

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1211

Automated Requirement Prioritisation Technique Using an Updated

Adam Optimisation Algorithm

Pratvina Talele*1, Rashmi Phalnikar2

Submitted: 28/04/2023 Revised: 28/06/2023 Accepted: 06/07/2023

Abstract: Requirement Engineering plays a crucial role in developing software and focuses on gathering requirements from stakeholders

with diverse interests. The optimisation algorithm aims to select features to give meaningful information about requirements. These features

can be used to train a model for prioritising requirements, which remains a challenging and complex task. The study aims to understand

which optimisation algorithms consider suitable features and assign priority to the requirement. The study shows that the existing Adam

Algorithm needs to be more capable of assigning accurate priority to the requirement due to the sparse matrix generated for the text dataset

and being computationally costly. It was also unable to consider the requirements dependency. This paper suggests an improved approach

to prioritise requirements called the Automated Requirement Prioritisation Technique (ARPT) to overcome the limitations of the Adam

Algorithm. Compared to Adam Algorithm, the ARPT method results show a wide gap of mean squared error of 1.29 against 6.36. The

execution time of the proposed method is 1.99ms as against the Adam algorithm, which is 3380ms. Based on our work described in the

paper, it can be concluded that the results of ARPT in assigning priorities to requirements have improved by 80% compared to the Adam

algorithm.

Keywords: Machine Learning, Natural Language Programming, Optimisation Algorithm, Requirement Engineering, Requirement

Prioritisation

1. Introduction

Requirement engineering (RE) covers identifying customer

requirements, analysing them, figuring out feasibility,

looking for a workable solution, clearly defining the goals

and a solution, validating the documents, and managing

requirements as they are turned into a functional system.

Requirement engineering is the methodical use of tried-and-

true concepts, processes, tools and notation to define a

proposed system’s expected behaviour and constraints [1].

Elicitation, specification, validation, and management of

requirements tasks must be completed during this phase [2].

Different software versions can be issued in succession due

to constraints like budget and time during the development

phase. Therefore, deciding which requirements should be

considered in the software’s initial release is crucial. The

requirement prioritisation (RP) procedure is where

stakeholders assign priorities to the requirements [3].

Stakeholders decide the priority of requirements to be

implemented in the succession of software releases.

Requirements prioritisation has proven incredibly difficult,

with scalability being one of the most significant challenges

[4],[5]. In the case of large-scale projects, there are a vast

number of stakeholders. There may be conflict about

prioritising criteria due to these stakeholders’ divergent

needs. Meeting stakeholder requirements and raising future

expectations in a cost-effective, secure, timely, and relevant

way is the main challenge today’s companies face. It may

be challenging for requirements analysts to choose which

requirements should be prioritised due to budget and

production schedule restrictions, but this will likely result in

high customer satisfaction. Due to a lack of standards,

incorrect requirement prioritisation may prevent end users

from rejecting the programme, resulting in an unsuccessful

product. High-priority requirements must be considered

before low-priority requirements to maximise the cost

benefits and meet software deadlines. Prioritisation

techniques are getting more and more critical. Most research

is conducted in this field, yet using the suitable method or

framework at the right time might take time and effort.

Implementing security features has been recommended

since the beginning of software, which is the requirement

phase [4].

The Analytic Hierarchy Process (AHP), Must have, Should

have, Could have, Won’t have (MoScoW), Bubble sort,

Binary Search Tree, Hundred Dollar and Priority group are

just a few of the requirements prioritisation algorithms

utilised by stakeholders [6]. Researchers have recently

developed numerous prioritisation methods, including

Apriori [7], Gradient Descent Rank [8], Adaptive Fuzzy

Hierarchical Cumulative Voting [9], and DRank [10]. The

study conducted by Talele and Phalnikar [11] demonstrates

that the complexity and scalability of current prioritisation

algorithms are constrained.

During the elicitation and specification phases, stakeholders

1School of Computer Engineering and Technology, Dr. Vishwanath Karad

MIT World Peace University, Pune, Maharashtra, India, 411038
2School of Computer Engineering and Technology, Dr. Vishwanath Karad

MIT World Peace University, Pune, Maharashtra, India, 411038

* Corresponding Author Email: pratvina.talele@mitwpu.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1212

identify and classify software requirements. This step of the

software development cycle is also automated by various

machine learning methods [12]. Similarly, this study aims

to assign priority to the requirements by considering

requirements dependencies more accurately using the

optimisation algorithm. The main contribution of the work

is twofold. First, an automated method is proposed to assign

priority to requirements. Second, to evaluate the proposed

method, this study compares the existing optimisation

algorithms to prioritise requirements in terms of mean

squared error and execution time. The objective of this study

is to address the following research questions –

• RQ1: Is the priority generated by ARPT by considering

requirement dependencies more accurate than the

priority generated by Adam, RMSProp, SGD with

momentum, Mini-batch SGD, SGD, and GD

techniques?

• RQ2: Is ARPT less time-consuming than Adam?

