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Abstract: Software Testing is an essential activity primarily to check the quality of the software. Software testing is necessary for checking 

the gap between the expectations of the requirements stated by the client and the functionalities of the software after the implementation. 

Testing is becoming an important milestone in the process of developing software. Executing tests is a crucial phase of project development. 

The testing process for software uses a lot of testing resources, including tester, the quantity of test cases run, and processor time. Software 

quality is becoming more important in today's competitive market. Software testing is the process of identifying faults in all sophisticated 

application software that is put through several programming phases. Software testing helps to identify potential bugs and errors in the 

software being developed. Longer software testing does not mean more reliable software. Optimal code should also be closed to ensure 

high software quality. Due to its complex nature, it is difficult to remove all bugs in software. Also called error correction. Defect generation 

is defined as the occurrence of defects in software that cause future generations. Software reliability is the capacity to operate poorly in a 

particular context under specific circumstances. The goal of a software reliability optimization model is to quantify the factors that influence 

the software's dependability, most notably the quantity of residual defects, application failure percentage, and software reliability. The 

software reliability development model is designed to identify software errors and deficiencies in the process of software implementation. 

In the existing Software Reliability Development model, sometimes the testing method fails to remove defects and defects and does not 

find the value of the software. Exam assessment is the assessment of efforts and grades using various methods, tools, and techniques at the 

chosen exam level. A misguided testing effort usually results in insufficient testing, which will cause the software system to fail after it is 

deployed to the organization. The most important problem in software testing is evaluation, which is inevitable, but usually done in a hurry, 

and those responsible only wait for the simplest. 

Keywords -software testing, software reliability testing coverage, test point analysis, function point analysis 

1. Introduction  

Testing is a crucial activity to make sure code quality. Huge 

organizations will have many development groups with their 

product being a full test group. Team managers should be 

able to properly set up their schedules and associated 

resources and estimates for the needed execution effort will 

be an extra criterion for choice since effort could be 

restrictive in following. An honest execution effort 

estimation approach will profit each tester code comes 

[1],[2],[3]. There's an estimation model associated with 

expertise a primarily based approach for execution effort 

[4][5][6]. 

Software Reliability is the likelihood of failure-free 

functioning in a particular environment, throughout a 

particular time period, and under a particular set of 

circumstances.[7][8] Growth in Software Reliability Models 

are created to calculate software reliability metrics like the 

amount of unresolved bugs, the percentage of software that 

fails, and software reliability. [9][10]. 

Software testing is the process of finding flaws in all 

sophisticated computer programmes as they move through 

the stages of the software building cycle[11][12]. 

programme testing aids in finding any defects and mistakes 

in the programme that has been created. Longer software 

testing does not mean more secure software. Optimal code 

should also be closed to ensure high software quality. Due 

to its complex nature, it is difficult to remove all bugs in 

software. It is also called error correction [13][14][15]. 

Defect generation is defined as the occurrence of defects in 

software that cause future generations. 

1Bharati Vidyapeeth (Deemed to be University) College of Engineering, 

Pune, Maharashtra, India 
2Associate Professor, Department of CSE, School of Computing, Mohan 

Babu University,  

Tirupati, Andhra Pradesh 
3Department of Computer Engineering and Application, GLA University, 

Mathura 
4Department of EC Engineering, Saveetha School of Engineering, Saveetha 

Institute of Medical and Technical Sciences, 

 Saveetha University, Chennai, Tamilnadu. 

deepakarun@saveetha.com  
5Assistant Professor, Department of Computer Science and Engineering, 

Graphic Era Deemed to be University, 

 Dehradun, Uttarakhand 
6Associate Professor, Department of Computer Science and Engineering, 

NITTE (Deemed to be University),  

NMAM Institute of Technology, NITTE – 574110, Karnataka 
7Bharati Vidyapeeth (Deemed to be University) College of Engineering, 

Pune, Maharashtra, India 

vhpatil@bvucoep.edu.in  

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 |  39 

Test evaluation consists of evaluating effort and value using 

several methods, tools, and techniques at the selected test 

level. Mistaking the testing effort usually leads to 

insufficient testing, which in turn will cause the software 

systems to fail after they are deployed to the organization 

[16][17][18]. Evaluation, the most important task in 

software testing, is an unavoidable task, but it is usually 

carried out in a hurry, and those responsible expect only the 

simplest [19][20][21]. 

Wherever the most faults can occur, inputs and program 

components are the focus of tests. Defects are the major 

objective of testing, and they are typically promptly 

discovered by a variety of testing disciplines. The 

relationships between effort, schedule, and quality must be 

in harmony [22][23][24]. It is generally acknowledged that 

calculating only one of each of these aspects without taking 

the others into account may result in inaccurate estimates 

[25][26][27]. Traditional estimating models are created 

using fixed inputs and fixed outputs along with linear or 

nonlinear multivariate analysis. 

