detection accuracy 

compared to the ordinary machine learning based 

approaches. Li, et al [6] presented CNN based model for 

diagnosing bacterial pneumonia, viral pneumonia, and 

covid-19. Employing datasets containg 1583 normal, 1493 

viral pneumonia, and 305 covid-19 pneumonia cases, the 

model could achieve  89.1% classification accuracy. 

Another study by Jain, et al [7] employ deep learning model 

for covid-19 diagnosis using datasets of 6432 X-ray images 

including 1583 normal, 576 covid-19 and 4273 pneumonia 

cases. The model is capable of yielding the best accuracy, 

of 97.97%. Meanwhile, Sri, et al [8] use a CNN based 

method for detecting covid-19 and viral pneumonial from 

chest X-ray images. Employing datasets containing 3616 

covid-19, 1345 viral pneumonia images, and 10192 normal 

cases, the model gives 91.39% detection accuracy. A similar 
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study by Farooq, et al [9] propose a deep learning model for 

covid-19 detection from chest X-ray images. They employ 

a dataset of 380 chest X-ray images consisting 180 Covid-

19 and 200 normal (healthy). The model could obtained the 

best accuracy of 92.6%. The outcome of the aforementioned 

studies shows that the pretrained CNN models with their 

associated transfer learning are capable of achieving a 

considerable high classification accuracy of covid-19 and 

viral pneumonia detection from CXR images. In an attempt 

to obtain the general CNN based model capable of giving 

the best classification accuracy, sensitivity, and specificity 

on respiratory deseases from CXR images, in this study we 

performed an experimental computation on three different 

datasets using some powerful pretrained deep CNN models 

namely VGG16, DenseNet121, InceptionV3, Xception, and 

InceptionResnetV2. Dataset 1 is generated by combining 

images from Covid19 Radiography Database and Chest X-

ray COVID-19 Pneumonia Dataset. Dataset 2 is created by 

combining images from Curated Chest X-ray Image 

Dataset, COVID-19 Pneumonia Normal Chest X-ray 

Images, and Chest X-ray COVID-19 Pneumonia Dataset. 

Meanwhile dataset 3 is taken from COVID-QU-Ex Dataset. 

State of the art accuracy of pretrained CNN models is 

achieved by fine tuning the parameters of the convolutional 

layers of the base models and followed by feeding the high-

level feature maps extracted from each corresponding base 

model either into flatten layers or into global average 

pooling layers prior to classifying the class using fully 

connected layers. 

2. Pretrained Deep Cnn Models 

2.1. VGG16 

VGG16 is a deep convolutional neural network (CNN) 

architecture, was introduced by Simonyan, et al [10] and has 

garnered significant attention in the field of computer vision 

for its exceptional performance in image classification 

tasks. With its 16 layers, including 13 convolutional layers 

and 3 fully connected layers, VGG16 has been widely 

employed and demonstrated remarkable accuracy and 

robustness in various domains, such as object detection, 

localization, and segmentation. State-of-the-art results on 

benchmark datasets like ImageNet have been achieved 

using VGG16, surpassing previous models. Moreover, 

VGG16 has been successfully utilized in medical imaging, 

where abnormalities in X-rays can be detected and aid in 

disease diagnosis. The model simplicity, as it utilizes small 

3x3 filters, coupled with its ability to learn intricate image 

representations, contribute to its success. Additionally, 

VGG16 has been employed in transfer learning, where it has 

been fine-tuned for specific tasks, leading to improved 

performance and faster convergence on limited datasets. 

