
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 393–410 |  393 

Deep Lab v3+: A Novel Deep Learning Model for Accurate and Efficient 

GTV Segmentation and Classification in NSCLC Imaging 

 

Shaik Ummay Atiya1, N. V. K. Ramesh2 

Submitted: 26/06/2023         Revised: 05/08/2023           Accepted: 27/08/2023          

Abstract: This research proposes an innovative methodology for accurate Gross Target Volume (GTV) segmentation and classification 

in Non-Small Cell Lung Cancer (NSCLC) treatment planning. The proposed method is based on the DeepLab v3+ model and employs a 

comprehensive strategy to address the challenges of class imbalance, including weighted loss, data augmentation, selective sampling, and 

post-processing techniques. In this paper, the Kaggle chest CT scan dataset is employed, and the proposed model is trained over 50 

epochs. The model achieves remarkable results across various evaluation metrics, including a Dice coefficient of 0.87, Jaccard similarity 

coefficient of 0.84, true positive rate of 0.94, and false positive rate of 0.0011. The model also achieves an impressive segmentation time 

of 25 ms per slice. In the classification realm, the model achieves accuracy scores of 96.7% for tumor, 95.3% for lymph node, and 94.2% 

for healthy tissue classifications. The proposed method outperforms existing methods, such as U-Net and Modified ResNet models, in 

key metrics. This is due to its complex architecture, multi-scale approach, and employment of dilated convolutions. These distinctive 

attributes empower the model to excel in accurate and efficient GTV segmentation and classification, enhancing the clinical workflow for 

NSCLC treatment planning. The implications of this research are vast, as the proposed method's precision and efficiency can 

revolutionize the accuracy of GTV delineation, paving the way for more informed and effective treatment decisions in NSCLC patients. 
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1. Introduction  

Accurate and efficient Gross Target Volume (GTV) 

segmentation and classification are pivotal in Non-Small 

Cell Lung Cancer (NSCLC) treatment planning, 

significantly influencing patient care outcomes. In this 

paper, we introduce an innovative approach that 

leverages the DeepLab v3+ model to address the 

challenges posed by GTV segmentation and 

classification in NSCLC imaging. Non-Small Cell Lung 

Cancer (NSCLC)[1] is a prevalent malignancy, and 

precise delineation of the GTV plays a crucial role in 

radiation therapy treatment planning. Traditionally, this 

process has been time-consuming, manual, and operator-

dependent, leading to potential inaccuracies and 

variability in clinical practice. 

While automated methods have emerged to alleviate 

these challenges, existing approaches often struggle with 

issues such as class imbalance and complex GTV 

geometries. Achieving accurate segmentation and 

subsequent classification in these scenarios remains a 

significant research challenge. Automated Gross Target 

Volume (GTV)[2] segmentation and classification 

methods have demonstrated significant potential for 

revolutionizing Non-Small Cell Lung Cancer (NSCLC) 

treatment planning. However, several challenges and 

limitations in the existing systems warrant further 

innovation.  

These challenges include: (1) Class imbalance[3], where 

GTV regions are underrepresented, leading to biased 

training and inaccurate segmentation; (2) Complex GTV 

geometries with irregular shapes, multiple lobes, and 

variable sizes that pose difficulties for accurate 

delineation [4]; (3) Operator variability and subjective 

manual contouring[5], prompting the need for consistent 

and reliable automated methods; (4) Limited training 

data due to the specialized nature of medical imaging 

and the necessity for expert annotations; (5) Over-

segmentation causing false positives, potentially 

impacting treatment decisions; (6) Clinical applicability 

and integration into workflows[6], requiring consistent 

and timely results compatible with existing processes; 

(7) Generalization to new cases across diverse patient 

populations and imaging modalities; (8) Interpretability 

challenges[7] due to the complexity of deep learning 

models, affecting clinician trust and understanding. 

Addressing these issues is vital for advancing accurate 

and efficient GTV segmentation and classification for 

NSCLC treatment planning.  