2. Problem Definition and Research Approach:  

To overview the research literature to trace limitations of 

existing Software Reliability Growth Models. To make the 

testing phase more powerful, there is a need of capturing the 

cumulative impact of testing time, testing coverage & 

testing efforts in the testing phase the of software 

development life cycle [28]. The proposed system Includes 

the collective effect of testing time, testing coverage, and 

testing efforts [29]. In that Testing time, testing coverage 

and functional point analysis are the code and give the 

suggestions to how to improve the performance of the 

software, and Testing Efforts are mainly used to provide 

accuracy in the cost of that software [30][31][32]. 

So, our problem definition is “Analysis and Design of 

Software Reliability Growth Model concurrence with 

Software Development Life Cycle” [33

3. Methodology in Proposed Research Work: 

 

Fig. 1 Software Reliability Growth Model  

Level 1 Input Software code to Software Reliability Growth 

Model: 

Provides the input for the model in the form of the source 

code of the project. The code is stored in the form of a 

suitable data structure for further processing [34][35]. 

Level 2 Exam Time and Exam Period: 

First, no line of code analysis, empty lines. Second, 

decision-making structures are identified and converted into 

numeric representations [36][37]. The cut-off for all classes 

has started. Finally, the procedure finds a weighted method 

with a functional description [38][39]. 

Level 3 - Analysis of the Function Points: 

This level of deep code analysis is done to find the 

complexity of the software through functional analysis. In 

the function point analysis, the total effort is considered. 

Several objects were initialized with full code [40][41]. This 

value is compared to the recommended object limit. In 

addition, all class attributes are calculated [42][43]. Finally, 

the method functions written in the class is found, and these 

values are also calculated against the limit set. Finally, if the 

threshold is violated, the proposal is notified [44][45]. 

Level 4 -Analysis of the Test Points: 

We focus mainly on the accuracy of software cost estimates. 

We bring that software complexity to the Basic COCOMO 

Model [46][47]. The complexity depends on the parameters 

such as Method, Boolean expression, object, line of code, 

and procedure environment [48][49]. 
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3.1 Research Module: 

3.1.1 Module-I 

The Testing Time, Testing Environment, and [50] [51] 

Analysis of the Function Points: 

In Module, I, the reliability of the project installed in the 

system is analysed to identify recommendations for 

improving reliability using threshold values [51][52][53]. 

Exam Time and Exam Environment: 

Inhomogeneous Poison Process (EHPP): 

• Test time: Also called Calendar time or central processing 

unit time [54]. 

• Test coverage: Predicting the reliability of the software is 

ensured using the testing environment [55]. 

Software developers use Test Coverage to assess the quality 

of software being tested and to help identify additional 

efforts needed to improve software reliability [56]. 

Cost of evacuation: 

Default values are defined in functional testing and analysis 

environments. Refuge prices are quoted from researchers 

and industry experts[57][58][59]. 

Cost estimates depend on experience gained from the last 

project and historical data. When calculating the threshold 

value, the indicators considered in the sector are also 

considered[60][61][62]. Threshold values are monitored and 

updated through team experience and various 

processes[63][64]. 

Test size: 

Coverage of the Statement: # of lines in the program. The 

threshold for the split is decided depending on the lines[65]. 

Coverage of the Conditions:  Determines whether the 

Boolean expression tested in the control structure is true or 

false. If the Boolean expression is larger than the range limit, 

it is necessary to divide the Boolean expression[66][67]. 

• Procedure Coverage: Provides multiple procedures defined 

by Software Reliability Development Models (SRGM). It 

also advises the user if none of the procedures and functions 

exceeds the value set as threshold[68][69]. 

Function Point Analysis: 

FPA i.e. function point analysis is a method of measuring 

the size of a computer application program using the 

complexity of the program point function[70]. 

• Count the number of objects in a class: The total number 

of objects in a class is determined as[71][72], Count the 

number of objects in a class for a given project for the 

system, and also count the number of attributes of that class. 

It is suggested to split the class if the total number of 

attributes in the class overshoots the limit. 

• cover: Shows the number of valid paths available in tree. 

• Estimate size of the project: In this step, Comments, lines 

of code, spaces etc counts and comments in the project and 

finally finds the total size of the application program. 

The above methodology helps to find out the reliability and 

suggestions to improve the reliability of the software. When 

developers modify the software code using the 

recommendations provided by the system, and due to this 

the accuracy of the application increases. 