2.2. DenseNet121 

DenseNet121 is an influential deep convolutional neural 

network (CNN) architecture, was proposed by Huang, et al 

[11] and has attracted considerable attention in the field of 

computer vision. With its unique dense connectivity pattern, 

DenseNet121 addresses the vanishing gradient problem by 

establishing direct connections between layers, enabling 

enhanced information flow and feature reuse throughout the 

network. The architecture of DenseNet121 comprises 121 

layers, including dense blocks and transition layers, which 

facilitate efficient feature extraction and dimensionality 

reduction. DenseNet121 has demonstrated outstanding 

performance in various computer vision tasks, including 

image classification, object detection, and semantic 

segmentation. It has achieved state-of-the-art results on 

benchmark datasets such as ImageNet, surpassing previous 

models in terms of accuracy and robustness. Moreover, 

DenseNet121 has been successfully employed in medical 

imaging applications, contributing to the detection and 

diagnosis of abnormalities in various modalities. The dense 

connectivity and transfer learning capabilities of 

DenseNet121 make it a versatile and powerful tool for 

advancing computer vision research and applications. 

2.3. InceptionV3 

InceptionV3 is a widely recognized deep convolutional 

neural network (CNN) architecture, was introduced by 

Szegedy, et al [12].  It has attracted considerable attention 

in the field of computer vision for its remarkable 

performance across various tasks. InceptionV3 employs a 

unique inception module, which allows for more efficient 

information processing and feature extraction through the 

use of multiple parallel convolutional operations at different 

scales. This architecture consists of 48 layers and 

demonstrates strong capabilities in image classification, 

object detection, and image segmentation tasks. 

InceptionV3 has achieved top results on benchmark datasets 

such as ImageNet, surpassing earlier models and 

showcasing its effectiveness in handling large-scale visual 

recognition challenges. Moreover, it has been successfully 

applied in domains like medical imaging, where it aids in 

the detection of diseases and abnormalities from various 

medical scans. InceptionV3 ability to capture intricate 

visual patterns, coupled with its versatility and performance, 

makes it a valuable tool for advancing computer vision 

research and applications. 

2.4. Xception 

Xception is an influential deep convolutional neural 

network (CNN) architecture, was introduced by Chollet [13] 

as an extension of the Inception architecture. It has garnered 

considerable attention in the field of computer vision for its 

exceptional performance across various tasks. Xception is 

characterized by its depthwise separable convolutions, 

which separate the spatial and channel-wise 

transformations, allowing for more efficient and expressive 

feature extraction. This architecture comprises a series of 
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convolutional and depthwise separable convolutional 

layers, resulting in a highly efficient and parameter-efficient 

network. Xception has demonstrated remarkable 

performance in image classification, object detection, and 

semantic segmentation tasks, outperforming previous 

models on benchmark datasets such as ImageNet. 

Additionally, it has been successfully applied in various 

domains, including medical imaging, where it aids in the 

detection and analysis of diseases and abnormalities. The 

combination of depthwise separable convolutions, efficient 

architecture, and strong performance makes Xception a 

valuable tool for advancing computer vision research and 

applications. 

2.5. InceptionResnetV2 

InceptionResNetV2 is a deep convolutional neural network 

(CNN) architecture that combines the strengths of the 

Inception and ResNet architectures. It was introduced by 

Szegedy, et al [14]. InceptionResNetV2 builds upon the 

Inception architecture by incorporating residual 

connections, which enable the network to efficiently 

propagate gradients and alleviate the vanishing gradient 

problem. This architecture consists of a series of Inception 

modules and residual blocks, resulting in a highly 

expressive and powerful network. InceptionResNetV2 has 

demonstrated exceptional performance in various computer 

vision tasks, including image classification, object 

detection, and image segmentation. It has achieved state-of-

the-art results on benchmark datasets like ImageNet, 

surpassing earlier models and showcasing its effectiveness 

in handling complex visual recognition 

challenges.Moreover, InceptionResNetV2 has been 

successfully applied in domains such as medical imaging, 

where it aids in the diagnosis of diseases and assists in 

medical research. The combination of the Inception 

architecture multi-scale feature extraction and the ResNet 

architecture skip connections makes InceptionResNetV2 a 

powerful tool for advancing computer vision research and 

applications. 