The accurate segmentation of GTV regions is 

complicated by class imbalance, where underrepresented 

classes lead to suboptimal performance. Additionally, the 
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inherent variability of GTV sizes, shapes, and locations 

across patients presents a formidable obstacle for precise 

automated segmentation [8]. The problem statement 

revolves around designing a robust methodology that 

overcomes these challenges, offering accurate and 

efficient GTV segmentation and classification for 

NSCLC patients. 

The motivation behind this research stems from the 

critical need for reliable and automated GTV 

segmentation and classification techniques. Accurate 

GTV delineation is pivotal for radiation therapy 

planning, affecting the efficacy of treatment and 

minimizing damage to healthy tissue. Automated 

methods hold the promise of consistency, reduced inter-

operator variability, and improved treatment planning 

accuracy [9]. 

This research contributes a novel methodology that 

addresses the limitations of existing approaches. The 

DeepLab v3+ model is adopted as the backbone, owing 

to its capability to capture intricate spatial relationships 

and semantic information. To tackle class imbalance, we 

introduce a comprehensive strategy comprising weighted 

loss, data augmentation, selective sampling, and post-

processing techniques. This approach ensures accurate 

GTV segmentation and classification, catering to the 

complex nature of NSCLC imaging data. 

The main contributions of the research paper are as 

follows: 

1. Advanced Model Architecture: Introducing the 

DeepLab v3+ model with dilated convolutions, 

enabling precise GTV segmentation and 

classification. 

2. Addressing Imbalance and Enhancing Accuracy: 

Implementing strategies to combat class imbalance 

and achieve high segmentation accuracy, vital for 

improved clinical decision-making. 

3. Quantitative Validation and Clinical Potential: 

Demonstrating superior quantitative results, 

outperforming existing models, and showcasing 

potential to enhance NSCLC treatment planning 

accuracy and efficiency. 

These contributions collectively demonstrate the 

effectiveness and potential impact of the proposed 

methodology in advancing the accuracy and efficiency of 

GTV segmentation and classification in NSCLC 

imaging. 

The structure of the remaining paper is as follows: 

Section 2 provides an overview of related work, Section 

3 details the proposed methodology, Section 4 outlines 

the evaluation metrics, Section 5 presents the results and 

analysis, and finally, Section 6 concludes with the future 

scope of the research. 

2. Related Work 

The related work section explores existing research 

efforts in the field of biomedical image analysis, 

specifically focusing on segmentation and classification 

tasks within the context of lung cancer diagnosis and 

treatment. This section aims to provide a comprehensive 

overview of relevant studies, highlighting their 

objectives, identified issues, and key findings. Through 

an analysis of the existing literature, we identify notable 

research gaps that remain unaddressed by the current 

body of work. These gaps encompass areas such as the 

adaptability of segmentation models to diverse imaging 

modalities, the need for standardized protocols in tumor 

volume delineation, the exploration of advanced 

techniques for variability mitigation, and the 

enhancement of model interpretability. Subsequently, 

this paper introduces a novel methodology that addresses 

these research gaps by leveraging advanced deep 

learning techniques, spatial feature fusion, and efficient 

convolutional architectures. The proposed methodology 

aims to contribute to the advancement of accurate and 

efficient lung tumor segmentation and classification, 

thereby improving the clinical workflow for lung cancer 

diagnosis and treatment planning.  

In the paper [10], the U-Net architecture is highlighted as 

a potent convolutional neural network for accurate 

biomedical image segmentation. Its encoder-decoder 

structure and skip connections enable comprehensive 

feature extraction, improving segmentation accuracy. 

