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Abstract: Requirement Engineering plays a crucial role in developing software and focuses on gathering requirements from stakeholders 

with diverse interests. The optimisation algorithm aims to select features to give meaningful information about requirements. These features 

can be used to train a model for prioritising requirements, which remains a challenging and complex task. The study aims to understand 

which optimisation algorithms consider suitable features and assign priority to the requirement. The study shows that the existing Adam 

Algorithm needs to be more capable of assigning accurate priority to the requirement due to the sparse matrix generated for the text dataset 

and being computationally costly. It was also unable to consider the requirements dependency. This paper suggests an improved approach 

to prioritise requirements called the Automated Requirement Prioritisation Technique (ARPT) to overcome the limitations of the Adam 

Algorithm. Compared to Adam Algorithm, the ARPT method results show a wide gap of mean squared error of 1.29 against 6.36. The 

execution time of the proposed method is 1.99ms as against the Adam algorithm, which is 3380ms. Based on our work described in the 

paper, it can be concluded that the results of ARPT in assigning priorities to requirements have improved by 80% compared to the Adam 

algorithm. 

Keywords: Machine Learning, Natural Language Programming, Optimisation Algorithm, Requirement Engineering, Requirement 

Prioritisation 

1. Introduction 

Requirement engineering (RE) covers identifying customer 

requirements, analysing them, figuring out feasibility, 

looking for a workable solution, clearly defining the goals 

and a solution, validating the documents, and managing 

requirements as they are turned into a functional system. 

Requirement engineering is the methodical use of tried-and-

true concepts, processes, tools and notation to define a 

proposed system’s expected behaviour and constraints [1]. 

Elicitation, specification, validation, and management of 

requirements tasks must be completed during this phase [2]. 

Different software versions can be issued in succession due 

to constraints like budget and time during the development 

phase. Therefore, deciding which requirements should be 

considered in the software’s initial release is crucial.  The 

requirement prioritisation (RP) procedure is where 

stakeholders assign priorities to the requirements [3]. 

Stakeholders decide the priority of requirements to be 

implemented in the succession of software releases. 

Requirements prioritisation has proven incredibly difficult, 

with scalability being one of the most significant challenges 

[4],[5]. In the case of large-scale projects, there are a vast 

number of stakeholders. There may be conflict about 

prioritising criteria due to these stakeholders’ divergent 

needs. Meeting stakeholder requirements and raising future 

expectations in a cost-effective, secure, timely, and relevant 

way is the main challenge today’s companies face. It may 

be challenging for requirements analysts to choose which 

requirements should be prioritised due to budget and 

production schedule restrictions, but this will likely result in 

high customer satisfaction. Due to a lack of standards, 

incorrect requirement prioritisation may prevent end users 

from rejecting the programme, resulting in an unsuccessful 

product. High-priority requirements must be considered 

before low-priority requirements to maximise the cost 

benefits and meet software deadlines. Prioritisation 

techniques are getting more and more critical. Most research 

is conducted in this field, yet using the suitable method or 

framework at the right time might take time and effort. 

Implementing security features has been recommended 

since the beginning of software, which is the requirement 

phase [4]. 

The Analytic Hierarchy Process (AHP), Must have, Should 

have, Could have, Won’t have (MoScoW), Bubble sort, 

Binary Search Tree, Hundred Dollar and Priority group are 

just a few of the requirements prioritisation algorithms 

utilised by stakeholders [6]. Researchers have recently 

developed numerous prioritisation methods, including 

Apriori [7], Gradient Descent Rank [8], Adaptive Fuzzy 

Hierarchical Cumulative Voting [9], and DRank [10]. The 

study conducted by Talele and Phalnikar [11] demonstrates 

that the complexity and scalability of current prioritisation 

algorithms are constrained. 

During the elicitation and specification phases, stakeholders 
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identify and classify software requirements. This step of the 

software development cycle is also automated by various 

machine learning methods [12]. Similarly, this study aims 

to assign priority to the requirements by considering 

requirements dependencies more accurately using the 

optimisation algorithm. The main contribution of the work 

is twofold. First, an automated method is proposed to assign 

priority to requirements. Second, to evaluate the proposed 

method, this study compares the existing optimisation 

algorithms to prioritise requirements in terms of mean 

squared error and execution time. The objective of this study 

is to address the following research questions – 

• RQ1: Is the priority generated by ARPT by considering 

requirement dependencies more accurate than the 

priority generated by Adam, RMSProp, SGD with 

momentum, Mini-batch SGD, SGD, and GD 

techniques? 