3. Experimental and Result 

3.1. CXR Image Dataset 

In this study, three different publicly available CXR datasets 

were utilized to develop and evaluate the models. However, 

upon initial analysis, it was discovered that some of the 

classes in these datasets had a small number of samples, 

which could lead to a class imbalance problem. To 

overcome this challenge, these datasets were combined with 

other publicly available CXR datasets that contain similar 

classes of images.  If the number of samples in a particular 

class is less than 3000 images, additional samples from 

other datasets with the same class were included. Dataset 1 

is generated by combining images from the Covid-19 

Radiography Database and the Chest X-ray covid-19 

Pneumonia Dataset. The Covid-19 Radiography Database 

consists of 10192 normal, 1345 viral pneumonia, and 3616 

covid-19 images. As the number of samples in the viral 

pneumonia class is less than 3000, additional samples were 

added to this class by including all the samples from the 

viral pneumonia class in the Chest X-ray Covid-19 

Pneumonia Dataset. As a result, Dataset 1 contains 10192 

Normal, 5618 Viral Pneumonia, 3616 covid-19. Dataset 2 is 

created by combining images from the Curated Chest X-ray 

Image Dataset, the Covid-19 Pneumonia Normal Chest X-

ray Images, and the Chest X-ray Covid-19 Pneumonia 

Dataset. The Curated Chest X-ray Image Dataset has 3270 

Normal X-Rays, 1656 viral-pneumonia, and 1281 covid-19 

images. As the number of samples in the covid-19 and viral 

pneumonia classes is less than 3000, additional samples 

were added to the covid-19 class from all the covid-19 

samples in the Covid-19 Pneumonia Normal Chest X-ray 

Images dataset. Similarly, additional samples were added to 

the viral pneumonia class from the viral pneumonia samples 

in the Chest X-ray Covid-19 Pneumonia Dataset. 

Consequently, Dataset 2 consists of 3270 Normal, 4657 

Viral Pneumonia, and 3483 covid-19 images. Meanwhile 

dataset 3 is taken from COVID-QU-Ex Dataset, which 

contains 10701 normal, 11263 viral pneumonia, and 11956 

covid-19 images. By combining these datasets, we were 

able to obtain a more balanced dataset for our models. This 

ensures that our models are not biased towards any 

particular class and can accurately classify all classes of 

CXR images. Each CXR dataset was divided into training, 

validation, and testing set as shown in Table 1. 