Mathematical model of the test environment: 

A non-uniform poison process for testing test coefficients: 

The algebraic expression represents the quantitative 

stimulus from the mathematical model software analysis. 

Block coverage: Block coverage is the total count of blocks 

processed by the test case. 

Branch Branches: the total number of branches executed 

by the test case 

Block coverage

=
Test case covered by the No. of the blocks  

Total no of the blocks Available in Code
 

Test Case1:  

 

Where, 

where 

α1: The number of defects  

t0 & t1: start time and end time  

C1 is the cover function in the time interval t0 ≤ t < t1 

Test Case 2: 

 

Where, 

α2 : No. of faults  

C2 is the coverage function  

Resulting Test Case: 

 

Where, 

 a is total no of faults 
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Cn is coverage function over interval time tn-1 ≤ t <tn 

Advance ENHPP Model: 

 

Where α: Actual faults in software 

3.1.2 Module-II 

Test Point Analysis: 

Determine the project's challenges using a number of 

characteristics, then communicate these challenges to 

COCOMO so that it can calculate the cost of this software 

programme. 

TPA concentrate on the accuracy of software cost estimates. 

COCOMO provides software complexity for Models. 

Complexity mainly depends on five parameters including 

Method, Encapsulation, Object, Code Line, Environmental 

Procedure 

A advance SRGM for cost estimation is: E = Complexity *  

ai(KLoC) (bi)  

Where E represents the effort completed man-months, 

KLoC indicates the number of 1000 lines of code executed, 

ci, bi, and ai are Constant values.

 

Table 3.1: COCOMO - Constant Values  

Application 

Program 

ai bi ci di 

Embedded 3.6 1.20 2.5 0.32 

Semi-

Detached 

3.00 1.120 2.51 0.350 

Organic 2.4 1.05 2.5 0.38 

The analysis of 30 projects has been performed to determine 

the high and low values. The KLoC of the project is shown 

in the table below 

Difficulty: Small: 0.74, Big: 1.24. 

Precision in pricing: 

It is difficult to determine how many difficulties there are in 

the software because COCOMO does not identify the actual 

challenges; rather, it uses KLoC to help identify the 

business. However, the proposed model analyses the 

complexity and provides that complexity to COCOMO, 

which aids in achieving the business and accuracy during 

development and productivity.

Table 3.2:  High and Low Range of Complexity 

KLOC. Parameters Complexities 

Low Values High Values 

 

 

 

 

1-60 

Procedure Coverage  0-25 <25 

Objects 0-45 <45 

Code Lines 0-6000 <6000 

Methods  0-60 <60 

D Coverage 0-25 <25 
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51-300 

Methods 60-130 <130 

Procedure Coverage  31-60 <60 

Class Objects 56-110 <110 

D Coverage 31-75 <75 

Code Lines  6000-61000 <61000 

 

 

 

Above 300 

Procedure Coverage  61-110 <110 

Code Lines 4 lacks <4 lacks 

D Coverage 36-100 <100 

Objects 101-150 <150 

Methods  121-180 <180 

 

The comparison between Basic COCOMO and the 

proposed model is as mentioned below: 

The Low Complexity: 

◼ COCOMO Model (Basic): Z=bi(KLoC) (ai) 

Total KLOC= 5310/1000 

                   = 5.310 

Efforts: Z[i]= b[i]* (KLoC) (ai) 

                    = ( 2.4 )* (5.310 (1.05) ) 

                    = 13.85 Man required  

Development is: D[i]=( c[i])*( Z[i] (di)) 

                              = 2.5*13.85.38 

                              = 6.78 Months 

Productivity is: P[i]=KLoC/Z[i] 

                            =5.310/13.85 

                            = 0.383 Per month  

◼ Proposed Model: E= Complexity* ai(KLoC) (bi) 

KLOC= 5310/1000 

                   = 5.310 

Efforts are : E[i]= Complexity * a[i]* (KLoC) (bi) 

                           = 2.4* 5.310 (1.05)  * 0.74 

                           = 10.24 Man-Month 

 Development is: D[i]= ( c[i])* (E[i] (di)) 

                               = 2.5*10.24.38 

                               = 06.150 months 

 Productivity is: P[i]=(KLoC/E[i]) 

                             =(5.310/10.24) 

                             = 0.521 Per month  

The Large Difficulties: 

◼ COCOMO Model is : Z=ai(KLoC) (bi) 

KLOC= 15420/1000 

                  = 15.420 

Efforts are: (E[i])= (a[i]* (KLoC) (bi)) 

                   = 2.4* 15.420 (1.05) 

                   = 42.43 Man per Month 

 Development is : D[I ]=c[i]* E[i] (di) 