• RQ2: Is ARPT less time-consuming than Adam? 

The datasets generated during the current study are available 

from the corresponding author upon reasonable request. 

The rest of the paper is organised as follows. Related work 

is discussed in section 2. The automated method and results 

are described in sections 3 and 4. Section 5 describes the 

conclusion and future work. 

2. Related Work 

The importance of requirements prioritisation can be seen 

from a variety of perspectives. Prioritising requirements is 

one of the most critical roles for decision-makers [13]. 

According to Firesmith, requirement prioritising is an 

essential activity in software engineering since it sets the 

sequence of requirements to be implemented and delivered 

to stakeholders in different software versions depending on 

their relevance [14]. As a result, requirement prioritisation 

refers to the order in which requirements are prioritised or 

implemented [6]. GDRank considers user decisions and 

ordering criteria. To gather requirements, Quality Function 

Deployment (QFD) is employed. AHP is used for pair 

sampling in Pattern Driven Architectural Partitioning, 

which balances functional and non-functional requirements. 

It provides output based on a decision maker’s priorities 

expressed as a set of Ordered Requirements Pairs, and 

estimates the final approximated priority of the requirement. 

Human users’ effort to create pair preferences increases 

significantly as the requirements vary. [8]. In the Apriori 

method, two functions, join and prune, are performed 

repeatedly to find frequently occurring items. By combining 

them, a set of requirements is generated. The pruning 

procedure looks for requirements in the database. It satisfies 

the number of stakeholders who support a given criterion 

whereas ignoring all others [7]. 

In WhaleRank Optimisation Algorithm, the ranking 

constants generate a linear rank by combining four ranking 

functions based on dictionary words, similarity measure, 

management perception, and updated requirements. WOA 

calculates the best weights for the requirements to obtain the 

best priority for the ranking constants [15]. The Grey Wolf 

Optimisation (GWO) technique is based on grey wolves’ 

natural foraging behaviour. This method’s primary goal is 

to use a population of search agents to identify the best 

solution to a given problem. Regarding the time required to 

prioritise requirements and assign a number to each 

requirement to indicate which is more or less significant 

than the others, requirement prioritisation GWO performs 

better than the AHP technique [16]. The Whale 

Optimization (WO) method is based on the bubble-net 

technique employed by humpback whales for foraging. The 

Grey Wolf Optimization (GWO) technique solves 

optimisation problems by considering grey wolf hunting 

behaviour. [6] presents a hybrid model for prioritising 

software requirements that incorporates the strengths of the 

Whale and Grey Wolf optimization algorithms (WGW). 

To minimise the requirement for professional participation 

during improving the performance, SRPTackle provides a 

semiautomated approach combining a generated 

requirement priority with a multi-criteria decision-making 

technique, clustering techniques, and a binary search tree. 

SRPTackle’s performance was evaluated using seven tests 

that used a standard dataset from a large real-world software 

project [17]. Case Based Ranking method is an advanced 

version of AHP. It accepts a preference elicitation method 

that mixes sets of preferences gathered from stakeholders 

with limitations built automatically using ML techniques 

and leveraging information about (partial) requirements 

orders. It disregards requirement dependency and the 

inclusion of additional requirements [18]. 

To prioritise the requirements, many authors have 

developed various requirement prioritisation methods. 

Requirement prioritisation is an agile method of 

determining the essential requirements for the successful 

development of software. 

• Analytic Hierarchy Process (AHP) – To calculate the 

priority of one requirement over another, all pairs of 

requirements are compared. 

• Case-Based Rank (CBRank) – AHP version accepts a 

priority elicitation method that combines stakeholder-

defined priorities with priorities obtained using 

machine learning techniques. It does not always 

consider requirement dependencies. 