Table 1. The dataset summary across different dataset, 

classes and train-validation-test splits 

Data

set 
Set 

Class 

Tot

al Normal 

Viral 
Covi

d-19 
Pneum

onia 

Datas

et 1 

Trainin

g 
8,153 4,494 

2,89

3 

15,5

40 

Validat

ion 
1,020 562 361 

1,94

3 

Testing 1,019 562 362 
1,94

3 

Datas

et 2 

Trainin

g 
2,289 3,260 

2,43

8 

7,98

7 

Validat

ion 
490 699 523 

1,71

2 

Testing 491 698 522 
1,71

1 

Datas

et 3 

Trainin

g 
6,849 7,208 

7,65

8 

21,7

15 

Validat

ion 
1,712 1,802 

1,90

3 

5,41

7 

Testing 2,140 2,253 
2,39

5 

6,78

8 
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3.2. Data Preprocessing 

Data preprocessing is an essential step to prepare the dataset 

before feeding it into model. Three different datasets have 

been used in this study, and various data preprocessing 

techniques have been applied to each dataset. For dataset 1, 

data augmentation has been used for the training data in the 

form of randomly transforming the input images. The 

transformations applied include rotation with a range of 15 

degrees, rescaling the image to 1./255, shearing the image 

with a range of 0.1, zooming the image with a range of 0.2, 

flipping the image horizontally, and shifting the width and 

height of the image with a range of 0.1. The validation and 

testing data are only rescaled to 1./255. Additionally, the 

data are resized to a size of 224 x 224 with 3 channels.  For 

dataset 2, the same data augmentation techniques have been 

used for the training data, but the zoom range is reduced to 

0.1. The validation and testing data only undergo rescaling 

of 1./255, and the data are also resized to a size of 224 x 224 

with 3 channels. For dataset 3, augmentation data has also 

been used for the training data, but the rotation range is 

reduced to 12 degrees, and only zooming and horizontal 

flipping are applied. The validation and testing data only 

undergo rescaling of 1./255, and the data are also resized to 

a size of 224 x 224 with 3 channels. By applying various 

techniques such as data augmentation and resizing, the 

dataset can be better fit to model, resulting in improved 

accuracy of predictions. 

3.3. Model Training and Fine-tuning 

In this study, the input data were preprocessed before being 

fed into five different pretrained deep CNN models, 

including VGG16, DenseNet121, InceptionV3, Xception, 

and InceptionResnetV2. Fine tuning was performed on a 

modified feature extractor and fully connected layer. In 

dataset 1 and 3, 50% of the layers were fine tuned, while in 

datasets 2, 25% of the layers were fine tuned. Each dataset 

also used a Global Average Pooling layer and fully 

connected layer. For the fully connected layer, 2 dense 

layers were added with 4096 units each and ReLU activation 

for dataset 1, and 2 dense layers were added with 1024 units 

each and ReLU activation for dataset 1 and dataset 3. For all 

three datasets, the output layer consisted of 3 units with 

softmax activation. The Adam optimizer with a learning rate 

of 1e-4 was used, and several techniques were employed, 

including early stopping, reducing learning rate, and model 

checkpointing. The models were trained for 20 epochs and 

used batch size of 32. Early stopping was set to monitor the 

loss, with patience of 5. Reduce learning rate was set to 

monitor validation loss, with patience of 3 and a factor of 

0.5 for dataset 1 and 0.2 for dataset 2 and 3. Model 

checkpointing was used to save the best weights based on 

validation categorical accuracy. The models were fine-tuned 

to adapt them to the specific characteristics of the datasets, 

and the addition of fully connected layers aided in 

classifying the images into three categories. The early 

stopping technique was employed to prevent overfitting, 

while the learning rate reduction technique adjusted the 

learning rate based on the validation loss. Lastly, the model 

checkpoint technique was utilized to save the best model 

weights according to the validation accuracy. 

3.4. Result And Analysis 

3.4.1. Experimental Result on Dataset 1 

Table 2 provides an overview of the performance metrics 

for different models, with each row representing a specific 

class. It is evident that all five models consistently achieved 

high accuracy values across all classes. Notably, the 

InceptionV3 model attained the highest accuracy of 0.992 

(99.2%), while the DenseNet121model obtained the lowest 

accuracy of 0.983. Furthermore, when analyzing the 

precision values for each model,  

it becomes apparent that they consistently exhibit high 

precision, ranging from 0.973 to 1.00. This suggests that the 

models effectively identify positive cases for each class 

while minimizing false positives. The recall values for each 

model also indicate strong performance, with values ranging 

from 0.942 to 0.998. These values imply that the models 

successfully identify a significant portion of positive cases 

for each class. Additionally, the F1-score values provide 

insights into the balance between precision and recall. 

Across the models, the F1-scores range from 0.966 to 0.994, 

demonstrating a favorable equilibrium between accurately 

identifying positive cases and minimizing false positives. 

Notably, the InceptionV3 model consistently achieved the 

highest accuracy and F1-score values across all classes, 

reinforcing its superior performance. On the other hand, the 

DenseNet121 model consistently yielded the lowest 

accuracy and F1-score values, indicating its comparatively 

weaker performance. 

