

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 38

Design of Software Reliability Growth Model for Improving Accuracy

in the Software Development Life Cycle (SDLC)

1Amol K. Kadam, 2Dr. Konda Hari Krishna, 3Neeraj Varshney, 4A. Deepak, 5Hemant Singh Pokhariya,
6Dr. Sandeep Kumar Hegde, 7Dr. Vinod H. Patil

Submitted: 24/06/2023 Revised: 06/08/2023 Accepted: 29/08/2023

Abstract: Software Testing is an essential activity primarily to check the quality of the software. Software testing is necessary for checking

the gap between the expectations of the requirements stated by the client and the functionalities of the software after the implementation.

Testing is becoming an important milestone in the process of developing software. Executing tests is a crucial phase of project development.

The testing process for software uses a lot of testing resources, including tester, the quantity of test cases run, and processor time. Software

quality is becoming more important in today's competitive market. Software testing is the process of identifying faults in all sophisticated

application software that is put through several programming phases. Software testing helps to identify potential bugs and errors in the

software being developed. Longer software testing does not mean more reliable software. Optimal code should also be closed to ensure

high software quality. Due to its complex nature, it is difficult to remove all bugs in software. Also called error correction. Defect generation

is defined as the occurrence of defects in software that cause future generations. Software reliability is the capacity to operate poorly in a

particular context under specific circumstances. The goal of a software reliability optimization model is to quantify the factors that influence

the software's dependability, most notably the quantity of residual defects, application failure percentage, and software reliability. The

software reliability development model is designed to identify software errors and deficiencies in the process of software implementation.

In the existing Software Reliability Development model, sometimes the testing method fails to remove defects and defects and does not

find the value of the software. Exam assessment is the assessment of efforts and grades using various methods, tools, and techniques at the

chosen exam level. A misguided testing effort usually results in insufficient testing, which will cause the software system to fail after it is

deployed to the organization. The most important problem in software testing is evaluation, which is inevitable, but usually done in a hurry,

and those responsible only wait for the simplest.

Keywords -software testing, software reliability testing coverage, test point analysis, function point analysis

1. Introduction

Testing is a crucial activity to make sure code quality. Huge

organizations will have many development groups with their

product being a full test group. Team managers should be

able to properly set up their schedules and associated

resources and estimates for the needed execution effort will

be an extra criterion for choice since effort could be

restrictive in following. An honest execution effort

estimation approach will profit each tester code comes

[1],[2],[3]. There's an estimation model associated with

expertise a primarily based approach for execution effort

[4][5][6].

Software Reliability is the likelihood of failure-free

functioning in a particular environment, throughout a

particular time period, and under a particular set of

circumstances.[7][8] Growth in Software Reliability Models

are created to calculate software reliability metrics like the

amount of unresolved bugs, the percentage of software that

fails, and software reliability. [9][10].

Software testing is the process of finding flaws in all

sophisticated computer programmes as they move through

the stages of the software building cycle[11][12].

programme testing aids in finding any defects and mistakes

in the programme that has been created. Longer software

testing does not mean more secure software. Optimal code

should also be closed to ensure high software quality. Due

to its complex nature, it is difficult to remove all bugs in

software. It is also called error correction [13][14][15].

Defect generation is defined as the occurrence of defects in

software that cause future generations.

1Bharati Vidyapeeth (Deemed to be University) College of Engineering,

Pune, Maharashtra, India
2Associate Professor, Department of CSE, School of Computing, Mohan

Babu University,

Tirupati, Andhra Pradesh
3Department of Computer Engineering and Application, GLA University,

Mathura
4Department of EC Engineering, Saveetha School of Engineering, Saveetha

Institute of Medical and Technical Sciences,

 Saveetha University, Chennai, Tamilnadu.

deepakarun@saveetha.com
5Assistant Professor, Department of Computer Science and Engineering,

Graphic Era Deemed to be University,

 Dehradun, Uttarakhand
6Associate Professor, Department of Computer Science and Engineering,

NITTE (Deemed to be University),

NMAM Institute of Technology, NITTE – 574110, Karnataka
7Bharati Vidyapeeth (Deemed to be University) College of Engineering,

Pune, Maharashtra, India

vhpatil@bvucoep.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 39

Test evaluation consists of evaluating effort and value using

several methods, tools, and techniques at the selected test

level. Mistaking the testing effort usually leads to

insufficient testing, which in turn will cause the software

systems to fail after they are deployed to the organization

[16][17][18]. Evaluation, the most important task in

software testing, is an unavoidable task, but it is usually

carried out in a hurry, and those responsible expect only the

simplest [19][20][21].