• Must have, Should have, Could have, Won’t have 

(MoSCoW) – In MoSCoW, the team distributes the 

client’s requirements into four categories, i.e., Must, 

Should, Could and Won’t. The requirement is then 

assigned priority, which is a complex process. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 |  1213 

As per the study in [11], all these methods work only for a 

small set of requirements and need the user’s involvement 

to execute these methods. 

Due to a lack of specialisation of stakeholders, classification 

of requirements and assigning priorities to these criteria 

leads to prejudice [19]. Regarding accuracy, scalability, and 

complexity, the most often used prioritisation algorithms, 

such as Cumulative Voting and Analytic Hierarchy Process, 

perform poorly [11],[20]. The RP process steps can be 

automated by assigning priority values to requirements and 

minimising pairwise comparisons among requirements. 

Deep learning, reinforcement learning, and case-based rank 

are all machine learning algorithms that can be utilised to 

solve this challenge. Machine Learning algorithms such as 

Case based rank, GDRank, and Apriori could be better in 

complexity and scalability. The limitation of the GDRank 

algorithm is that it works only for a small set of 

requirements and is time-consuming. Whale Rank 

Optimisation algorithm, Grey Wolf algorithm and WGW 

algorithm are also time-consuming and need expert 

involvement to perform prioritisation manually. There 

needs to be more considering the requirement’s 

dependencies. SRPTackle algorithm execution also heavily 

depends on the experts’ participation and does not consider 

requirements dependencies. Apriori and Case Based Rank 

algorithms manually work only for a small set of 

requirements and don’t consider requirements 

dependencies. These approaches need expert involvement 

and are complex and time-consuming. To overcome these 

challenges, there is a need to study existing optimisation 

algorithms to check the accuracy and scalability 

performance and consider the requirements dependencies. 

3. Methodology  

3.1. ARPT: Proposed Architecture 

Prioritising software requirements is an important aspect of 

requirement engineering. To prioritise the requirements, 

many researchers have developed various requirement 

prioritisation methods. The requirement prioritising process 

is an iterative method of finding the essential requirements 

for the successful development of software or systems. 

 

Fig. 1. ARPT: Proposed Architecture 

Based on the literature review, different machine learning 

algorithms are proposed to prioritise requirements, such as 

CBRank, GDRank. Many areas of research and engineering 

focus significantly on gradient descent-based optimisation 

algorithms. Many problems in these areas can be presented 

as optimising an objective function that requires 

maximisation or minimisation of its parameters. Adam is an 

efficient stochastic gradient descent optimisation method 

that requires first-order gradients and consumes little 

memory. Adam is a multifaceted algorithm that can handle 

large-scale machine learning challenges. It works better for 

sparse datasets [21]. This study considers a large set of 

requirements mentioned in the natural language. After 

preprocessing this dataset, massive sparse data are 

generated. Adam algorithm is well suited for dealing with 

this sparse data. Existing optimisation algorithms such as 

stochastic gradient descent (SGD), mini-batch SGD, SGD 

with Momentum, and Root Mean Squared Propagation 

(RMSProp) [21],[22] are used to compare with the proposed 

method that finds the priority for requirement as per the 

steps shown in Fig. 1. Details of the steps – 

1. Data Preparation – This involves two phases, Text 

Preprocessing and Feature Selection 

a. Text Preprocessing – All requirements are given in 

plain English. These requirements may include 

numbers and punctuation marks that may not provide 

precise information. Text is converted to lower text. 

Extra white space, punctuation marks, and stop 

words are eliminated [23]. 

b. Feature Selection – The TF-IDF technique provides 

numerical input to machine learning algorithms and 

identifies features that can give more information 

about the requirement. 

2. The priority is calculated using a dependency graph to 

consider the dependency of requirements. 

3. The Adam optimisation algorithm is updated to determine 

the priority for the sparse data in the case of text data 

and consider the priority calculated using a dependency 

graph. This Updated Adam algorithm is used and 

compared to stochastic gradient descent (SGD), mini-

batch SGD, SGD with Momentum, and Root Mean 

Squared Propagation (RMSProp) algorithms. 