Table 2. Evaluation Results on Dataset 1 

N

o 

Model 

Name 
Class 

Precis

ion 

Rec

all 

F1-

Sco

re 

Accur

acy 

1 VGG16 

Norma

l 
0.982 

0.99

4 

0.9

88 

0.987 

Viral 

Pneum

onia 

0.988 
0.99

8 

0.9

93 

Covid-

19 
1 

0.94

8 

0.9

73 

2 
DenseN

et121 

Norma

l 
0.973 

0.99

6 

0.9

84 

0.983 

Viral 

Pneum

onia 

0.996 
0.98

6 

0.9

91 

Covid-

19 
0.991 

0.94

2 

0.9

66 
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3 
Inceptio

nV3 

Norma

l 
0.989 

0.99

7 

0.9

93 

0.992 

Viral 

Pneum

onia 

0.996 
0.99

1 

0.9

94 

Covid-

19 
0.994 

0.98

1 

0.9

87 

4 
Xceptio

n 

Norma

l 
0.988 

0.99

7 

0.9

93 

0.991 

Viral 

Pneum

onia 

0.995 
0.99

1 

0.9

93 

Covid-

19 
0.994 

0.97

5 

0.9

87 

5 

Inceptio

n-

ResnetV

2 

Norma

l 
0.985 

0.99

4 

0.9

9 

0.988 

Viral 

Pneum

onia 

0.991 
0.98

6 

0.9

88 

Covid-

19 
0.992 

0.97

5 

0.9

87 

 

The ROC curves in Figure 1 provide the visual 

representation of the performance comparison among the 

models on testing data of dataset 1. The results indicate that 

all models exhibited excellent performance, with AUC 

values ranging from 0.9995 to 0.9999. Among the models 

evaluated, the InceptionV3 model attained the highest AUC 

value of 0.9999 (99.99%), this indicates that the 

InceptionV3 model achieves a better balance between true 

positive and false positive rates compared to the other 

models on dataset 1.

 

Fig 1. ROC Curve - Comparison of Model performances 

on dataset 1 

 

3.4.2. Experimental Result on Dataset 2 

Table 3 illustrated the evaluation metrics of five pre-trained 

models, namely Vgg16, Densenet121, InceptionV3, 

Xception, and InceptionResnetV2, on dataset 2. These 

models exhibit remarkable accuracy, ranging from 0.975 to 

0.981, highlighting their proficiency in classifying image 

classes. In particular, InceptionResnetV2 achieves the 

highest accuracy at 0.981 (98.1%), showcasing its 

exceptional performance. Precision, which measures the 

ability to correctly classify instances within a specific class, 

is consistently high for all models across the three classes, 

ranging from 0.925 to 1. Furthermore, recall, which 

signifies the capacity to correctly identify class members, is 

impressively high for all models, ranging from 0.946 to 

0.996. InceptionResnetV2 attains the highest recall for the 

normal and covid-19 classes, while Densenet121 achieves 

the highest recall for viral pneumonia. This further 

demonstrates the effectiveness of these models in accurately 

identifying instances from different classes. To evaluate the 

overall performance, the F1-score, a metric that balances 

precision and recall, is computed. The F1-scores for all 

models and classes are consistently high, ranging from 

0.960 to 0.998. InceptionResnetV2 consistently achieved 

the highest F1-scores for normal and viral pneumonia class, 

while InceptionV3 achieved highest F1-score for covid-19 

class. The results collectively establish the effectiveness of 

all five pre-trained models in accurately classifying normal, 

viral pneumonia, and covid-19 chest x-ray images. 

However, InceptionResnetV2 outperforms the other 

models, showcasing its superiority and suitability for this 

dataset. 