The datasets generated during the current study are available

from the corresponding author upon reasonable request.

The rest of the paper is organised as follows. Related work

is discussed in section 2. The automated method and results

are described in sections 3 and 4. Section 5 describes the

conclusion and future work.

2. Related Work

The importance of requirements prioritisation can be seen

from a variety of perspectives. Prioritising requirements is

one of the most critical roles for decision-makers [13].

According to Firesmith, requirement prioritising is an

essential activity in software engineering since it sets the

sequence of requirements to be implemented and delivered

to stakeholders in different software versions depending on

their relevance [14]. As a result, requirement prioritisation

refers to the order in which requirements are prioritised or

implemented [6]. GDRank considers user decisions and

ordering criteria. To gather requirements, Quality Function

Deployment (QFD) is employed. AHP is used for pair

sampling in Pattern Driven Architectural Partitioning,

which balances functional and non-functional requirements.

It provides output based on a decision maker’s priorities

expressed as a set of Ordered Requirements Pairs, and

estimates the final approximated priority of the requirement.

Human users’ effort to create pair preferences increases

significantly as the requirements vary. [8]. In the Apriori

method, two functions, join and prune, are performed

repeatedly to find frequently occurring items. By combining

them, a set of requirements is generated. The pruning

procedure looks for requirements in the database. It satisfies

the number of stakeholders who support a given criterion

whereas ignoring all others [7].

In WhaleRank Optimisation Algorithm, the ranking

constants generate a linear rank by combining four ranking

functions based on dictionary words, similarity measure,

management perception, and updated requirements. WOA

calculates the best weights for the requirements to obtain the

best priority for the ranking constants [15]. The Grey Wolf

Optimisation (GWO) technique is based on grey wolves’

natural foraging behaviour. This method’s primary goal is

to use a population of search agents to identify the best

solution to a given problem. Regarding the time required to

prioritise requirements and assign a number to each

requirement to indicate which is more or less significant

than the others, requirement prioritisation GWO performs

better than the AHP technique [16]. The Whale

Optimization (WO) method is based on the bubble-net

technique employed by humpback whales for foraging. The

Grey Wolf Optimization (GWO) technique solves

optimisation problems by considering grey wolf hunting

behaviour. [6] presents a hybrid model for prioritising

software requirements that incorporates the strengths of the

Whale and Grey Wolf optimization algorithms (WGW).

To minimise the requirement for professional participation

during improving the performance, SRPTackle provides a

semiautomated approach combining a generated

requirement priority with a multi-criteria decision-making

technique, clustering techniques, and a binary search tree.

SRPTackle’s performance was evaluated using seven tests

that used a standard dataset from a large real-world software

project [17]. Case Based Ranking method is an advanced

version of AHP. It accepts a preference elicitation method

that mixes sets of preferences gathered from stakeholders

with limitations built automatically using ML techniques

and leveraging information about (partial) requirements

orders. It disregards requirement dependency and the

inclusion of additional requirements [18].

To prioritise the requirements, many authors have

developed various requirement prioritisation methods.

Requirement prioritisation is an agile method of

determining the essential requirements for the successful

development of software.

• Analytic Hierarchy Process (AHP) – To calculate the

priority of one requirement over another, all pairs of

requirements are compared.

• Case-Based Rank (CBRank) – AHP version accepts a

priority elicitation method that combines stakeholder-

defined priorities with priorities obtained using

machine learning techniques. It does not always

consider requirement dependencies.

• Must have, Should have, Could have, Won’t have

(MoSCoW) – In MoSCoW, the team distributes the

client’s requirements into four categories, i.e., Must,

Should, Could and Won’t. The requirement is then

assigned priority, which is a complex process.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1213

As per the study in [11], all these methods work only for a

small set of requirements and need the user’s involvement

to execute these methods.

Due to a lack of specialisation of stakeholders, classification

of requirements and assigning priorities to these criteria

leads to prejudice [19]. Regarding accuracy, scalability, and

complexity, the most often used prioritisation algorithms,

such as Cumulative Voting and Analytic Hierarchy Process,

perform poorly [11],[20]. The RP process steps can be

automated by assigning priority values to requirements and

minimising pairwise comparisons among requirements.

Deep learning, reinforcement learning, and case-based rank

are all machine learning algorithms that can be utilised to

solve this challenge. Machine Learning algorithms such as

Case based rank, GDRank, and Apriori could be better in

complexity and scalability. The limitation of the GDRank

algorithm is that it works only for a small set of

requirements and is time-consuming. Whale Rank

Optimisation algorithm, Grey Wolf algorithm and WGW

algorithm are also time-consuming and need expert

involvement to perform prioritisation manually. There

needs to be more considering the requirement’s

dependencies. SRPTackle algorithm execution also heavily

depends on the experts’ participation and does not consider

requirements dependencies. Apriori and Case Based Rank

algorithms manually work only for a small set of

requirements and don’t consider requirements

dependencies. These approaches need expert involvement

and are complex and time-consuming. To overcome these

challenges, there is a need to study existing optimisation

algorithms to check the accuracy and scalability

performance and consider the requirements dependencies.