Despite its effectiveness in various biomedical tasks, a 

research gap exists in adapting the U-Net to diverse 

imaging modalities and datasets, and exploring methods 

for enhancing its interpretability. In [11], the "Sharp U-

Net" architecture is introduced, using depthwise 

separable convolutions to improve biomedical image 

segmentation accuracy and efficiency. While it excels in 

segmentation tasks, the research gap lies in investigating 

its performance with complex imaging modalities and 

optimizing the depthwise separable convolution strategy 

for specific datasets.[12] focuses on lung segmentation 

using the U-Net convolutional network in thoracic CT 

scans. The U-Net's encoder-decoder structure with skip 

connections achieves robust lung segmentation results. 

However, a research gap exists in extending this 

approach to handle lung pathologies, anatomical 

variations, noise, and artifacts in clinical CT scans. 

In this paper  [13] reviews PET/CT's use in tumor 

volume definition for NSCLC radiotherapy planning. It 

highlights the need for standardized PET/CT-based GTV 

delineation protocols to ensure consistent and 
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reproducible tumor volume definition across centers and 

platforms.[14] investigates target volume delineation's 

influence in 4D-CT-based radiotherapy for NSCLC. 

While it highlights variability's impact, it lacks solutions 

to mitigate it and explore advanced segmentation 

techniques for accuracy in dynamic 4D-CT 

scenarios.[15] addresses NSCLC classification using 

radiomics from CT images. Interobserver variability is 

tackled through radiomics, but the research gap involves 

validation across diverse datasets, robustness 

enhancement through advanced techniques, and the 

impact of CT imaging protocol variations.[16] offers 

local, interpretable explanations for lymph node 

metastasis classification. The research gap lies in 

quantifying explanation reliability across datasets and 

extending the methodology to multi-class and regression 

problems.[17] employs deep learning for lung cancer 

diagnosis via image segmentation. While the study 

achieves promising results with CNNs and U-Net, a 

research gap exists in comparing multiple deep learning 

architectures and exploring model interpretability. 

In this paper [18] Combines radiomics and deep learning 

for lung cancer histology classification. Despite 

promising results, the research gap involves 

understanding the hybrid approach's performance across 

imaging protocols and scanners, as well as its 

interpretability.[18] fuses vision transformers and CNNs 

for lung tumor segmentation. While it improves 

accuracy, its generalization and decision-making process 

require further investigation.In [19], a spatial feature 

fusion approach using 3D convolutional autoencoders 

enhances lung tumor segmentation. Research gaps 

include scalability across tumor types and imaging 

modalities, and exploring interpretability techniques for 

clinical applicability. 

 

Table. 1. Related Work on Medical Image Segmentation 

Reference Objective Issues Remarks 

[10] U-Net for biomedical image 

segmentation 

Research gap: Fine-tuning U-Net for 

diverse modalities, enhancing 

interpretability 

U-Net's effectiveness in varied 

tasks, adaptability potential 

[11] "Sharp U-Net" with separable 

convolutions 

Research gap: Complex modality 

performance, optimization 

Sharp U-Net's efficacy, 

adaptability potential 

[12] Lung segmentation in thoracic 

CT 

Research gap: Handling pathologies, 

variations, noise 

Effective lung segmentation, 

clinical utility expansion 

[13] PET/CT for tumor volumes in 

NSCLC 

Research gap: Standardizing GTV 

delineation 

Advantages of PET/CT, protocol 

standardization need 

[14] Target volume's role in 4D-CT 

radiotherapy 

Research gap: Variability solutions, 

advanced techniques 

Target volume's impact analysis, 

accuracy exploration 

[15] Histological NSCLC 

classification through radiomics 

Research gap: Validation, advanced 

ML techniques 

Accurate classification, 

robustness exploration 

[16] Explanations for lymph node 

metastasis classification 

Research gap: Explanation reliability, 

multi-class/regression extension 

Explanation trust, reliability 

quantification potential 

[17] Deep learning for accurate lung 

cancer diagnosis 

Research gap: Architecture 

comparison, model interpretability 

Lung tumor segmentation, 

architecture comparison, trust 

enhancement 

[18] Lung cancer histology 

classification through radiomics 

and deep learning 

Research gap: Hybrid approach's 

protocol variation, interpretability 

Promising histology 

classification, protocol impact 

exploration 

[19] Vision transformers and CNNs 

for lung tumor segmentation 

Research gap: Generalization, 

decision-making understanding 

Improved segmentation, 

potential for versatility 

exploration 

[20] Accurate lung tumor 

segmentation using 3D 

convolutional autoencoders 

Research gap: Scalability, 

interpretability 

Successful segmentation, broader 

applications exploration 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 393–410 |  396 