Algorithm 1 

Priority Dependency Graph(Req) 

1. 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝐹𝑅𝑖 =  ∑ (𝑁𝐹𝑅𝑗 → 𝐹𝑅𝑖)
𝑘
𝑖,𝑗  

2. 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝑁𝐹𝑅𝑗 =  𝑇𝑦𝑝𝑒_𝑁𝐹𝑅𝑗 +

∑ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝐹𝑅𝑖→𝑘
𝑘
𝑖  

Algorithm 2 

Updated Adam SGD(X, y) 
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1. Initialise 

a. epochs = 1000 

b. η  = 0.01 

c. β 1 = 0.9 

d. β 2 = 0.999 

e. ε = 10e-8 

f. i = 1 

2. do 

//Objective Function 

a. y_predicted = f(X, y, w, b)      

//Considers the dependency of requirements 

b. y_predicted = Priority DG + y predicted  

c. Find Gradients w grad, b grad using δi f(X,y 

predicted) 

d. Update First Moment Vector, FMV 

e. Update Second Moment Vector, SMV 

//error divide by zero due to sparse nature of text data – do 

bias correction in both moment vectors 

f. FMV = FMV / (1 - (β 1i) + ε) 

g. SMV = SMV / (1 - (β 2i) + ε) 

h. Update Learning Rate, η 

i. Find Gradients w, b 

while i in range(epochs) 

3. Return w, b 

The Adam (Adaptive moment estimation) algorithm utilises 

the benefits of two optimisation algorithms: AdaGrad [24] 

and RMSProp [25]. AdaGrad performs better with sparse 

gradients and RMSProp in non-stationary and online 

environments. It uses estimations of the first and second 

moments of the gradients to calculate individual adaptive 

learning rates for distinct parameters. To achieve the 

advantages of AdaGrad and RMSProp, Adam changes the 

first-moment vector and second-moment vector based on 

the past gradients: 

AdaGrad_moment_vector =  (β1𝑖)  ∗

 AdaGrad_moment_vector + (1 − β1𝑖)  ∗  grad2      

(1) 

RMSProp_moment_vector =  (β2𝑖)  ∗

 RMSProp_moment_vector + (1 −  β2𝑖)  ∗  grad2      

(2) 

During initial iterations and values of β1 and β2 are close to 

1, FMV and SMV are biased towards zero. The sparse data 

are enormous because the software requirements are 

mentioned in terms of text. Therefore, the division factor 

becomes zero during the Adam algorithm’s bias correction 

step. To overcome this drawback, the ε is added to the 

division factor. The AdaGrad moment vector and RMSProp 

moment vector are updated as in (3) and (4), respectively. 

AdaGrad_moment_vector =

(AdaGrad_moment_vector)/((1 −  (〖𝛽1〗^𝑖)  +  ε))

         (3) 

RMSProp_moment_vector =

(RMSProp_moment_vector)/((1 − (〖𝛽2〗^𝑖)  +  ε))

         (4) 

Similarly, the learning rate is updated as in (5). 

η =   (η ∗  〖(1 −  〖β2〗^𝑖)〗^(1/2))/(((1 −  

〖β1〗^𝑖)  +  ε) (5) 

To improve the efficiency of an algorithm, the gradient 

(grad) is changed during every iteration, as in (6). 

𝑔𝑟𝑎𝑑 = 𝑔𝑟𝑎𝑑 − (𝜂 ∗ 𝐴𝑑𝑎𝐺𝑟𝑎𝑑_(𝑚𝑜𝑚𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 ))/(

〖𝑅𝑀𝑆𝑃𝑟𝑜𝑝_(𝑚𝑜𝑚𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 )〗^(1/2) +  𝜀)  

      (6) 

This work validates the hypothesis by applying the proposed 

method to software projects. The projects should be large-

scale projects, well documented and can be evaluated to 

construct the ground truth. These projects are verified by the 

Project Coordinator. After preprocessing the data, this 

ground truth has a requirements list prioritised in the project. 

The dataset includes 11 projects, 37 functional and 56 non-

functional requirements and the requirement’s priorities and 

dependencies. The non-functional requirement types are 

’Security’, ’Usability’, ’Performance’, ’Availability’, 

’Maintainability’, ’Qualitative Attribute’, ’Testability’, 

’Portability’, ’Support Module’ and ’Software Quality 

Attributes’. The details of the project include the parameters 

given in Table 1. 
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Table 1. Project Details 

Sr. 