Table 3. Evaluation Results on Dataset 2 

N

o 

Model 

Name 
Class 

Preci

sion 

Rec

all 

F1-

Sc

ore 

Accu

racy 

1 VGG16 

Norm

al 
0.942 

0.9

96 

0.9

68 

0.978 

Viral 

Pneu

monia 

0.994 
0.9

53 

0.9

73 

Covid

-19 
0.994 

0.9

96 

0.9

95 

2 
DenseNet1

21 

Norm

al 
0.925 

0.9

98 

0.9

6 

0.975 

Viral 

Pneu

monia 

0.995 
0.9

46 

0.9

7 

Covid

-19 
1 

0.9

92 

0.9

96 

3 
InceptionV

3 

Norm

al 
0.931 

0.9

92 

0.9

61 

0.976 

Viral 

Pneu

monia 

0.988 
0.9

5 

0.9

71 

Covid

-19 
1 

0.9

96 

0.9

98 

4 Xception 

Norm

al 
0.937 

0.9

94 

0.9

64 

0.978 

Viral 

Pneu

monia 

0.994 
0.9

53 

0.9

73 

Covid

-19 
0.998 

0.9

96 

0.9

97 

5 
InceptionR

esnetV2 

Norm

al 
0.955 

0.9

84 

0.9

69 
0.981 
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Viral 

Pneu

monia 

0.988 
0.9

68 

0.9

78 

Covid

-19 
0.998 

0.9

96 

0.9

97 

 

 

Fig 2. ROC Curve - Comparison of Model performances 

on dataset 2 

The visual representation of performance comparison 

among the models on the testing data of dataset 2 can be 

observed through the ROC curves presented in Figure 2. 

The results clearly demonstrate that all models exhibited 

remarkable performance, as evidenced by their AUC values 

ranging from 0.9981 to 0.9996. Notably, the InceptionV3 

model stood out among the evaluated models, achieving the 

highest AUC value of 0.9986 (99.86%). This outcome 

suggests that the InceptionV3 model outperforms the other 

models in terms of striking a better balance between true 

positive and false positive rates on dataset 2. Its superior 

AUC value indicates its ability to accurately classify 

instances from the testing data, ensuring a higher rate of 

correctly identifying positive cases while minimizing the 

occurrence of false positives. Thus, the InceptionV3 model 

exhibits strong discriminative power and robustness when 

applied to dataset 2, making it a highly suitable choice for 

the given task. 

3.4.3. Experimental Result on Dataset 3 

Table 4 presents an overview of performance metrics for 

different models, where each row corresponds to a specific 

class. It is evident that all five models consistently exhibited 

high accuracy values across all classes. Notably, the VGG16 

model attained the highest accuracy of 0.958 (95.8%), while 

the Xception model achieved an accuracy of 0.949 (94.9%). 

Moreover, when examining precision values for each 

model, it becomes apparent that they consistently 

demonstrated high precision, ranging from 0.911 to 0.994. 

This suggests that the models effectively identified positive 

cases for each class while minimizing false positives. 

Xception model achieved the highest precision of 0.994 for 

normal class, DenseNet121 model obtained the highest 

precision of 0.948 for the viral pneumonia class, and 

VGG16 achieved the highest precision for covid-19 class.  

Table 4. Evaluation Results on Dataset 3 

N

o 

Model 

Name 
Class 

Precis

ion 

Rec

all 

F1-

Sco

re 

Accur

acy 

1 VGG16 

Norma

l 
0.989 

0.97

5 

0.9

82 

0.958 

Viral 

Pneum

onia 

0.942 
0.95

3 

0.9

47 

Covid-

19 
0.941 

0.94

5 

0.9

43 

2 
DenseN

et121 

Norma

l 
0.989 

0.96

7 

0.9

78 

0.953 

Viral 

Pneum

onia 

0.948 
0.93

7 

0.9

43 

Covid-

19 
0.92 

0.95

5 

0.9

37 

3 
Inceptio

nV3 

Norma

l 
0.992 0.96 

0.9

76 

0.951 

Viral 

Pneum

onia 

0.945 
0.93

8 
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1 

0.9

44 
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19 
0.924 

0.94

8 

0.9

36 

 

The recall values for each model also indicated strong 

performance, with values ranging from 0.937 to 0.975. 