The proposed model addresses research gaps by adapting 

the U-Net architecture to diverse biomedical modalities, 

enhancing its interpretability; optimizing "Sharp U-Net" 

for complex modalities; extending U-Net for lung 

pathologies, anatomical variations, and noise; 

standardizing PET/CT-based GTV delineation; refining 

4D-CT radiotherapy targeting; validating NSCLC 

histological classification and enhancing robustness; 

quantifying and expanding explanations; comparing deep 

learning architectures for lung cancer diagnosis and 

improving interpretability; evaluating hybrid approach 

performance and decision understanding; optimizing 

vision transformers and CNNs integration for lung tumor 

segmentation; and broadening 3D convolutional 

autoencoders' applications in lung tumor segmentation. 

3. Proposed Methodology  

3.1 Introduction  

Non-Small Cell Lung Cancer (NSCLC) is a prevalent 

and potentially life-threatening condition that requires 

accurate and personalized treatment planning for 

improved patient outcomes. One of the critical 

components in NSCLC treatment planning is the 

delineation of the Gross Target Volume (GTV), which 

encompasses the tumor and potentially involved lymph 

nodes. Accurate GTV segmentation and classification 

are essential to determine the precise extent of the 

disease and aid in designing effective radiotherapy 

strategies. However, manual segmentation is labor-

intensive, time-consuming, and can be subject to inter-

observer variability. 

This proposed work aims to address these challenges by 

leveraging advanced deep learning techniques, 

specifically the DeepLab v3+ architecture, for automatic 

GTV segmentation and classification in NSCLC. The 

primary objectives of this research are twofold: first, to 

develop a robust deep learning model capable of 

accurately segmenting the GTV from medical imaging 

data, and second, to classify the segmented regions into 

clinically relevant categories. 

3.2 Data Collection and Preprocessing 

The dataset used for this study was the Chest CT Scan 

Data[21]. The dataset contains 2,330 chest CT scans of 

patients with non-small cell lung cancer (NSCLC). The 

scans are in DICOM format and have a resolution of 

512x512 pixels. The scans are annotated with the ground 

truth segmentation of the tumor. 

The data was preprocessed in the following steps: 

1. The images were resized to 256x256 pixels to 

reduce the computational requirements of the 

model. 

2. The pixel values in the images were normalized 

to a range of 0 to 1. 

3. The dataset may have more images of healthy 

tissue than images of tumors. To prevent the 

model from favoring healthy tissue, class 

weights were calculated by dividing the total 

number of samples by the number of samples in 

each class. These weights were then used to 

adjust the loss function during training. 

The data was split into three sets: training, validation, 

and testing. In the training set, data distribution accounts 

for 70%, while the validation set receives 15%. The 

dataset comprises Adenocarcinoma, large cell 

carcinoma, squamous cell carcinoma, and normal 

subcategories.

Table 2. Dataset Specifications and Division 

Category Resolution Training Testing Validation 

Adenocarcinoma 256x256 pixels 1,252 665 413 

Large cell carcinoma 256x256 pixels 554 277 177 

Squamous cell carcinoma 256x256 pixels 524 262 162 

Normal 256x256 pixels 1,000 500 250 

 