Wherever the most faults can occur, inputs and program

components are the focus of tests. Defects are the major

objective of testing, and they are typically promptly

discovered by a variety of testing disciplines. The

relationships between effort, schedule, and quality must be

in harmony [22][23][24]. It is generally acknowledged that

calculating only one of each of these aspects without taking

the others into account may result in inaccurate estimates

[25][26][27]. Traditional estimating models are created

using fixed inputs and fixed outputs along with linear or

nonlinear multivariate analysis.

2. Problem Definition and Research Approach:

To overview the research literature to trace limitations of

existing Software Reliability Growth Models. To make the

testing phase more powerful, there is a need of capturing the

cumulative impact of testing time, testing coverage &

testing efforts in the testing phase the of software

development life cycle [28]. The proposed system Includes

the collective effect of testing time, testing coverage, and

testing efforts [29]. In that Testing time, testing coverage

and functional point analysis are the code and give the

suggestions to how to improve the performance of the

software, and Testing Efforts are mainly used to provide

accuracy in the cost of that software [30][31][32].

So, our problem definition is “Analysis and Design of

Software Reliability Growth Model concurrence with

Software Development Life Cycle” [33

3. Methodology in Proposed Research Work:

Fig. 1 Software Reliability Growth Model

Level 1 Input Software code to Software Reliability Growth

Model:

Provides the input for the model in the form of the source

code of the project. The code is stored in the form of a

suitable data structure for further processing [34][35].

Level 2 Exam Time and Exam Period:

First, no line of code analysis, empty lines. Second,

decision-making structures are identified and converted into

numeric representations [36][37]. The cut-off for all classes

has started. Finally, the procedure finds a weighted method

with a functional description [38][39].

Level 3 - Analysis of the Function Points:

This level of deep code analysis is done to find the

complexity of the software through functional analysis. In

the function point analysis, the total effort is considered.

Several objects were initialized with full code [40][41]. This

value is compared to the recommended object limit. In

addition, all class attributes are calculated [42][43]. Finally,

the method functions written in the class is found, and these

values are also calculated against the limit set. Finally, if the

threshold is violated, the proposal is notified [44][45].

Level 4 -Analysis of the Test Points:

We focus mainly on the accuracy of software cost estimates.

We bring that software complexity to the Basic COCOMO

Model [46][47]. The complexity depends on the parameters

such as Method, Boolean expression, object, line of code,

and procedure environment [48][49].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 40

3.1 Research Module:

3.1.1 Module-I

The Testing Time, Testing Environment, and [50] [51]

Analysis of the Function Points:

In Module, I, the reliability of the project installed in the

system is analysed to identify recommendations for

improving reliability using threshold values [51][52][53].

Exam Time and Exam Environment:

Inhomogeneous Poison Process (EHPP):

• Test time: Also called Calendar time or central processing

unit time [54].

• Test coverage: Predicting the reliability of the software is

ensured using the testing environment [55].

Software developers use Test Coverage to assess the quality

of software being tested and to help identify additional

efforts needed to improve software reliability [56].

Cost of evacuation:

Default values are defined in functional testing and analysis

environments. Refuge prices are quoted from researchers

and industry experts[57][58][59].

Cost estimates depend on experience gained from the last

project and historical data. When calculating the threshold

value, the indicators considered in the sector are also

considered[60][61][62]. Threshold values are monitored and

updated through team experience and various

processes[63][64].

Test size:

Coverage of the Statement: # of lines in the program. The

threshold for the split is decided depending on the lines[65].

Coverage of the Conditions: Determines whether the

Boolean expression tested in the control structure is true or

false. If the Boolean expression is larger than the range limit,

it is necessary to divide the Boolean expression[66][67].

• Procedure Coverage: Provides multiple procedures defined

by Software Reliability Development Models (SRGM). It

also advises the user if none of the procedures and functions

exceeds the value set as threshold[68][69].

Function Point Analysis:

FPA i.e. function point analysis is a method of measuring

the size of a computer application program using the

complexity of the program point function[70].

• Count the number of objects in a class: The total number

of objects in a class is determined as[71][72], Count the

number of objects in a class for a given project for the

system, and also count the number of attributes of that class.

It is suggested to split the class if the total number of

attributes in the class overshoots the limit.

• cover: Shows the number of valid paths available in tree.

• Estimate size of the project: In this step, Comments, lines

of code, spaces etc counts and comments in the project and

finally finds the total size of the application program.

The above methodology helps to find out the reliability and

suggestions to improve the reliability of the software. When

developers modify the software code using the

recommendations provided by the system, and due to this

the accuracy of the application increases.

Mathematical model of the test environment:

A non-uniform poison process for testing test coefficients:

The algebraic expression represents the quantitative

stimulus from the mathematical model software analysis.

Block coverage: Block coverage is the total count of blocks

processed by the test case.