No. 

Parameters 

1.  Project Title 

2.  Functional Requirements 1 – 5 

3.  Priority of Functional Requirement 1 – 5 

(scale range 1 – 5) 

4.  Non-Functional Requirements 1 – 5 

5.  Type of Non-Functional Requirements 1 – 5 

6.  Priority of Non-Functional Requirement 1 – 5 

(scale range 1 – 5) 

7.  Are Non-Functional Requirements 1 – 5 

dependent on Functional Requirements? 

8.  Objectives of the project 

 

The first step of the proposed method, text preprocessing 

and feature extraction algorithms, are executed on these 

requirements and 271 features are extracted. To explain the 

Updated Adam algorithm, consider an example of one 

requirement – “Mobile battery life should be high”. The 

features extracted from this requirement are battery, life and 

high. These features are available only in one of the 

requirements from the whole dataset. Adam algorithm 

should map these features to functional requirement. But it 

does not converge as expected. These features should give 

more information about the type of software requirement. 

So, the Adam algorithm is updated as during the bias 

correction of both moment vectors, the “ε” is added to the 

division factor as shown in Equations 3 and 4. Therefore, 

the Updated Adam algorithm converges as expected for 

dense features; values of these vectors will decrease and for 

the sparse features such as “battery” and “life”, values of 

these vectors will increase. 

 

 

3.2. Example 

The priority of functional requirement ‘i’ is calculated by 

considering the dependency of non-functional requirements 

on functional requirements.  i.e., the more non-functional 

requirements dependent on functional requirement ‘i’, the 

more important functional requirement ‘i’ is. The priority of 

non-functional requirement is produced based on the type of 

non-functional requirement and the priority of functional 

requirements on which it depends e.g., if the type of non-

functional requirement is ‘Security’, it is given the highest 

priority than that of the ‘Support Module’. These calculated 

priorities are given as input to train the model and predict 

the new priorities. The new predicted priorities using the 

proposed model are compared with the ground truth values 

to check the accuracy. 

Project Title - Agile software management 

Table 2 shows all the details of the project “Agile software 

management”, i.e., requirements and type of requirements 

and priorities assigned to requirements. 

 Where, FR – “Functional Requirement” and NFR – 

“Non-Functional Requirement” 

• As per the proposed methodology, all requirements are 

pre-processed and features are extracted first. 

• To calculate the priority dependency value for functional 

requirements, the dependency of non-functional 

requirements on functional requirements is considered 

and calculated using step 1 of algorithm 1. Using this 

step, the priority dependency value for functional 

requirements are produced as – FR1 – 3, FR2 – 3, FR3 

– 3, FR4 – 2. 

• To calculate the priority dependency value for non-

functional requirements, the type of non-functional 

requirement and the dependency value of functional 

requirements is considered and calculated using step 2 

of algorithm 1. Using this step, the priority dependency 

value for non-functional requirements are produced as 

– NFR1 – 7, NFR2 – 7, NFR3 – 8, NFR4 – 8, NFR5 – 

5. 
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Table 2. “Agile software management” Project Details and Sign Conventions used 

These priority dependency values will be used in algorithm 2, “Updated Adam SGD,” to calculate the final priority. Table 3 

shows the new calculated priority values. 

The error between ground truth and priority values obtained using the proposed algorithm is 0.198. 

Table 3. “Agile software management” Project Details and new calculated priority values 