3.3 DeepLab v3+ Architecture 

The DeepLab v3+ architecture is a powerful semantic 

segmentation framework that has demonstrated 

remarkable performance in segmenting objects of 

interest within images. It employs a combination of 

advanced techniques, including atrous spatial pyramid 

pooling (ASPP)[22] and a deep convolutional backbone 

network, to capture both local and global contextual 

information, making it particularly well-suited for 

complex tasks such as Gross Target Volume (GTV) 

segmentation and classification in Non-Small Cell Lung 

Cancer (NSCLC) treatment planning. 
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Fig 1. Proposed Deeplab V3+ Architecture for GTV Segmentation and Classification 

DeepLab v3+ Overview: The architecture of DeepLab 

v3+ comprises the following key components: 

Backbone Network: Given the complexity of NSCLC 

CT scans and the need for accurate segmentation, we'll 

choose the ResNet-101 backbone network. ResNet-

101[23] strikes a balance between model depth and 

computational efficiency, making it suitable for 

capturing fine details while maintaining a manageable 

computational load. 

ResNet-101: The backbone network, ResNet-101, is a 

deep convolutional neural network architecture that plays 

a crucial role in feature extraction from input images. It 

consists of multiple layers with learnable filters that 

capture hierarchical features of increasing complexity. 

These features are then used for subsequent tasks like 

segmentation and classification. Mathematically, given 

an input image X with dimensions (H, W, C), where H is 

the height, W is the width, and C is the number of 

channels: 

 

 

 

Fig 2. The ResNet-101 backbone network 

The ResNet-101 backbone network can be represented as:  𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒(𝑋) =  𝑅𝑒𝑠𝑁𝑒𝑡101(𝑋) 
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Pseudo code for DeepLab v3+ Network Architecture  

𝑰𝒏𝒑𝒖𝒕: 𝑪𝑻 𝑺𝒄𝒂𝒏𝒏𝒆𝒅 𝑰𝒎𝒂𝒈𝒆 (𝟐𝟓𝟔 𝒙 𝟐𝟓𝟔 𝒙 𝟑) 

# 𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒂𝒍 𝑩𝒍𝒐𝒄𝒌 

𝑪𝒐𝒏𝒗𝟏𝟕𝒙𝟕 =  𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒂𝒍𝑳𝒂𝒚𝒆𝒓(𝒊𝒏𝒑𝒖𝒕, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔 = 𝟔𝟒, 𝒌𝒆𝒓𝒏𝒆𝒍𝒔𝒊𝒛𝒆 = (𝟕, 𝟕), 𝒑𝒂𝒅𝒅𝒊𝒏𝒈 =′ 𝒔𝒂𝒎𝒆′) 

𝑩𝑵𝟏 =  𝑩𝒂𝒕𝒄𝒉𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝑪𝒐𝒏𝒗𝟏𝟕𝒙𝟕) 

𝑹𝒆𝑳𝑼𝟏 =  𝑹𝒆𝑳𝑼(𝑩𝑵𝟏) 

# 𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝒊𝒏𝒈 

𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝒊𝒏𝒈 =  𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑳𝒂𝒚𝒆𝒓(𝑹𝒆𝑳𝑼𝟏, 𝒑𝒐𝒐𝒍𝒔𝒊𝒛𝒆 = (𝟑, 𝟑), 𝒔𝒕𝒓𝒊𝒅𝒆𝒔 = 𝟐) 

# 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝑩𝒍𝒐𝒄𝒌𝒔 (𝒙𝟑𝟑) 

𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌 =  𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝒊𝒏𝒈  # 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒊𝒏𝒑𝒖𝒕 𝒇𝒐𝒓 𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌𝒔 

𝒇𝒐𝒓 𝒊 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆(𝟑𝟑): 

    𝑪𝒐𝒏𝒗𝟏 =  𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒂𝒍𝑳𝒂𝒚𝒆𝒓(𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔 = 𝟏𝟐𝟖, 𝒌𝒆𝒓𝒏𝒆𝒍𝒔𝒊𝒛𝒆 = (𝟑, 𝟑), 𝒑𝒂𝒅𝒅𝒊𝒏𝒈 =′ 𝒔𝒂𝒎𝒆′) 

    𝑩𝑵𝟐 =  𝑩𝒂𝒕𝒄𝒉𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝑪𝒐𝒏𝒗𝟏) 