3. Methodology

3.1. ARPT: Proposed Architecture

Prioritising software requirements is an important aspect of

requirement engineering. To prioritise the requirements,

many researchers have developed various requirement

prioritisation methods. The requirement prioritising process

is an iterative method of finding the essential requirements

for the successful development of software or systems.

Fig. 1. ARPT: Proposed Architecture

Based on the literature review, different machine learning

algorithms are proposed to prioritise requirements, such as

CBRank, GDRank. Many areas of research and engineering

focus significantly on gradient descent-based optimisation

algorithms. Many problems in these areas can be presented

as optimising an objective function that requires

maximisation or minimisation of its parameters. Adam is an

efficient stochastic gradient descent optimisation method

that requires first-order gradients and consumes little

memory. Adam is a multifaceted algorithm that can handle

large-scale machine learning challenges. It works better for

sparse datasets [21]. This study considers a large set of

requirements mentioned in the natural language. After

preprocessing this dataset, massive sparse data are

generated. Adam algorithm is well suited for dealing with

this sparse data. Existing optimisation algorithms such as

stochastic gradient descent (SGD), mini-batch SGD, SGD

with Momentum, and Root Mean Squared Propagation

(RMSProp) [21],[22] are used to compare with the proposed

method that finds the priority for requirement as per the

steps shown in Fig. 1. Details of the steps –

1. Data Preparation – This involves two phases, Text

Preprocessing and Feature Selection

a. Text Preprocessing – All requirements are given in

plain English. These requirements may include

numbers and punctuation marks that may not provide

precise information. Text is converted to lower text.

Extra white space, punctuation marks, and stop

words are eliminated [23].

b. Feature Selection – The TF-IDF technique provides

numerical input to machine learning algorithms and

identifies features that can give more information

about the requirement.

2. The priority is calculated using a dependency graph to

consider the dependency of requirements.

3. The Adam optimisation algorithm is updated to determine

the priority for the sparse data in the case of text data

and consider the priority calculated using a dependency

graph. This Updated Adam algorithm is used and

compared to stochastic gradient descent (SGD), mini-

batch SGD, SGD with Momentum, and Root Mean

Squared Propagation (RMSProp) algorithms.

Algorithm 1

Priority Dependency Graph(Req)

1. 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝐹𝑅𝑖 = ∑ (𝑁𝐹𝑅𝑗 → 𝐹𝑅𝑖)
𝑘
𝑖,𝑗

2. 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝑁𝐹𝑅𝑗 = 𝑇𝑦𝑝𝑒_𝑁𝐹𝑅𝑗 +

∑ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝐷𝐺_𝐹𝑅𝑖→𝑘
𝑘
𝑖

Algorithm 2

Updated Adam SGD(X, y)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1214

1. Initialise

a. epochs = 1000

b. η = 0.01

c. β 1 = 0.9

d. β 2 = 0.999

e. ε = 10e-8

f. i = 1

2. do

//Objective Function

a. y_predicted = f(X, y, w, b)

//Considers the dependency of requirements

b. y_predicted = Priority DG + y predicted

c. Find Gradients w grad, b grad using δi f(X,y

predicted)

d. Update First Moment Vector, FMV

e. Update Second Moment Vector, SMV

//error divide by zero due to sparse nature of text data – do

bias correction in both moment vectors

f. FMV = FMV / (1 - (β 1i) + ε)

g. SMV = SMV / (1 - (β 2i) + ε)

h. Update Learning Rate, η

i. Find Gradients w, b

while i in range(epochs)

3. Return w, b

The Adam (Adaptive moment estimation) algorithm utilises

the benefits of two optimisation algorithms: AdaGrad [24]

and RMSProp [25]. AdaGrad performs better with sparse

gradients and RMSProp in non-stationary and online

environments. It uses estimations of the first and second

moments of the gradients to calculate individual adaptive

learning rates for distinct parameters. To achieve the

advantages of AdaGrad and RMSProp, Adam changes the

first-moment vector and second-moment vector based on

the past gradients:

AdaGrad_moment_vector = (β1𝑖) ∗

 AdaGrad_moment_vector + (1 − β1𝑖) ∗ grad2

(1)

RMSProp_moment_vector = (β2𝑖) ∗

 RMSProp_moment_vector + (1 − β2𝑖) ∗ grad2

(2)

During initial iterations and values of β1 and β2 are close to

1, FMV and SMV are biased towards zero. The sparse data

are enormous because the software requirements are

mentioned in terms of text. Therefore, the division factor

becomes zero during the Adam algorithm’s bias correction

step. To overcome this drawback, the ε is added to the

division factor. The AdaGrad moment vector and RMSProp

moment vector are updated as in (3) and (4), respectively.

AdaGrad_moment_vector =

(AdaGrad_moment_vector)/((1 − (〖𝛽1〗^𝑖) + ε))

 (3)

RMSProp_moment_vector =

(RMSProp_moment_vector)/((1 − (〖𝛽2〗^𝑖) + ε))

 (4)

Similarly, the learning rate is updated as in (5).