Requirement Type Priority Priority_DG 
Priority_Upadated 

Adam 

Scrum master is 

able to create 

new projects 

and assign 

members to it 

FR 5 3 4.48 

Team members 

create sprints 

and move tasks 

from sprint 

backlog to todo, 

in progress, 

completed, 

accepted 

FR 5 3 4.82 

Scrum master is 

able to view 

progress graphs 

of each member 

FR 4 3 4.3 

Team members 

collaborate via 

comment 

section and task 

reviews 

FR 3 2 4.48 

Page load time 

less than 2 secs 
Performance 5 7 3.9 

Requirement Type Priority Sign Conventions 

Scrum master is able to create new projects 

and assign members to it 
FR 5 FR1 

Team members create sprints and move tasks 

from sprint backlog to todo, in progress, 

completed, accepted 

FR 5 FR2 

Scrum master is able to view progress graphs 

of each member 
FR 4 FR3 

Team members collaborate via comment 

section and task reviews 
FR 3 FR4 

Page load time less than 2 secs Performance 5 NFR1 

The website is available all the time as long 

as the user is connected to the internet 
Availability 5 NFR2 

Easy navigation and user friendly ui Usability 5 NFR3 

All data are sanitized before it is inserted in 

the database, preventing sql injections 
Security 5 NFR4 

Testing to be automated via selenium 

webdriver, test cases can be performed at any 

time to perform testing  

Testability 4 NFR5 
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The website is 

available all the 

time as long as 

the user is 

connected to the 

internet 

Availability 5 7 4.31 

Easy navigation 

and user 

friendly ui 

Usability 5 8 3.91 

All data are 

sanitized before 

it is inserted in 

the database, 

preventing sql 

injections 

Security 5 8 4.322 

Testing to be 

automated via 

selenium 

webdriver, test 

cases can be 

performed at 

any time to 

perform testing  

Testability 4 5 4.69 

 

4. Results 

In this part, we elaborate on the specific description and 

structure of the experiments using the standard rules 

established by Wohlin et al. [26] for reporting and 

documenting software engineering experiments. 

4.1. Experiment Description 

The studies were driven by the need to evaluate the 

effectiveness of ARPT against that of Adam, RMSProp, 

SGD with momentum, Mini-batch SGD, SGD and GD. The 

capacity of a prioritising technique to generate speedy and 

accurate prioritisation outcomes is represented by its 

effectiveness. As a result, the evaluation is carried out to 

assess the accuracy of the results as well as the execution 

time. Similarly, the following is our experiment’s research 

questions and hypotheses. 

The objective of requirement prioritisation is to facilitate 

users in selecting the most important requirements, 

considering constraints such as stakeholder expectations 

and requirements interdependences. Therefore, correct 

prioritising requirements is an important step to ensure a 

successful software release. Hence, the efficacy of a 

particular requirement prioritisation approach may be 

determined by how well it facilitates users in determining a 

preference aligned with the ground truth. The subject of the 

effectiveness assessment might be interpreted as the 

following research question. 

• RQ1: Is the priority generated by ARPT by considering 

requirement dependencies more accurate than the 

priority generated by Adam, RMSProp, SGD with 

momentum, Mini-batch SGD, SGD, and GD 

techniques? This question can be divided into the two 

sub-questions and hypotheses listed below. 

o RQ1.1: Is ARPT prioritising results less error cost than 

the prioritisation results provided by Adam, RMSProp, 

SGD with momentum, Mini-batch SGD, SGD, and GD 

techniques? 

▪ H1.10Error: The ARPT and a specific technique (Adam, 

RMSProp, SGD with momentum, Mini-batch SGD, 

SGD, and GD) have the same error cost. 

▪ H11.11Error: The ARPT and a specific technique (Adam, 

RMSProp, SGD with momentum, Mini-batch SGD, 

SGD, and GD) do not have the same error cost. 

o RQ1.2: Are the ARPT prioritising results more accurate 

than the prioritisation results provided by Adam, 

RMSProp, SGD with momentum, Mini-batch SGD, 

SGD, and GD techniques? 

▪ H1.20Mean Square Error: The ARPT and a specific technique 

(Adam, RMSProp, SGD with momentum, Mini-batch 

SGD, SGD, and GD) have the same mean square error. 

▪ H1.21Mean Square Error: The ARPT's mean square error and 

the mean square error of a specific approach (Adam, 

RMSProp, SGD with momentum, Mini-batch SGD, 

SGD, and GD) are not the same. 

The time required by each technique was calculated. 

• RQ2: Does ARPT require less time than Adam? 

o H20ExecutionTime: ARPT's execution time for generating 

the prioritisation list is similar to that of a specific 

approach (Adam, RMSProp, SGD with momentum, 

Mini-batch SGD, SGD, and GD). 
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o H21Execution Time: The time ARPT requires to generate 

the prioritisation list differs from that required by a 

specific approach. (Adam, RMSProp, SGD with 

momentum, Mini-batch SGD, SGD, and GD). 