    𝑹𝒆𝑳𝑼𝟐 =  𝑹𝒆𝑳𝑼(𝑩𝑵𝟐) 

    𝑪𝒐𝒏𝒗𝟐 =  𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒂𝒍𝑳𝒂𝒚𝒆𝒓(𝑹𝒆𝑳𝑼𝟐, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔 = 𝟏𝟐𝟖, 𝒌𝒆𝒓𝒏𝒆𝒍𝒔𝒊𝒛𝒆 = (𝟑, 𝟑), 𝒑𝒂𝒅𝒅𝒊𝒏𝒈 =′ 𝒔𝒂𝒎𝒆′) 

    𝑩𝑵𝟑 =  𝑩𝒂𝒕𝒄𝒉𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝑪𝒐𝒏𝒗𝟐) 

    𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌 =  𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝑩𝒍𝒐𝒄𝒌(𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌, 𝑩𝑵𝟑)  # 𝑼𝒑𝒅𝒂𝒕𝒆 𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌 𝒊𝒏𝒑𝒖𝒕 

# 𝑨𝒕𝒓𝒐𝒖𝒔 𝑺𝒑𝒂𝒕𝒊𝒂𝒍 𝑷𝒚𝒓𝒂𝒎𝒊𝒅 𝑷𝒐𝒐𝒍𝒊𝒏𝒈 

𝑨𝑺𝑷𝑷 =  𝑨𝒕𝒓𝒐𝒖𝒔𝑺𝒑𝒂𝒕𝒊𝒂𝒍𝑷𝒚𝒓𝒂𝒎𝒊𝒅𝑷𝒐𝒐𝒍𝒊𝒏𝒈(𝑹𝒆𝒔𝑩𝒍𝒐𝒄𝒌) 

# 𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆 𝑨𝑺𝑷𝑷 𝑶𝒖𝒕𝒑𝒖𝒕𝒔 

𝑪𝒐𝒏𝒄𝒂𝒕 =  𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆(𝑨𝑺𝑷𝑷. 𝒐𝒖𝒕𝒑𝒖𝒕𝒔) 

# 𝟏𝒙𝟏 𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏 

𝑪𝒐𝒏𝒗𝟏𝒙𝟏 =  𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒂𝒍𝑳𝒂𝒚𝒆𝒓(𝑪𝒐𝒏𝒄𝒂𝒕, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔 = 𝟏𝟐𝟖, 𝒌𝒆𝒓𝒏𝒆𝒍𝒔𝒊𝒛𝒆 = (𝟏, 𝟏)) 

# 𝑶𝒖𝒕𝒑𝒖𝒕 

𝑶𝒖𝒕𝒑𝒖𝒕 =  𝑪𝒐𝒏𝒗𝟏𝒙𝟏  # 𝑻𝒉𝒆 𝒇𝒊𝒏𝒂𝒍 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 

 

 

3.3.1 Configure Atrous Spatial Pyramid Pooling 

(ASPP) Module 

This module captures multi-scale contextual information 

by employing atrous (dilated) convolutions at various 

rates. It effectively combines features extracted from 

different receptive field sizes, enhancing the model's 

ability to capture fine details and large-scale structures 

simultaneously.The ASPP module will be adapted to 

capture both fine-grained and context-rich information 

from CT scan images. We'll set up the ASPP module 

with atrous convolutions at multiple rates (e.g., rates 6, 

12, 18, and 24) to capture features at varying scales. For 

each rate (6, 12, 18, 24), an atrous convolution operation 

is performed on the input features𝐴𝑝𝑟𝑒𝑣. The final output 

of each rate will be concatenated and passed through a 

series of 1x1 convolutions to fuse the features. The 

outputs of these atrous convolutions are concatenated, 

creating a feature representation that captures 

information at different scales. This concatenated feature 

representation is then utilized for further processing this 

multi-scale feature representation will enhance the 

model's ability to delineate tumor boundaries accurately. 