                                = 2.5*42.430.38 

                                = 10.38 Months 

 Productivity is: P[i]=KLoC/E[i] 

                             =15.420/42.43 

                             = 0.363 Per month  

◼ Advance Model is : E= Complexity* ai(KLoC) (bi) 

KLOC= 15420/1000 
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                  = 15.420 

Efforts are : E[i]= Complexity* a[i]* (KLoC) (bi) 

                    =1.24* 2.4* 15.420 (1.05)   

                    = 52.61 Man-Month 

 Development is : D[i]= (E[i]) (di) * ( c[i]) 

                               = 52.610.38 *2.5 

                               = 11.25 Months 

 Productivity: P[i]= (KLoC)/(E[i]) 

                             =(15.420/52.61) 

                             = 0.293 Per month  

4. Results & Discussion: 

Screen: Testing Time & Testing Coverage 

Description: This screen contains four tabs for analysis 

performed for the software lines. The first tab gives input for 

the process. The browse tab is used to select a specific 

system folder as shown in the following figure.

  

 

Fig 2: Browse the Software Project in our Model 

Screen: Decision Screen 

Description: This screen shows the Counts for the quantity of Boolean expressions executed in the project. 

 

Fig.3: Find out the Decision Coverage  

Display: Procedure screen 

Description: This screen shows Count of  the number of methods for each class in the project 

 

Fig 4: Find out the Procedure Coverage 
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Display: Count the number of class objects. 

Description: On this screen, a count of several objects of every class of the software is displayed. If greater than 10 objects 

are present in the project, then it gives suggestions to the user. 

 

Fig 5: Find out the Object per Class 

Screening: Calculate the coverage of the path 

Description: When we click the button of the option path to view the path, it gives the file direction, class, values of metric  

metric, range, class name. 

 

Fig 6: Find out Path Coverage 

Screen: Determine the project size 

description: Finally, it helps to know the total scope of the project 

 

Fig 7: Find out the total size of the project. 
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5. Resultant Graphs: 

 

 

Fig 8: Before and after using Threshold values 

The above graph represents the result of the analysis of the 

project. The bias in the results was greater, before using the 

threshold value indicating a higher software complexity. 

After using the threshold value and updating the project 

based on the recommendations given, it determines that the 

deviation in the results is not compared to before using the 

threshold value, so when the developer uses this system for 

his project, it shows that the reliability of the software is 

higher than other systems exist.  

5.1 Analysis of test point analysis results: 

Comparison in three orders: 

1) Embedded: Developed under strict constraints. A 

combination of organic and semi-structured projects. 

2) Organic arrangement: Small group with good experience 

3) Semi-Detached: Medium group with mixed experience

Table 4.1: The Big Complexity Project comparative 

COCOMO Proposed 

  KLoC= 7.729 KLoC= 7.729 
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Semi-detached 8.19 0.26 29.72 8.86 0.2 37.15 

Organic Mode 7.89 0.37 20.26 8.59 0.3 25.75 

 

Table 4.2: The Small Complexity Project comparative 

COCOMO Proposed 

  KLoC=3.327 KLoC=3.327 
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Organic Mode 5.63 0.39 8.47 5.04 0.52 6.35 

Semi-detached 5.38 0.28 11.52 5.31 0.38 8.64 
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In the table above, a low-complexity project has been 

compared with a high-complexity project with low effort 

and high effort, COCOMO, but only needs to provide 

accuracy to determine whether the increase or decrease in 

the cost of the project depends on the complexity of the 

project. 

 

Fig 9: Comparison Graph for Small Complexity 

We used COCOMO to analyse the outcomes of the 

less complexity project because COCOMO required less 

work and time, and it enhance productivity. 

We analyzed the results with COCOMO in projects of high 

complexity because effort and time increased and the 

performance was lower than COCOMO because the 

software was very complex, even so confirmed the accuracy 

of the software cost estimate. 

6. Conclusion: 

The researcher was inadequate to develop a advanced software 

reliability growth model (SRGM), containing several 

framework such as test time, test environment, operational 

point analysis, and check point analysis. Whereas the 

execution of the Reliability Development Model assist to 

define reliability and provides recommendations on how to 

improve software reliability. SRGM can calculate project costs 

that cannot be calculated in a reliable software development 

model. 

Academic research activities along with development 

activities can be studied with the help of SRGM design. By 

considering the price of refugees, the indicators used for the 

development of the sector are taken into account. Group rates 

are monitored, and they are updated based on the group's 

experience and the various activities used. 

Growth’s proposed software reliability model is also useful in 

interdisciplinary research projects and consulting work.

Fig 10: Comparison Graph for High Complexity 
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