These values imply that the models successfully identified a 

significant portion of positive cases for each class. The 

VGG16 model achieved the highest recall of 0.975 for the 

normal class and 0.953 for viral pneumonia class, while the 

Densenet121 model obtained the highest recall of 0.955 for 

the covid-19 class. Furthermore, the F1-score values 

provided insights into the balance between precision and 

recall. Across the models, the F1-scores ranged from 0.929 

to 0.982, demonstrating a favorable equilibrium between 

accurately identifying positive cases and minimizing false 

positives. The VGG16 model achieved the highest F1-score 

for all classes. These findings indicate that the VGG16 

model consistently achieved the highest accuracy and F1-

score values across all classes for this dataset, thereby 

reinforcing its superior performance. Figure 3 provides a 
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visual representation of the performance comparison among 

the models on the testing data for dataset 3, as depicted by 

the ROC curves. The findings reveal that all models 

demonstrated impressive performance, with AUC values 

ranging from 0.9930 to 0.9951. Notably, the VGG16 model 

excelled among the evaluated models, achieving the highest 

AUC value of 0.9951 (99.51%). This outcome suggests that 

the VGG16 model surpasses the other models by achieving 

a more optimal balance between true positive and false 

positive rates on dataset 3. Its superior AUC value implies 

its capability to accurately classify instances from the 

testing data, thereby increasing the likelihood of correctly 

identifying positive cases while minimizing false positives. 

Hence, the VGG16 model exhibits robust discriminative 

power and reliability when applied to dataset 3, positioning 

it as an excellent choice for the given task. 

 

Fig 3. ROC Curve - Comparison of Model performances 

on dataset 3 

 

3.5. Discussion 

Table 5 presents a comprehensive comparison between our 

proposed models and other related works in the literature. 

The table contains important information such as the 

reference for each study, the datasets used along with the 

number of classes and sample size, the proposed 

methodology or model, and the reported accuracies. It 

should be noted that only related works with more than 1000 

images were listed in Table 2, except for Oh, et al [15], who 

used four classes in total. Brima, et al [16] used the second 

largest dataset in Table 2, which consisted of a total of 

21,165 X-ray images and achieved an impressive test 

accuracy of 94% using the VGG19 network architecture. On 

the other hand, Wang, et al [17] used the third biggest 

dataset, comprising of 13,962 X-ray samples, and achieved 

93.3% test accuracy with their COVIDNet model. However, 

their dataset was not well-balanced, with covid-19 samples 

representing only 2.6% of the dataset. Similarly, Ozturk, et 

al [18] also used an imbalanced dataset and achieved 87% 

accuracy with their DarkCovidNet model. Narayan, et al 

[19], Apostolopoulos, et al [20], and Khan, et al [21] 

achieved higher classification accuracy with 98%, 98.75%, 

and 99.38% accuracy, respectively. However, it is worth 

noting that these studies evaluate their model performance 

using small samples of test images. Moreover, Khan, et al 

[21] reported the best accuracy of 99.38%, but their 

evaluation was based on only 200 test images belonging to 

two classes, 100 normal and 100 covid-19. In comparison, 

our proposed models were evaluated using three different 

datasets, each consisting of normal, viral  

pneumonia, and covid-19 X-ray images. In dataset 1, 

comprising 10,192 normal, 5,618 viral pneumonia, and 

3,616 covid-19 X-ray images, we achieved an impressive 

accuracy of 99.20% using VGG16, DenseNet121, 

InceptionV3, Xception, and InceptionResnetV2 models. 

Similarly, in dataset 2, comprising 3,270 normal, 4,657 viral 

pneumonia, and 3,483 covid-19 X-ray images, we achieved 

an accuracy of 98.10% using the same models. Finally, in 
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dataset 3, consisting of 10,701 normal, 11,263 viral 

pneumonia, and 11,956 covid-19 X-ray images, we 

achieved an accuracy of 95.80% using the same models. 