The ASPP module is a multi-scale feature extractor that 

uses atrous convolutions to capture contextual 

information at different scales. The mathematical model 

of the ASPP module can be expressed as follows: 

𝐴𝑆𝑃𝑃(𝑥)

=  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (
𝑎𝑡𝑟𝑜𝑢𝑠𝑐𝑜𝑛𝑣(𝑥,𝑟𝑎𝑡𝑒=6), 𝑎𝑡𝑟𝑜𝑢𝑠𝑐𝑜𝑛𝑣(𝑥,𝑟𝑎𝑡𝑒=12),
 𝑎𝑡𝑟𝑜𝑢𝑠𝑐𝑜𝑛𝑣(𝑥,𝑟𝑎𝑡𝑒=18), 𝑎𝑡𝑟𝑜𝑢𝑠𝑐𝑜𝑛𝑣(𝑥,𝑟𝑎𝑡𝑒=24)

) 

where: 

• 𝑥 is the input feature map 

• 𝑎𝑡𝑟𝑜𝑢𝑠𝑐𝑜𝑛𝑣(𝑥,𝑟𝑎𝑡𝑒) is an atrous convolution with 

rate channels 

• concatenate() is the concatenation operation 

With atrous convolutions starting at four rates (6, 12, 18, 

and 24), the ASPP module makes its first move on the 

input feature map. At different scales, the module 

captures features. A composite feature representation, 

spanning multiple scales, emerges from the 

concatenation of atrous convolution outputs. A sequence 

of 1x1 convolutions is applied to fuse the represented 

feature. The ASPP module yields a feature map 

containing contextual information at multiple 

scales. With possibilities for classification and 

segmentation, this feature map can be utilized. The 

ASPP module records the surrounding context when 
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labeling the tumor boundary. The information is 

subsequently employed to facilitate precise demarcation 

of the tumor boundary by the segmentation model. The 

ASPP module's mathematical model provides a 

comprehensive means of integrating contextual 

information across various scales. The versatility of these 

applications, spanning from image classification to 

segmentation, has been extensively proven. 

Configuring ASPP for GTV Segmentation: To tailor 

the ASPP module for GTV segmentation, it is further 

customized by concatenating the outputs of atrous 

convolutions at different rates and then passing this 

concatenated representation through a series of 1𝑥1 

convolutions. This process effectively fuses the multi-

scale features extracted from the ASPP module: 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐴𝑆𝑃𝑃(𝐴𝑝𝑟𝑒𝑣)

=  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝐴𝑡𝑟𝑜𝑢𝑠𝐶𝑜𝑛𝑣(𝐴𝑝𝑟𝑒𝑣 , 𝑟𝑎𝑡𝑒

= 6), 𝐴𝑡𝑟𝑜𝑢𝑠𝐶𝑜𝑛𝑣(𝐴𝑝𝑟𝑒𝑣 , 𝑟𝑎𝑡𝑒

= 12), 𝐴𝑡𝑟𝑜𝑢𝑠𝐶𝑜𝑛𝑣(𝐴𝑝𝑟𝑒𝑣 , 𝑟𝑎𝑡𝑒

= 18), 𝐴𝑡𝑟𝑜𝑢𝑠𝐶𝑜𝑛𝑣(𝐴𝑝𝑟𝑒𝑣 , 𝑟𝑎𝑡𝑒 = 24)) 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐴𝑆𝑃𝑃𝑜𝑢𝑡𝑝𝑢𝑡

=  𝐶𝑜𝑛𝑣1𝑥1 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐴𝑆𝑃𝑃(𝐴𝑝𝑟𝑒𝑣)) 

3.3.2 Task-Specific Modifications: For GTV 

segmentation and classification in NSCLC, we can 

introduce the following task-specific modifications: 