Branch Branches: the total number of branches executed

by the test case

Block coverage

=
Test case covered by the No. of the blocks

Total no of the blocks Available in Code

Test Case1:

Where,

where

α1: The number of defects

t0 & t1: start time and end time

C1 is the cover function in the time interval t0 ≤ t < t1

Test Case 2:

Where,

α2 : No. of faults

C2 is the coverage function

Resulting Test Case:

Where,

 a is total no of faults

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 41

Cn is coverage function over interval time tn-1 ≤ t <tn

Advance ENHPP Model:

Where α: Actual faults in software

3.1.2 Module-II

Test Point Analysis:

Determine the project's challenges using a number of

characteristics, then communicate these challenges to

COCOMO so that it can calculate the cost of this software

programme.

TPA concentrate on the accuracy of software cost estimates.

COCOMO provides software complexity for Models.

Complexity mainly depends on five parameters including

Method, Encapsulation, Object, Code Line, Environmental

Procedure

A advance SRGM for cost estimation is: E = Complexity *

ai(KLoC) (bi)

Where E represents the effort completed man-months,

KLoC indicates the number of 1000 lines of code executed,

ci, bi, and ai are Constant values.

Table 3.1: COCOMO - Constant Values

Application

Program

ai bi ci di

Embedded 3.6 1.20 2.5 0.32

Semi-

Detached

3.00 1.120 2.51 0.350

Organic 2.4 1.05 2.5 0.38

The analysis of 30 projects has been performed to determine

the high and low values. The KLoC of the project is shown

in the table below

Difficulty: Small: 0.74, Big: 1.24.

Precision in pricing:

It is difficult to determine how many difficulties there are in

the software because COCOMO does not identify the actual

challenges; rather, it uses KLoC to help identify the

business. However, the proposed model analyses the

complexity and provides that complexity to COCOMO,

which aids in achieving the business and accuracy during

development and productivity.

Table 3.2: High and Low Range of Complexity

KLOC. Parameters Complexities

Low Values High Values

1-60

Procedure Coverage 0-25 <25

Objects 0-45 <45

Code Lines 0-6000 <6000

Methods 0-60 <60

D Coverage 0-25 <25

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 42

51-300

Methods 60-130 <130

Procedure Coverage 31-60 <60

Class Objects 56-110 <110

D Coverage 31-75 <75

Code Lines 6000-61000 <61000

Above 300

Procedure Coverage 61-110 <110

Code Lines 4 lacks <4 lacks

D Coverage 36-100 <100

Objects 101-150 <150

Methods 121-180 <180

The comparison between Basic COCOMO and the

proposed model is as mentioned below:

The Low Complexity:

◼ COCOMO Model (Basic): Z=bi(KLoC) (ai)

Total KLOC= 5310/1000

 = 5.310

Efforts: Z[i]= b[i]* (KLoC) (ai)

 = (2.4)* (5.310 (1.05))

 = 13.85 Man required

Development is: D[i]=(c[i])*(Z[i] (di))

 = 2.5*13.85.38

 = 6.78 Months

Productivity is: P[i]=KLoC/Z[i]

 =5.310/13.85

 = 0.383 Per month

◼ Proposed Model: E= Complexity* ai(KLoC) (bi)

KLOC= 5310/1000

 = 5.310

Efforts are : E[i]= Complexity * a[i]* (KLoC) (bi)

 = 2.4* 5.310 (1.05) * 0.74

 = 10.24 Man-Month

 Development is: D[i]= (c[i])* (E[i] (di))

 = 2.5*10.24.38

 = 06.150 months

 Productivity is: P[i]=(KLoC/E[i])

 =(5.310/10.24)

 = 0.521 Per month

The Large Difficulties:

◼ COCOMO Model is : Z=ai(KLoC) (bi)

KLOC= 15420/1000

 = 15.420

Efforts are: (E[i])= (a[i]* (KLoC) (bi))

 = 2.4* 15.420 (1.05)

 = 42.43 Man per Month

 Development is : D[I]=c[i]* E[i] (di)

 = 2.5*42.430.38

 = 10.38 Months

 Productivity is: P[i]=KLoC/E[i]

 =15.420/42.43

 = 0.363 Per month

◼ Advance Model is : E= Complexity* ai(KLoC) (bi)

KLOC= 15420/1000

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 43

 = 15.420

Efforts are : E[i]= Complexity* a[i]* (KLoC) (bi)

 =1.24* 2.4* 15.420 (1.05)

 = 52.61 Man-Month

 Development is : D[i]= (E[i]) (di) * (c[i])

 = 52.610.38 *2.5

 = 11.25 Months

 Productivity: P[i]= (KLoC)/(E[i])

 =(15.420/52.61)

 = 0.293 Per month

4. Results & Discussion:

Screen: Testing Time & Testing Coverage

Description: This screen contains four tabs for analysis

performed for the software lines. The first tab gives input for

the process. The browse tab is used to select a specific

system folder as shown in the following figure.