η = (η ∗ 〖(1 − 〖β2〗^𝑖)〗^(1/2))/(((1 −

〖β1〗^𝑖) + ε) (5)

To improve the efficiency of an algorithm, the gradient

(grad) is changed during every iteration, as in (6).

𝑔𝑟𝑎𝑑 = 𝑔𝑟𝑎𝑑 − (𝜂 ∗ 𝐴𝑑𝑎𝐺𝑟𝑎𝑑_(𝑚𝑜𝑚𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟))/(

〖𝑅𝑀𝑆𝑃𝑟𝑜𝑝_(𝑚𝑜𝑚𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟)〗^(1/2) + 𝜀)

 (6)

This work validates the hypothesis by applying the proposed

method to software projects. The projects should be large-

scale projects, well documented and can be evaluated to

construct the ground truth. These projects are verified by the

Project Coordinator. After preprocessing the data, this

ground truth has a requirements list prioritised in the project.

The dataset includes 11 projects, 37 functional and 56 non-

functional requirements and the requirement’s priorities and

dependencies. The non-functional requirement types are

’Security’, ’Usability’, ’Performance’, ’Availability’,

’Maintainability’, ’Qualitative Attribute’, ’Testability’,

’Portability’, ’Support Module’ and ’Software Quality

Attributes’. The details of the project include the parameters

given in Table 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1215

Table 1. Project Details

Sr.

No.

Parameters

1. Project Title

2. Functional Requirements 1 – 5

3. Priority of Functional Requirement 1 – 5

(scale range 1 – 5)

4. Non-Functional Requirements 1 – 5

5. Type of Non-Functional Requirements 1 – 5

6. Priority of Non-Functional Requirement 1 – 5

(scale range 1 – 5)

7. Are Non-Functional Requirements 1 – 5

dependent on Functional Requirements?

8. Objectives of the project

The first step of the proposed method, text preprocessing

and feature extraction algorithms, are executed on these

requirements and 271 features are extracted. To explain the

Updated Adam algorithm, consider an example of one

requirement – “Mobile battery life should be high”. The

features extracted from this requirement are battery, life and

high. These features are available only in one of the

requirements from the whole dataset. Adam algorithm

should map these features to functional requirement. But it

does not converge as expected. These features should give

more information about the type of software requirement.

So, the Adam algorithm is updated as during the bias

correction of both moment vectors, the “ε” is added to the

division factor as shown in Equations 3 and 4. Therefore,

the Updated Adam algorithm converges as expected for

dense features; values of these vectors will decrease and for

the sparse features such as “battery” and “life”, values of

these vectors will increase.

3.2. Example

The priority of functional requirement ‘i’ is calculated by

considering the dependency of non-functional requirements

on functional requirements. i.e., the more non-functional

requirements dependent on functional requirement ‘i’, the

more important functional requirement ‘i’ is. The priority of

non-functional requirement is produced based on the type of

non-functional requirement and the priority of functional

requirements on which it depends e.g., if the type of non-

functional requirement is ‘Security’, it is given the highest

priority than that of the ‘Support Module’. These calculated

priorities are given as input to train the model and predict

the new priorities. The new predicted priorities using the

proposed model are compared with the ground truth values

to check the accuracy.

Project Title - Agile software management

Table 2 shows all the details of the project “Agile software

management”, i.e., requirements and type of requirements

and priorities assigned to requirements.

 Where, FR – “Functional Requirement” and NFR –

“Non-Functional Requirement”

• As per the proposed methodology, all requirements are

pre-processed and features are extracted first.

• To calculate the priority dependency value for functional

requirements, the dependency of non-functional

requirements on functional requirements is considered

and calculated using step 1 of algorithm 1. Using this

step, the priority dependency value for functional

requirements are produced as – FR1 – 3, FR2 – 3, FR3

– 3, FR4 – 2.

• To calculate the priority dependency value for non-

functional requirements, the type of non-functional

requirement and the dependency value of functional

requirements is considered and calculated using step 2

of algorithm 1. Using this step, the priority dependency

value for non-functional requirements are produced as

– NFR1 – 7, NFR2 – 7, NFR3 – 8, NFR4 – 8, NFR5 –

5.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1216

Table 2. “Agile software management” Project Details and Sign Conventions used

These priority dependency values will be used in algorithm 2, “Updated Adam SGD,” to calculate the final priority. Table 3

shows the new calculated priority values.

The error between ground truth and priority values obtained using the proposed algorithm is 0.198.