4.2. Experimental Outcomes 

The results of the experiments carried out to address the 

research questions stated in Section 4.1 are analysed. We 

used statistical analysis to put the presented hypotheses to 

the test. To implement the prioritisation algorithms, user-

friendly Python 3.8.5 is used.  It supports a variety of dataset 

file types, including CSV. Scikit-learn was also selected 

because it contains several modules that make creating 

machine learning classifiers and computing the factors used 

in the evaluations more easily. A DELL Laptop computer 

was used, with an Intel(R) Core (TM) i5-10300H processor 

2.50GHz, 8 GB RAM, running a 64-bit Windows Operating 

System. The dataset is split into two parts with an 8:2 ratio. 

80% dataset is used to train the model and 20% dataset from 

the same domain is used to test the model. 

RQ1: Is the priority generated by ARPT by considering 

requirement dependencies more accurate than the priority 

generated by Adam, RMSProp, SGD with momentum, 

Mini-batch SGD, SGD, and GD techniques? This question 

can be decomposed into the following two sub-questions 

and corresponding hypotheses. 

RQ1.1: Is ARPT prioritising results less error cost than the 

prioritisation results provided by Adam, RMSProp, SGD 

with momentum, Mini-batch SGD, SGD, and GD 

techniques? 

All algorithms, GD, Mini-batch SGD, SGD with 

momentum, RMSProp and ARPT, are executed for 1000 

epochs. It is observed that error cost is reduced in the case 

of these algorithms, as shown in Fig. 2. The error cost starts 

from 0.611 in the case of GD when the iteration starts, 

whereas it is 5.94 in the case of SGD at iteration number 

1000. The Adam algorithm forms the distorted waveform, 

creating substantial sparse data for the text requirements. 

Therefore, the Adam algorithm takes more time to reduce 

the error cost. The ARPT algorithm achieves a higher rate 

of convergence than the Adam algorithm. Thus, the first null 

hypothesis H1.10Error is rejected. 

 

Fig. 2. Comparison of Optimisation Algorithms (Error Cost) 

RQ1.2: Are the ARPT prioritising results more accurate 

than the prioritisation results provided by Adam, RMSProp, 

SGD with momentum, Mini-batch SGD, SGD, and GD 

techniques? 

The findings from Fig. 3 have shown that the difference 

between the predicted priority and the original priority, i.e., 

mean squared error calculated using ARPT, is lesser than 

that of existing optimisation algorithms.  It is also seen that 

the mean squared error is different for all types of 

optimisation algorithms, so the null hypothesis H1.20Mean 

Square Error should be rejected. In conclusion, ARPT 

outperformed Adam by 80%. 

 

Fig. 3. Comparison of Optimisation Algorithms (Mean Square Error) 

RQ2: Is ARPT less time-consuming than Adam? 

It is observed that the Adam algorithm takes more time 

3380ms to assign priority to requirements than that of other 

optimisation algorithms. The execution time for the ARPT 

method is reduced to 1.99 ms, as shown in Fig. 4. The 

execution time for ARPT differs from that of other 
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optimisation algorithms, so the null hypothesis 

H20ExecutionTime is also rejected. 

As a result, the statistical studies clearly showed that the null 

hypothesis is invalidated with reasonable certainty, and the 

alternative hypotheses H1.11Error, H1.21Mean Square Error, 

H21ExecutionTime are validated.  Also, ARPT outperforms GD, 

SGD, Mini-batch SGD, SGD with momentum, RMSProp 

and Adam in requirement prioritisation. 

The results of this study showed that the requirements 

dependencies could enhance the efficiency of prioritising 

requirements. The advantage of ARPT over existing 

methods is that ARPT considers requirements dependencies 

to determine the priorities of the requirements. This 

enhances the accuracy of the prioritisation values. As a 

result, ARPT is especially helpful for recently established 

IT organisations entering new domains where experts are 

difficult to find. 