Fig 2: Browse the Software Project in our Model

Screen: Decision Screen

Description: This screen shows the Counts for the quantity of Boolean expressions executed in the project.

Fig.3: Find out the Decision Coverage

Display: Procedure screen

Description: This screen shows Count of the number of methods for each class in the project

Fig 4: Find out the Procedure Coverage

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 44

Display: Count the number of class objects.

Description: On this screen, a count of several objects of every class of the software is displayed. If greater than 10 objects

are present in the project, then it gives suggestions to the user.

Fig 5: Find out the Object per Class

Screening: Calculate the coverage of the path

Description: When we click the button of the option path to view the path, it gives the file direction, class, values of metric

metric, range, class name.

Fig 6: Find out Path Coverage

Screen: Determine the project size

description: Finally, it helps to know the total scope of the project

Fig 7: Find out the total size of the project.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 45

5. Resultant Graphs:

Fig 8: Before and after using Threshold values

The above graph represents the result of the analysis of the

project. The bias in the results was greater, before using the

threshold value indicating a higher software complexity.

After using the threshold value and updating the project

based on the recommendations given, it determines that the

deviation in the results is not compared to before using the

threshold value, so when the developer uses this system for

his project, it shows that the reliability of the software is

higher than other systems exist.

5.1 Analysis of test point analysis results:

Comparison in three orders:

1) Embedded: Developed under strict constraints. A

combination of organic and semi-structured projects.

2) Organic arrangement: Small group with good experience

3) Semi-Detached: Medium group with mixed experience

Table 4.1: The Big Complexity Project comparative

COCOMO Proposed

 KLoC= 7.729 KLoC= 7.729

T
im

e

P
ro

d
u

ct
iv

it
y

E
ff

o
rt

T
im

e

P
ro

d
u

ct
iv

it
y

E
ff

o
rt

Semi-detached 8.19 0.26 29.72 8.86 0.2 37.15

Organic Mode 7.89 0.37 20.26 8.59 0.3 25.75

Table 4.2: The Small Complexity Project comparative

COCOMO Proposed

 KLoC=3.327 KLoC=3.327

T
im

e

P
ro

d
u

ct
iv

it
y

E
ff

o
rt

T

im
e

P
ro

d
u

ct
iv

it
y

E
ff

o
rt

Organic Mode 5.63 0.39 8.47 5.04 0.52 6.35

Semi-detached 5.38 0.28 11.52 5.31 0.38 8.64

0

0 1 2 3 4

N
O

 O
F

TH
E

FA
U

LT
S

EXECUTION TIME (IN MIN)

Before

statement coverage Decision coverage

Procedure Coverage Path Covergae

Object of Class

0

0 1 2 3 4

N
O

 O
F

FA
U

LT
S

EXECUTION TIME (IN MIN)

After

statement coverage Decision coverage

Procedure Coverage Path Covergae

Object of Class

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 46

In the table above, a low-complexity project has been

compared with a high-complexity project with low effort

and high effort, COCOMO, but only needs to provide

accuracy to determine whether the increase or decrease in

the cost of the project depends on the complexity of the

project.

Fig 9: Comparison Graph for Small Complexity

We used COCOMO to analyse the outcomes of the

less complexity project because COCOMO required less

work and time, and it enhance productivity.

We analyzed the results with COCOMO in projects of high

complexity because effort and time increased and the

performance was lower than COCOMO because the

software was very complex, even so confirmed the accuracy

of the software cost estimate.

6. Conclusion:

The researcher was inadequate to develop a advanced software

reliability growth model (SRGM), containing several

framework such as test time, test environment, operational

point analysis, and check point analysis. Whereas the

execution of the Reliability Development Model assist to

define reliability and provides recommendations on how to

improve software reliability. SRGM can calculate project costs

that cannot be calculated in a reliable software development

model.

Academic research activities along with development

activities can be studied with the help of SRGM design. By

considering the price of refugees, the indicators used for the

development of the sector are taken into account. Group rates

are monitored, and they are updated based on the group's

experience and the various activities used.

Growth’s proposed software reliability model is also useful in

interdisciplinary research projects and consulting work.

Fig 10: Comparison Graph for High Complexity

References

[1] Beldar, Kavita K., M. D. Gayakwad, and M. K. Beldar.

2016. “Optimizing Analytical Queries on Probabilistic

Databases with Unmerged Duplicates Using

MapReduce.” Int. J. Innov. Res. Comput. Commun.

Eng 4: 9651–59.