Table 3. “Agile software management” Project Details and new calculated priority values

Requirement Type Priority Priority_DG
Priority_Upadated

Adam

Scrum master is

able to create

new projects

and assign

members to it

FR 5 3 4.48

Team members

create sprints

and move tasks

from sprint

backlog to todo,

in progress,

completed,

accepted

FR 5 3 4.82

Scrum master is

able to view

progress graphs

of each member

FR 4 3 4.3

Team members

collaborate via

comment

section and task

reviews

FR 3 2 4.48

Page load time

less than 2 secs
Performance 5 7 3.9

Requirement Type Priority Sign Conventions

Scrum master is able to create new projects

and assign members to it
FR 5 FR1

Team members create sprints and move tasks

from sprint backlog to todo, in progress,

completed, accepted

FR 5 FR2

Scrum master is able to view progress graphs

of each member
FR 4 FR3

Team members collaborate via comment

section and task reviews
FR 3 FR4

Page load time less than 2 secs Performance 5 NFR1

The website is available all the time as long

as the user is connected to the internet
Availability 5 NFR2

Easy navigation and user friendly ui Usability 5 NFR3

All data are sanitized before it is inserted in

the database, preventing sql injections
Security 5 NFR4

Testing to be automated via selenium

webdriver, test cases can be performed at any

time to perform testing

Testability 4 NFR5

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1217

The website is

available all the

time as long as

the user is

connected to the

internet

Availability 5 7 4.31

Easy navigation

and user

friendly ui

Usability 5 8 3.91

All data are

sanitized before

it is inserted in

the database,

preventing sql

injections

Security 5 8 4.322

Testing to be

automated via

selenium

webdriver, test

cases can be

performed at

any time to

perform testing

Testability 4 5 4.69

4. Results

In this part, we elaborate on the specific description and

structure of the experiments using the standard rules

established by Wohlin et al. [26] for reporting and

documenting software engineering experiments.

4.1. Experiment Description

The studies were driven by the need to evaluate the

effectiveness of ARPT against that of Adam, RMSProp,

SGD with momentum, Mini-batch SGD, SGD and GD. The

capacity of a prioritising technique to generate speedy and

accurate prioritisation outcomes is represented by its

effectiveness. As a result, the evaluation is carried out to

assess the accuracy of the results as well as the execution

time. Similarly, the following is our experiment’s research

questions and hypotheses.

The objective of requirement prioritisation is to facilitate

users in selecting the most important requirements,

considering constraints such as stakeholder expectations

and requirements interdependences. Therefore, correct

prioritising requirements is an important step to ensure a

successful software release. Hence, the efficacy of a

particular requirement prioritisation approach may be

determined by how well it facilitates users in determining a

preference aligned with the ground truth. The subject of the

effectiveness assessment might be interpreted as the

following research question.

• RQ1: Is the priority generated by ARPT by considering

requirement dependencies more accurate than the

priority generated by Adam, RMSProp, SGD with

momentum, Mini-batch SGD, SGD, and GD

techniques? This question can be divided into the two

sub-questions and hypotheses listed below.

o RQ1.1: Is ARPT prioritising results less error cost than

the prioritisation results provided by Adam, RMSProp,

SGD with momentum, Mini-batch SGD, SGD, and GD

techniques?

▪ H1.10Error: The ARPT and a specific technique (Adam,

RMSProp, SGD with momentum, Mini-batch SGD,

SGD, and GD) have the same error cost.

▪ H11.11Error: The ARPT and a specific technique (Adam,

RMSProp, SGD with momentum, Mini-batch SGD,

SGD, and GD) do not have the same error cost.

o RQ1.2: Are the ARPT prioritising results more accurate

than the prioritisation results provided by Adam,

RMSProp, SGD with momentum, Mini-batch SGD,

SGD, and GD techniques?

▪ H1.20Mean Square Error: The ARPT and a specific technique

(Adam, RMSProp, SGD with momentum, Mini-batch

SGD, SGD, and GD) have the same mean square error.

▪ H1.21Mean Square Error: The ARPT's mean square error and

the mean square error of a specific approach (Adam,

RMSProp, SGD with momentum, Mini-batch SGD,

SGD, and GD) are not the same.

The time required by each technique was calculated.

• RQ2: Does ARPT require less time than Adam?

o H20ExecutionTime: ARPT's execution time for generating

the prioritisation list is similar to that of a specific

approach (Adam, RMSProp, SGD with momentum,

Mini-batch SGD, SGD, and GD).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1218

o H21Execution Time: The time ARPT requires to generate

the prioritisation list differs from that required by a

specific approach. (Adam, RMSProp, SGD with

momentum, Mini-batch SGD, SGD, and GD).

4.2. Experimental Outcomes

The results of the experiments carried out to address the

research questions stated in Section 4.1 are analysed. We

used statistical analysis to put the presented hypotheses to

the test. To implement the prioritisation algorithms, user-

friendly Python 3.8.5 is used. It supports a variety of dataset

file types, including CSV. Scikit-learn was also selected

because it contains several modules that make creating

machine learning classifiers and computing the factors used

in the evaluations more easily. A DELL Laptop computer

was used, with an Intel(R) Core (TM) i5-10300H processor

2.50GHz, 8 GB RAM, running a 64-bit Windows Operating

System. The dataset is split into two parts with an 8:2 ratio.

80% dataset is used to train the model and 20% dataset from

the same domain is used to test the model.