 

Fig. 4. Comparison of Optimisation Algorithms (Execution Time) 

5. Threats to Validity 

Experiment-based research is frequently prone to many 

sorts of validity threats (for example, conclusion, internal, 

construct, and external validity) [26]. We tried to mitigate 

and remove these threats in this research, yet, a number of 

these threats are beyond our control. 

• Internal validity – Internal validity threats affect studies 

without our knowledge and/or are beyond our control. The 

analysis of computing time for assigning priorities to the 

requirements for every method constitutes a threat to 

internal validity due to the measurement’s extreme 

subjectivity about the system’s configuration. As a result, 

all algorithms must be implemented in the same prioritising 

context. To mitigate this threat, the execution time of ARPT 

is compared with other optimisation algorithms.  The 

comparison could indicate when to prioritise; nevertheless, 

implementing language variations in the techniques’ 

resources is an additional threat. Furthermore, whereas the 

computer system’s configuration used to execute the 

algorithms can influence their performance, the algorithms 

compared herein were executed on a system with the 

configuration mentioned in section 4.3. 

• External validity – External validity is challenged when 

research cannot be extended to numerous real problems. We 

cannot ensure that the adopted standard encompasses 

variations of real problems from the software development 

domains. This is the main threat. We chose a standard 

dataset of 11 software projects to mitigate this threat. To the 

best of our knowledge, the benchmark dataset of 11 

software projects is one of the most feasible and extensive 

datasets in requirement prioritisation areas; it contains 

detailed information on multiple requirements and their 

interdependence. Thus, the 11 software projects dataset is 

often used for assessments derived from initiated and 

developed software projects. To improve external validity, 

ARPT should be evaluated in additional software 

developments from companies involved in the varieties of 

software products implementation. 

• Conclusion validity – Threats to the conclusion concern 

the relationship between the procedure and the result. The 

threats, in this case, originate from the comparison with 

optimisation algorithms. Numerous methods for 

requirement prioritising are compared. However, we can 

still not contrast ARPT to all these methods due to various 

factors, including the inaccessibility of these techniques’ 

source code to the public. To minimise this threat, we 

compared the performance of the proposed ARPT method 

to that of the optimisation algorithms that are most relevant 

to ARPT, as these selected algorithms were tested in terms 

of mean squared error and error cost using the same 11 

software projects dataset as the current study. Furthermore, 

like ARPT, these evaluated algorithms conduct their method 

procedures during requirement prioritisation. To state of the 

art, the algorithms and comparative standards indicated 

above are the best findings provided so far using the 11 

software projects dataset. 

6. Conclusion and Future Work 

In the case of text features, the Adam Algorithm needs to 

converge as intended, especially when the feature frequency 

needs to be higher in the dataset. This study proposes the 
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ARPT algorithm to assign priority to software requirements 

to address this limitation. The hypothesis is tested by 

applying the proposed ARPT method to the software 

projects.  The resulting priorities assigned to requirements 

are compared in terms of mean square error and cost error 

of prioritising to the requirements priorities generated by 

existing techniques and the ground truth. The ground truth 

is a complete and prioritised list of requirements and 

requirement dependencies for all 11 software projects. One 

notable advantage of the ARPT algorithm is that it 

outperforms Adam Algorithm on text datasets and considers 

the requirements’ dependency. In addition, this paper 

systematically compares existing optimisation algorithms 

and the ARPT method for requirement prioritisation in 

terms of error cost and mean squared error.  The ARPT 

algorithm has been evaluated on 11 software project 

requirement datasets, including functional and non-

functional requirements such as usability, performance, etc. 

Compared to state-of-the-art optimisation algorithms, the 

experimental results showed that the ARPT algorithm 

outperforms the Adam algorithms and achieves a cost error 

of 0.0001 and a mean squared error of 1.29 at epoch 1000 

for requirement prioritisation. The ARPT algorithm takes 

only 1.99ms to execute. The ARPT algorithm has a 

drawback that it does not consider requirement conflicts. In 

the future, we will attempt to solve this problem, and the 

proposed method will be evaluated on various datasets from 

various software domains. 

The future work will also include the development of a 

framework to automate the classification and prioritisation 

of requirements, as well as considering conflicting 

requirements. 
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