Additionally, it is worth mentioning the results from the 

study by Domantas, et al [22] which also evaluate the 

classification performance of ResNet50, VGG19, and 

VGG16 models on a dataset consisting of 10,701 normal, 

11,263 viral pneumonia, and 11,956 COVID-19 X-ray 

images. They reported an accuracy of 94.68%, which is 

slightly lower than our results on the same dataset. It is 

important to highlight that our study utilized well-balanced 

datasets, where each class consisted of more than 3,000 

images. This is in contrast to some of the related works in 

the literature that used imbalanced datasets, such as Wang, 

et al [17] and Ozturk, et al. [18] which might have affected 

their model performance. Our use of well-balanced datasets 

helped ensure that our models were trained and tested on a 

diverse range of images, leading to higher classification 

accuracy. These findings suggest that our proposed models 

are competitive and effective in the task of distinguishing 

between normal, viral pneumonia, and covid-19 chest x-rays 

images. 

4. Conclusion 

In conclusion, this study propose and evaluate pretrained 

deep Convolutional Neural Networks for the classification 

of chest x-ray images to aid in the diagnosis of covid-19, 

viral pneumonia, and other health conditions. The models 

were trained and fine-tuned using transfer learning on three 

different public datasets with well-balanced classes. The 

results demonstrated high accuracy, sensitivity, and 

specificity in distinguishing between covid-19 and viral 

pneumonia cases. The highest accuracy of 99.2% was 

achieved by InceptionV3 on dataset 1, followed by 98.1% 

by InceptionResNetV2 on dataset 2, and 95.8% by VGG16 

on dataset 3. Comparison with related works in the literature 

revealed that the proposed models are competitive and 

effective. The utilization of transfer learning and fine-tuning 

techniques yielded favorable outcomes for the models. This 

study highlights the importance of using deep learning 

models in medical image analysis, particularly in the context 

of covid-19 and viral pneumonia diagnosis. The proposed 

model has the potential to assist medical professionals in 

making accurate and timely diagnoses, reducing the 

likelihood of errors and improving patient outcomes. For 

future research, there are several avenues to explore. Firstly, 

the impact of different data augmentation techniques should 

be investigated. Although the current study applies scaling, 

resizing, rotation, shearing, and zooming, it would be 

beneficial to analyze the effects of additional augmentation 

methods. This analysis could shed light on the specific 

techniques that yield the most significant improvements in 

Covid-19 and Viral Pneumonia diagnosis from CXR 

images. Additionally, further investigation into the fine-

tuning process could be conducted. While the current study 

fine-tunes five pre-trained CNN models, namely VGG16, 

DenseNet121, InceptionV3, Xception, and 

InceptionResnetV2, on selective layers such as the feature 

extractor and output, it would be valuable to explore 

alternative pre-trained models and different selective layers 

for fine-tuning. This exploration could provide insights into 

the optimal combination of models and layers for achieving 

higher accuracy and efficiency in Covid-19 and Viral 

Pneumonia diagnosis. Moreover, the optimization process 

can be enhanced by exploring different optimization 

algorithms apart from the Adam optimizer. Comparing the 

performance of alternative optimization algorithms, such as 

RMSprop or Adagrad, may offer insights into potential 

improvements in the training process. Furthermore, the 

effectiveness of different callback methods could be 

examined. While the current study employs early stopping 

and learning rate reduction, investigating the impact of other 

callback techniques, such as batch normalization, may 

further enhance model performance and mitigate 

overfitting.  Overall, further research should focus on 

investigating the effects of different data augmentation 

techniques, exploring alternative pre-trained models and 

selective layers for fine-tuning and evaluating different 

optimization algorithms and callback methods. These areas 

of study have the potential to enhance the proposed method 

and contribute to improved accuracy and effectiveness in 

diagnosing Covid-19 and Viral Pneumonia from CXR 

images. 
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