RQ1: Is the priority generated by ARPT by considering

requirement dependencies more accurate than the priority

generated by Adam, RMSProp, SGD with momentum,

Mini-batch SGD, SGD, and GD techniques? This question

can be decomposed into the following two sub-questions

and corresponding hypotheses.

RQ1.1: Is ARPT prioritising results less error cost than the

prioritisation results provided by Adam, RMSProp, SGD

with momentum, Mini-batch SGD, SGD, and GD

techniques?

All algorithms, GD, Mini-batch SGD, SGD with

momentum, RMSProp and ARPT, are executed for 1000

epochs. It is observed that error cost is reduced in the case

of these algorithms, as shown in Fig. 2. The error cost starts

from 0.611 in the case of GD when the iteration starts,

whereas it is 5.94 in the case of SGD at iteration number

1000. The Adam algorithm forms the distorted waveform,

creating substantial sparse data for the text requirements.

Therefore, the Adam algorithm takes more time to reduce

the error cost. The ARPT algorithm achieves a higher rate

of convergence than the Adam algorithm. Thus, the first null

hypothesis H1.10Error is rejected.

Fig. 2. Comparison of Optimisation Algorithms (Error Cost)

RQ1.2: Are the ARPT prioritising results more accurate

than the prioritisation results provided by Adam, RMSProp,

SGD with momentum, Mini-batch SGD, SGD, and GD

techniques?

The findings from Fig. 3 have shown that the difference

between the predicted priority and the original priority, i.e.,

mean squared error calculated using ARPT, is lesser than

that of existing optimisation algorithms. It is also seen that

the mean squared error is different for all types of

optimisation algorithms, so the null hypothesis H1.20Mean

Square Error should be rejected. In conclusion, ARPT

outperformed Adam by 80%.

Fig. 3. Comparison of Optimisation Algorithms (Mean Square Error)

RQ2: Is ARPT less time-consuming than Adam?

It is observed that the Adam algorithm takes more time

3380ms to assign priority to requirements than that of other

optimisation algorithms. The execution time for the ARPT

method is reduced to 1.99 ms, as shown in Fig. 4. The

execution time for ARPT differs from that of other

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1219

optimisation algorithms, so the null hypothesis

H20ExecutionTime is also rejected.

As a result, the statistical studies clearly showed that the null

hypothesis is invalidated with reasonable certainty, and the

alternative hypotheses H1.11Error, H1.21Mean Square Error,

H21ExecutionTime are validated. Also, ARPT outperforms GD,

SGD, Mini-batch SGD, SGD with momentum, RMSProp

and Adam in requirement prioritisation.

The results of this study showed that the requirements

dependencies could enhance the efficiency of prioritising

requirements. The advantage of ARPT over existing

methods is that ARPT considers requirements dependencies

to determine the priorities of the requirements. This

enhances the accuracy of the prioritisation values. As a

result, ARPT is especially helpful for recently established

IT organisations entering new domains where experts are

difficult to find.

Fig. 4. Comparison of Optimisation Algorithms (Execution Time)

5. Threats to Validity

Experiment-based research is frequently prone to many

sorts of validity threats (for example, conclusion, internal,

construct, and external validity) [26]. We tried to mitigate

and remove these threats in this research, yet, a number of

these threats are beyond our control.

• Internal validity – Internal validity threats affect studies

without our knowledge and/or are beyond our control. The

analysis of computing time for assigning priorities to the

requirements for every method constitutes a threat to

internal validity due to the measurement’s extreme

subjectivity about the system’s configuration. As a result,

all algorithms must be implemented in the same prioritising

context. To mitigate this threat, the execution time of ARPT

is compared with other optimisation algorithms. The

comparison could indicate when to prioritise; nevertheless,

implementing language variations in the techniques’

resources is an additional threat. Furthermore, whereas the

computer system’s configuration used to execute the

algorithms can influence their performance, the algorithms

compared herein were executed on a system with the

configuration mentioned in section 4.3.

• External validity – External validity is challenged when

research cannot be extended to numerous real problems. We

cannot ensure that the adopted standard encompasses

variations of real problems from the software development

domains. This is the main threat. We chose a standard

dataset of 11 software projects to mitigate this threat. To the

best of our knowledge, the benchmark dataset of 11

software projects is one of the most feasible and extensive

datasets in requirement prioritisation areas; it contains

detailed information on multiple requirements and their

interdependence. Thus, the 11 software projects dataset is

often used for assessments derived from initiated and

developed software projects. To improve external validity,

ARPT should be evaluated in additional software

developments from companies involved in the varieties of

software products implementation.

• Conclusion validity – Threats to the conclusion concern

the relationship between the procedure and the result. The

threats, in this case, originate from the comparison with

optimisation algorithms. Numerous methods for

requirement prioritising are compared. However, we can

still not contrast ARPT to all these methods due to various

factors, including the inaccessibility of these techniques’

source code to the public. To minimise this threat, we

compared the performance of the proposed ARPT method

to that of the optimisation algorithms that are most relevant

to ARPT, as these selected algorithms were tested in terms

of mean squared error and error cost using the same 11

software projects dataset as the current study. Furthermore,

like ARPT, these evaluated algorithms conduct their method

procedures during requirement prioritisation. To state of the

art, the algorithms and comparative standards indicated

above are the best findings provided so far using the 11

software projects dataset.