[2] Beldar, Kavita K., M. D. Gayakwad, Debnath

Bhattacharyya, and Hye-Jin Kim. 2016a. “Query

Evaluation on Probabilistic Databases Using Indexing

and MapReduce.” International Journal of Database

Theory and Application 9 (10): 363–78.

[3] Beldar, Kavita K., M. D. Gayakwad, Debnath

Bhattacharyya, and Tai-Hoon Kim. 2016b. “A

Comparative Analysis on Contingence Structured Data

Methodologies.” International Journal of Software

Engineering and Its Applications 10 (5): 13–22.

[4] Beldar, Miss Menka K., M. D. Gayakwad, and Miss

Kavita K. Beldar. 2018. “Altruistic Content Voting

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 47

System Using Crowdsourcing.” International Journal

of Scientific Research and Review 7 (5): 477–86.

[5] Beldar, Miss Menka K., M. D. Gayakwad, Miss

Kavita K. Beldar, and M. K. Beldar. 2018. “Survey on

Classification of Online Reviews Based on Social

Networking.” IJFRCSCE 4 (3): 55.

[6] Boukhari, Mahamat Adam, Prof Milnid Gayakwad,

and Prof Dr Suhas Patil. 2019. “Survey on

Inappropriate Content Detection in Online Social

Media.” International Journal of Innovative Research

in Science, Engineering, and Technology 8 (9): 9297–

9302.

[7] Gayakwad, M. D., and B. D. Phulpagar. 2013.

“Research Article Review on Various Searching

Methodologies and Comparative Analysis for Re-

Ranking the Searched Results.” International Journal

of Recent Scientific Research 4: 1817–20.

[8] Gayakwad, Milind. 2011. “VLAN Implementation

Using Ip over ATM.” Journal of Engineering Research

and Studies 2 (4): 186–92.

[9] Gayakwad, Milind, and Suhas Patil. 2020. “Content

Modelling for Unbiased Information Analysis.” Libr.

Philos. Pract, 1–17.

[10] Gayakwad, Milind, Suhas Patil. “Analysis of

Methodologies to Model the Content for Conveying

the Correct Information.” In 2021 International

Conference on Computing, Communication and Green

Engineering (CCGE), 1–4. IEEE.

[11] Gayakwad, Milind, Suhas Patil .“Assessment of

Source, Medium, and Intercommunication for

Assessing the Credibility of Content.” In 2021

International Conference on Smart Generation

Computing, Communication and Networking

(SMART GenCon), 1–5. IEEE.

[12] Gayakwad, Milind, Suhas Patil, Rahul Joshi,

Sudhanshu Gonge, and Sandeep Dwarkanath Pande.

“Credibility Evaluation of User-Generated Content

Using Novel Multinomial Classification Technique.”

International Journal on Recent and Innovation Trends

in Computing and Communication 10 (2s): 151–57.

[13] Gayakwad, Milind, Suhas Patil, Amol Kadam,

Shashank Joshi, Ketan Kotecha, Rahul Joshi, Sharnil

Pandya, et al. 2022. “Credibility Analysis of User-

Designed Content Using Machine Learning

Techniques.” Applied System Innovation 5 (2): 43.

[14] Harane, Swati T., Gajanan Bhole, and Milind

Gayakwad. 2017. “SECURE SEARCH OVER

ENCRYPTED DATA TECHNIQUES: SURVEY.”

International Journal of Advanced Research in

Computer Science 8 (7).

[15] Kavita Shevale, Gajanan Bhole, Milind Gayakwad.

2017. “Literature Review on Probabilistic Threshold

Query on Uncertain Data.” International Journal of

Current Research and Review 9 (6): 52482–84.

[16] Mahamat Adam Boukhari, Milind Gayakwad. 2019.

“An Experimental Technique on Fake News Detection

in Online Social Media.” International Journal of

Innovative Technology and Exploring Engineering

(IJITEE) 8 (8S3): 526–30.

[17] Maurya, Maruti, and Milind Gayakwad. 2020.

“People, Technologies, and Organizations Interactions

in a Social Commerce Era.” In Proceeding of the

International Conference on Computer Networks, Big

Data and IoT (ICCBI-2018), 836–49. Springer

International Publishing.

[18] Milind Gayakwad, B. D. Phulpagar. 2013.

“Requirement Specific Search.” IJARCSSE 3 (11):

121.

[19] Panicker, Aishwarya, Milind Gayakwad, Sandeep

Vanjale, Pramod Jadhav, Prakash Devale, and Suhas

Patil. n.d. “Fake News Detection Using Machine

Learning Framework.”

[20] Sharma, Jitin, Prashant C. Chavan, T. B. Patil, Supriya

C. Sawant, and Milind Gaykawad. 2022. “A

Comparative Analysis of Brain Tumor Classification

and Prediction Techniques by Applying MRI Images

Encompassing SVM and CNN with Transfer Learning

Method.” Journal of Algebraic Statistics 13 (3): 393–

405.