6. Conclusion and Future Work

In the case of text features, the Adam Algorithm needs to

converge as intended, especially when the feature frequency

needs to be higher in the dataset. This study proposes the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1220

ARPT algorithm to assign priority to software requirements

to address this limitation. The hypothesis is tested by

applying the proposed ARPT method to the software

projects. The resulting priorities assigned to requirements

are compared in terms of mean square error and cost error

of prioritising to the requirements priorities generated by

existing techniques and the ground truth. The ground truth

is a complete and prioritised list of requirements and

requirement dependencies for all 11 software projects. One

notable advantage of the ARPT algorithm is that it

outperforms Adam Algorithm on text datasets and considers

the requirements’ dependency. In addition, this paper

systematically compares existing optimisation algorithms

and the ARPT method for requirement prioritisation in

terms of error cost and mean squared error. The ARPT

algorithm has been evaluated on 11 software project

requirement datasets, including functional and non-

functional requirements such as usability, performance, etc.

Compared to state-of-the-art optimisation algorithms, the

experimental results showed that the ARPT algorithm

outperforms the Adam algorithms and achieves a cost error

of 0.0001 and a mean squared error of 1.29 at epoch 1000

for requirement prioritisation. The ARPT algorithm takes

only 1.99ms to execute. The ARPT algorithm has a

drawback that it does not consider requirement conflicts. In

the future, we will attempt to solve this problem, and the

proposed method will be evaluated on various datasets from

various software domains.

The future work will also include the development of a

framework to automate the classification and prioritisation

of requirements, as well as considering conflicting

requirements.

Author Contributions

The paper background work, conceptualization,

methodology, dataset collection, implementation, result

analysis and comparison, preparing and editing draft,

visualization have been done by first author. The

supervision, review of work and project administration, has

been done by second author.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] J. Dick, K. Jackson, and E. Hull, “Requirements

Engineering,” 3rd edn. Springer International

Publishing, pp. 1–32, 2017.

https://doi.org/10.1007/978-3-319-61073-3

[2] P. Talele and R. Phalnikar, “Machine learning-based

software requirements identification for a large number

of features,” International Journal of Computational

Systems Engineering, Vol. 6, pp. 255–260, 2021.

https://doi.org/10.1504/IJCSYSE.2021.123553

[3] B. Nuseibeh and S. Easterbrook, “Requirements

Engineering: A Roadmap,” Proceedings of the

Conference on The Future of Software Engineering, pp.

35–46, 2000.

https://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.p

df

[4] M. Batra and D. A. Bhatnagar, “Requirements

Prioritization: A Review,” International Journal of

Advanced Research in Science, Engineering and

Technology, Vol. 3, no. 11, pp. 2350–0328, 2016.

http://www.ijarset.com/upload/2016/november/6_IJA

RSET_monabatra.pdf

[5] R. Devadas and N. G. Cholli, “Multi aspects based

requirements prioritization for large scale software

using deep neural lagrange multiplier,” 2022

International Conference on Smart Technologies and

Systems for Next Generation Computing, pp. 1–6,

2022. https://ieeexplore.ieee.org/document/9761298

[6] A. Hudaib, R. Masadeh, and A. Alzaqebah, “WGW: A

Hybrid Approach Based on Whale and Grey Wolf

Optimization Algorithms for Requirements

Prioritization,” Advances in Systems Science and

Applications, Vol. 02, pp. 63–83, 2018.

https://doi.org/10.25728/assa.2018.18.2.576

[7] R. V. Anand and M. Dinakaran, “Handling stakeholder

conflict by agile requirement prioritization using

Apriori technique,” Computers & Electrical

Engineering, Vol. 61, 2017, pp. 126–136.

https://doi.org/10.1016/j.compeleceng.2017.06.022

[8] D. Singh and A. Sharma, “Software Requirement

Prioritization using Machine Learning,” SEKE, 2014,

Vancouver, Canada, pp. 701-704, July 2014.

[9] B. B. Jawale, G. K. Patnaik, and A. T. Bhole,

“Requirement Prioritization Using Adaptive Fuzzy

Hierarchical Cumulative Voting,” IEEE 7th

International Advance Computing Conference (IACC),

pp. 95–102, 2017,

https://doi.org/10.1109/IACC.2017.0034.

[10] F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A

semi- automated requirements prioritization method

based on preferences and dependencies,” Journal of

Systems and Software, Vol. 126, pp. 141–156, 2017.

https://doi.org/10.1016/j.jss.2016.09.04

[11] P. Talele and R. Phalnikar, “Classification and

Prioritisation of Software Requirements using Machine

Learning - A Systematic Review,” in 11th International

Conference on Cloud Computing, pp. 912–918, 2021.

https://doi.org/10.1109/Confluence51648.2021.93771

90

https://doi.org/10.1109/IACC.2017.0034
https://doi.org/10.1016/j.jss.2016.09.04

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 1211–1221 | 1221

[12] P. Talele and R. Phalnikar, “Multiple correlation based

decision tree model for classification of software

requirements,” International Journal of Computational

Science and Engineering, Vol. 26, No. 3, pp. 305-315,

2023. https://doi.org/10.1504/IJCSE.2023.131502

[13] D. Greer and D. W. Bustard, “SERUM - Software

Engineering Risk: Understanding and Management,”

The International Journal of Project & Business Risk,

Vol. 1, no. 4, pp. 373–388, 1997.

[14] Q. Ma, “The effectiveness of requirements

prioritization techniques for a medium to large number

of requirements: a systematic literature review,”

Auckland University of Technology. (Doctoral

dissertation, Auckland University of Technology),

2009.

[15] R. V. Anand and M. Dinakaran, “WhaleRank: an

optimisation based ranking approach for software

requirements prioritisation,” International Journal of

Environment and Waste Management, Vol. 21, pp. 1–

21, 2018. https://doi.org/10.1504/IJEWM.2018.091307

[16] R. Masadeh, A. Alzaqebah, and A. Hudaib, “Grey Wolf

Algorithm for Requirements Prioritization,” Modern

Applied Science, Vol. 12, 2018. https://doi.org/

10.5539/mas.v12n2p54

[17] F. Hujainah, R. Bakar, and A. B. Nasser, “SRPTackle:

A semi- automated requirements prioritisation

technique for scalable requirements of software system

projects,” Information and Software Technology, Vol.

131, pp. 106 501– 106 501, 2021.

https://doi.org/10.1016/j.infsof.2020.106501

[18] P. Avesani, C. Bazzanella, A. Perini and A. Susi,

“Facing scalability issues in requirements prioritization

with machine learning techniques,” 13th IEEE

International Conference on Requirements Engineering

RE’05, pp. 297–305, 2005.

https://doi.org/10.1109/RE.2005.30

[19] F. Hujainah, R. Bakar, M. A. Abdulgabber, and K. Z.

Zamli, “Software Requirements Prioritisation: A

Systematic Literature Review on Significance,

Stakeholders, Techniques and Challenges,” IEEE

Access, Vol. 6, pp. 71 497–71 523, 2018.

https://doi.org/ 10.1109/ACCESS.2018.2881755

[20] P. Talele and R. Phalnikar, “Software Requirements

Classification and Prioritisation Using Machine

Learning,” Machine Learning for Predictive Analysis,

pp. 257– 267, 2021. https://doi.org/ 10.1007/978-981-

15-7106-0_26

[21] S. Ruder, 2016. [Online].

[22] Available: https://arxiv.org/pdf/1609.04747.pdf

[23] D. Kingma and J. Ba, “Adam: A Method for Stochastic

Optimization,” International Conference on Learning

Representations, 2015.

https://doi.org/10.48550/arXiv.1412.6980

[24] S. Vijayakumar and S, “Use of Natural Language

Processing in Software Requirements Prioritization - A

Systematic Literature Review,” International Journal of

Applied Engineering and Management Letters, pp.

152–174, 2021.

https://doi.org/10.47992/IJAEML.2581.7000.0110

[25] J. Duchi, E. Hazan, and Y. Singer, “Adaptive

Subgradient Methods for Online Learning and

Stochastic Optimization,” Journal of Machine Learning

Research, Vol. 12, pp. 2121–2159, 2011.

https://jmlr.org/papers/v12/duchi11a.html

[26] [Online]. Available:

https://www.coursera.org/lecture/deep-neural-

network/rmsprop-BhJlm

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C.

Ohlsson, Björn Regnell, Anders Wesslén,

“Experimentation in Software Engineering,” Springer

Publishing Company, Incorporated, 2012.

https://doi.org/10.1007/978-1-4615-4625-2

[28] Prof. Barry Wiling. (2018). Identification of Mouth

Cancer laceration Using Machine Learning Approach.

International Journal of New Practices in Management

and Engineering, 7(03), 01 - 07.

https://doi.org/10.17762/ijnpme.v7i03.66

[29] Karthick, S. ., Shankar, P. V. ., Jayakumar, T. ., Suba,

G. M. ., Quadir, M. ., & Paul Roy, A. T. . (2023). A

Novel Approach for Integrated Shortest Path Finding

Algorithm (ISPSA) Using Mesh Topologies and

Networks-on-Chip (NOC). International Journal on

Recent and Innovation Trends in Computing and

Communication, 11(2s), 87–95.

https://doi.org/10.17762/ijritcc.v11i2s.6032

[30] Sharma, R., & Dhabliya, D. (2019). A review of

automatic irrigation system through IoT. International

Journal of Control and Automation, 12(6 Special

Issue), 24-29. Retrieved from www.scopus.com