[21] Shevale, Kavita, Gajanan Bhole, and Milind

Gayakwad. 2017. “Probabilistic Threshold Query on

Uncertain Data Using SVM.” Int. J. Adv. Res.

Comput. Sci 8: 1967–69.

[22] Singh, Mahendra Kumar, Amol K. Kadam, Milind

Gayakwad, Pramod Jadhav, Vinayak N. Patil, Prasad

Kadam, Vinod Patil, and Sunita Dhotre. n.d. “An

empirical approach for underwater image quality

enhancement and object detection using deep

learning.”

[23] Yamada, Shigeru, Mitsuru Ohba, and Shunji Osaki. "S-

shaped reliability growth modeling for software error

detection." IEEE Transactions on Reliability 32.5

(1983): 475-484.

[24] Malaiya, Y. K., Li, M. N., Bieman, J. M., & Karcich,

R. (2002). Software reliability growth with test

coverage. IEEE Transactions on Reliability, 51(4),

420-426.

[25] Pham, H., & Zhang, X. (2003). NHPP software

reliability and cost models with testing coverage.

European Journal of Operational Research, 145(2),

443-454.

[26] Ledoux, J. (2003). Software reliability modeling.

Handbook of Reliability Engineering, 213-234.

[27] Zheng, J. (2009). Predicting software reliability with

neural network ensembles. Expert systems with

applications, 36(2), 2116-2122.

[28] Martens, A., Koziolek, H., Becker, S., &Reussner, R.

(2010, January). Automatically improve software

architecture models for performance, reliability, and

cost using evolutionary algorithms. In Proceedings of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 48

the first joint WOSP/SIPEW international conference

on Performance engineering (pp. 105-116). ACM.

[29] Martens, A., Koziolek, H., Becker, S., & Reussner, R.

(2010, January). Automatically improve software

architecture models for performance, reliability, and

cost using evolutionary algorithms. In Proceedings of

the first joint WOSP/SIPEW international conference

on Performance engineering (pp. 105-116).ACM.

[30] Zio, E. (2009). Reliability engineering: Old problems

and new challenges. Reliability Engineering & System

Safety, 94(2), 125-141.

[31] Aljahdali, S., &Sheta, A. F. (2011, April). Predicting

the reliability of software systems using fuzzy logic. In

Information Technology: New Generations (ITNG),

2011 Eighth International Conference on (pp. 36-40).

IEEE.

[32] Lohmor, S., &Sagar, B. B. (2014). Overview: Software

Reliability Growth Models. Int. J. Comput. Sci. Inf.

Technol.

[33] “Two Dimensional Flexible Software Reliability

Growth Model with Two Types of Imperfect

Debugging” P.K. Kapur1, Anu G. Aggarwal2 and

Abhishek Tandon3 Department of Operational

Research, University of Delhi,

[34] “A Novel Framework of Software Reliability

Evaluation with Software Reliability Growth Models

and Software Metrics” 2014 IEEE 15th International

Symposium on High-Assurance Systems Engineering.

[35] Jyoti G. Borade, Vikas R. Khalkar, “Software Project

Effort and Cost Estimation Techniques”, International

Journal of Advanced Research in Computer Science

and Software Engineering Volume 3, Issue 8, August-

2013, ISSN: 2277 128X.

[36] Lance Fiondella, Swapna S. Gokhale, “Optimal

Allocation of Testing Effort Considering Software

Architecture”, IEEE Transactions on Reliability, June

2012 vol. 61, no. 2.

[37] Kamala RamasubramaniJayakumar, Alain Abran, “A

Survey of Software Test Estimation Techniques”,

Journal of Software Engineering and Applications,

Octomber-2013, 6, 47-52.

[38] Yuejian Wu, Paul MacDonald, “Testing ASICs with

Multiple Identical Cores”, IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS,

MARCH 2003, VOL. 22, NO. 3.

[39] AkitoMonden, Takuma Hayashi, Shoji Shinoda,

Kumiko Shirai, Junichi Yoshida, Mike Barker,

Kenichi Matsumoto, “Assessing the Cost

Effectiveness of Fault Prediction in Acceptance

Testing”, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, OCTOBER 2013, VOL. 39, NO. 10.

[40] Chin-Yu Huang, Sy-Yen Kuo, “Analysis of

Incorporating Logistic Testing-Effort Function Into

Software Reliability Modeling”, IEEE

TRANSACTIONS ON RELIABILITY,

SEPTEMBER 2002, VOL. 51, NO. 3.

[41] Yashwant K. Malaiya, MichaelNaixin Li, James M.

Bieman, Rick Karcich, “Software Reliability Growth

With Test Coverage”, IEEE TRANSACTIONS ON

RELIABILITY, DECEMBER 2002 VOL. 51, NO. 4.

[42] Sy-Yen Kuo, Chin-Yu Huang, Michael R. Lyu,

“Framework for Modeling Software Reliability, Using

Various Testing-Efforts and Fault-Detection Rates”,

IEEE TRANSACTIONS ON RELIABILITY,

SEPTEMBER 2001, VOL. 50, NO. 3.

[43] Dr. N. Balaji, N. Shivakumar & V. Vignaraj Ananth,”

Software Cost Estimation using Function Point with

Non-Algorithmic Approach”, Global Journal of

Computer Science and Technology Software & Data

Engineering Volume 13 Issue 8 Version 1.0 the Year

2013

[44] Pawar, V. E., Kadam, A. K., & Joshi, S. D. (2015).

Analysis of Software Reliability using Testing Time

and Testing Coverage. International Journal of

Advance Research in Computer Science and

Management Studies.

[45] Washizaki, H., Honda, K., & Fukazawa, Y. (2015,

August). Predicting release time for open source

software based on the generalized software reliability

model. In Agile Conference (AGILE), 2015 (pp. 76-

81). IEEE.

[46] Pawar, V. E., Kadam, A. K., & Joshi, S. D. (2015).

Analysis of Software Reliability using Testing Time

and Testing Coverage. International Journal of

Advance Research in Computer Science and

Management Studies.

[47] Mane, M., Joshi, M., Kadam, A., & Joshi, S. D. (2014).

Software Reliability and Quality Analyzer with

Quality Metric Analysis Along With Software

Reliability Growth Model. International Journal of

Computer Science & Information Technologies, 5(3).

[48] Sabnis, P., & Kadam, A. Software Reliability Growth

Model with Bug Cycle and Duplicate Detection

Techniques.

[49] Kadam, A. K., Joshi, S. D., Bhattacharyya, D., & Kim,

H. J. (2016). Software Superiority Achievement

through Functional Point and Test Point Analysis.

International Journal of Software Engineering and Its

Applications, 10(11), 181-192.

[50] Iqbal, J. (2017). Software reliability growth models: A

comparison of linear and exponential fault content

functions for study of imperfect debugging situations.

Cogent Engineering, 4(1), 1286739.

[51] Choudhary, A., Baghel, A. S., & Sangwan, O. P. (2016,

January). Software reliability prediction modeling: a

comparison of parametric and non-parametric

modeling. In Cloud System and Big Data Engineering

(Confluence), 2016 6th International Conference (pp.

649-653). IEEE.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 49

[52] Kumar, A. (2016, February). Software Reliability

Growth Models, Tools, and Data Sets-A Review. In

Proceedings of the 9th India Software Engineering

Conference (pp. 80-88).ACM.

[53] Mao, C., & Li, Q. (2016, August). A Testing-Coverage

Software Reliability Growth Model Considering the

Randomness of the Field Environment. In Software

Quality, Reliability and Security Companion (QRS-C),

2016 IEEE International Conference on (pp. 402-403).

IEEE.

[54] Zhu, M., & Pham, H. (2016). A software reliability

model with time-dependent fault detection and fault

removal. Vietnam Journal of Computer Science, 3(2),

71-79.

[55] Nagaraju, V., &Fiondella, L. (2017, January). A single

change point software reliability growth model with

heterogeneous fault detection processes. In Reliability

and Maintainability Symposium (RAMS), 2017

Annual (pp. 1-6). IEEE.

[56] Chi, J., Honda, K., Washizaki, H., Fukazawa, Y.,

Munakata, K., Morita, S., & Yamamoto, R. (2017,

March). Defect Analysis and Prediction by Applying

the Multistage Software Reliability Growth Model. In

Empirical Software Engineering in Practice

(IWESEP), 2017 8th International Workshop on (pp.

7-11). IEEE.

[57] Lohmor, S., & Sagar, B. B. (2014). Overview:

Software Reliability Growth Models. Int. J. Comput.

Sci. Inf. Technol.

[58] Ashwini Kurhade, J. Naveenkumar, A. K. Kadam,

“Efficient Algorithm TKO with TKU for Mining Top-

K Item Set,” vol. 11, no. 05, pp.1566-1570, 2019.

[59] P. K. Suryawanshi, P. A. K. Kadam, P. S. S. Dhotre,

and P. P. A. Jadhav, “A Novel Approach for Women

Security with Information Fusion for Multi-Sensory

Data,” vol. 8, no. 1, pp. 195–202, 2020.

[60] P. J. Desai, Prof. A. K. Kadam, Prof. M. S. Bewoor, H.

Mahmood, and A. A. Al-, “An Approach for Prediction

of Obstructive Sleep Apnea,” vol. 8, no. 1, pp. 189–

194, 2020.

[61] R. S. Suryawanshi, A. Kadam, and D. R. Anekar,

“Software defect prediction: A survey with a machine

learning approach,” Int. J. Adv. Sci. Technol., vol. 29,

no. 5, pp. 330–335, 2020.

[62] A. Kurhade, J. Naveenkumar, and A. K. Kadam, “An

experimental on top-k high utility itemset mining by

efficient algorithm Tkowithtku,” Int. J. Innov.

Technol. Explore. Eng., vol. 8, no. 8 Special Issue 3,

pp. 519–522, 2019.

[63] A. A. Kore, D. M. Thakore, and A. K. Kadam,

“Unsupervised extraction of common product

attributes from E-commerce websites by considering

client suggestion,” Int. J. Innov. Technol. Explor. Eng.,

vol. 8, no. 11, pp. 1199–1203, 2019.

[64] Dr.S. D. Joshi, Dr. A. K. Kadam, Pritee Hulule, “A

Survey Novel Approach for Efficient Selection of Test

Case Prioritization Techniques,” vol. 3085, no. 12, pp.

999–1001, 2018.

[65] Dr. A. K. Kadam, Amruta Magdum, prof. Dr. S. D

Joshi, “A Survey on Test Case Prioritization with Rate

of Fault Detection,” Int. J. Res. Electron. Comput.

Eng., vol. 6, no. 4, 2018.

[66] Dr. Vinod H Patil, Dr. Anurag Shrivastava, Devvret

Verma, Dr. A L N Rao, Prateek Chaturvedi, Shaik

Vaseem Akram, “Smart Agricultural System Based on

Machine Learning and IoT Algorithm”, 2nd

International Conference on Technological

Advancements in Computational Sciences (ICTACS),

2022. DOI: DOI:

10.1109/ICTACS56270.2022.9988530

[67] Dr. Vinod H Patil, Dr. Pramod A Jadhav, Dr. C.

Vinotha, Dr. Sushil Kumar Gupta, Bijesh Dhyani,

Rohit Kumar,” Asset Class Market Investment

Portfolio Analysis and Tracking”, 5th International

Conference on Contemporary Computing and

Informatics (IC3I), December 2022. DOI:

10.1109/IC3I56241.2022.10072525

[68] Dr. Vinod H Patil, Prasad Kadam, Sudhir Bussa, Dr.

Narendra Singh Bohra, Dr. ALN Rao, Professor,

Kamepalli Dharani,” Wireless Communication in

Smart Grid using LoRa Technology”, 5th International

Conference on Contemporary Computing and

Informatics (IC3I), December 2022, DOI:

10.1109/IC3I56241.2022.10073338

[69] Vinod H. Patil, Dr Shruti Oza, Vishal Sharma, Asritha

Siripurapu, Tejaswini Patil, “A Testbed Design of

Spectrum Management in Cognitive Radio Network

using NI USRP and LabVIEW”, International Journal

of Recent Technology and Engineering (IJRTE) ISSN:

2277-3878, Volume-8 Issue-2S8, August 2019.

[70] Vinod H. Patil, Shruti Oza, “Green Communication for

Power Distribution Smart Grid”, International Journal

of Recent Technology and Engineering™ (IJRTE),

ISSN:2277-3878(Online), Reg. No.: C/819981,

Volume-8, Issue-1, Page No. 1035-1039, May-19.

[71] Patil, V.H., Oza, S., Sharma, V., Siripurapu, A., Patil,

T.,” A testbed design of spectrum management in

cognitive radio network using NI USRP and

LabVIEW”, International Journal of Innovative

Technology and Exploring Engineering, 2019, 8(9

Special Issue 2), pp. 257–262

[72] Vinod Patil et al, “A Model Design of Green

Communication for Smart Grid Systems” SSRG

International Journal of Electrical and Electronics

Engineering, ISSN: 2348-8379, Volume 10 Issue 5,

227-239, May 2023.

https://doi.org/10.14445/23488379/IJEEE-V10I5P121

[73] George, N. ., & B. K., A. . (2023). Hypervolume Sen

Task Scheduilng and Multi Objective Deep Auto

Encoder based Resource Allocation in Cloud.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 38–50 | 50

International Journal on Recent and Innovation Trends

in Computing and Communication, 11(4s), 16–27.

https://doi.org/10.17762/ijritcc.v11i4s.6303

[74] Renato Costa, Deep Reinforcement Learning for

Autonomous Robotics , Machine Learning

Applications Conference Proceedings, Vol 2 2022.

[75] Dhabliya, D. (2019). Security analysis of password

schemes using virtual environment. International

Journal of Advanced Science and Technology, 28(20),

1334-1339. Retrieved from www.scopus.com