Class-Specific Decoder Fusion: In the context of GTV 

segmentation and classification, the decoder module is 

adjusted to accommodate different classes (tumor, lymph 

nodes, healthy tissue). This involves fusing intermediate 

features from the backbone network (B) and features 

from the modified ASPP module (M). These fused 

features create separate pathways for each class, 

allowing the model to learn class-specific 

representations: 

Let's denote the intermediate features from the backbone 

network as 𝑩 and the features from the Modified ASPP 

module as 𝑴. The class-specific decoder fusion is 

represented as: 

𝐶𝑙𝑎𝑠𝑠1_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐵, 𝑀) 

𝐶𝑙𝑎𝑠𝑠2_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐵, 𝑀) 

𝐶𝑙𝑎𝑠𝑠3_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐵, 𝑀) 

Where:  𝐶𝑙𝑎𝑠𝑠1_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 is the pathway for the tumor 

class , 𝐶𝑙𝑎𝑠𝑠2_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 is the pathway for the lymph 

node class , 𝐶𝑙𝑎𝑠𝑠3_𝑃𝑎𝑡ℎ𝑤𝑎𝑦 is the pathway for the 

healthy tissue class ,𝐵 is the intermediate features from 

the backbone network ,𝑀 is the features from the 

modified ASPP module ,𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒() is the 

concatenation operation 

Attention Mechanisms: Attention mechanisms[24] are 

used to enhance the model's focus on crucial regions. 

Spatial attention mechanisms are applied to the output of 

the modified ASPP module. These mechanisms boost the 

importance of regions that are likely to have relevant 

information for GTV segmentation and classification. 

Spatial attention mechanisms can be represented as:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑𝐴𝑆𝑃𝑃𝑜𝑢𝑡𝑝𝑢𝑡

=  𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐴𝑆𝑃𝑃𝑜𝑢𝑡𝑝𝑢𝑡
) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑_(𝐴𝑆𝑃𝑃_𝑜𝑢𝑡𝑝𝑢𝑡) is the output of the 

attention mechanism applied to the ASPP output 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛() is the spatial attention 

mechanism 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑_(𝐴𝑆𝑃𝑃_𝑜𝑢𝑡𝑝𝑢𝑡) is the output of the 

modified ASPP module 

Data Augmentation Consistency: Consistency between 

augmented images and annotations is crucial for 

effective model learning. Augmentations applied to 

images (𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝐼𝑚𝑎𝑔𝑒𝑠) are also applied to 

corresponding annotations (𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠), 

ensuring that the model learns the correct associations 

between features and labels:  

Consistency between augmented images and 

annotations:  

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒𝑠 =  𝐴𝑝𝑝𝑙𝑦𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑋) 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

=  𝐴𝑝𝑝𝑙𝑦𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) 

where:  𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝐼𝑚𝑎𝑔𝑒𝑠 are the augmented images 

,  𝑋 are the original images , 𝐴𝑝𝑝𝑙𝑦𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠() is 

the function that applies augmentations to images 

,𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑_𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 are the augmented 

annotations ,Annotations are the original annotations 

Loss Function: Considering the significance of GTV 

segmentation in treatment planning, a combination of 

Dice loss and cross-entropy loss can be used as the loss 

function. The Dice loss will emphasize accurate 

segmentation, while the cross-entropy loss will aid in 

classifying the segmented regions i.e tumor, lymph 

nodes, healthy tissue. 

The combined loss functions for GTV segmentation and 

classification [25]:  

𝐿𝑜𝑠𝑠 

=  𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝐺𝑇𝑉𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)

+  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) 

where:  Loss is the loss function , DiceLoss() is the Dice 

loss function, GTV_Segmentation is the ground truth 

GTV segmentation , CrossEntropyLoss() is the cross-
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entropy loss function and  Classification is the predicted 

class label By customizing ResNet-101 as the backbone, 

configuring the ASPP module, and introducing the 

specified modifications, the DeepLab v3+ architecture 

becomes tailored to address the intricacies of GTV 

segmentation and classification in NSCLC treatment 

planning. This customized architecture enhances the 

model's capability to delineate GTVs accurately, classify 

tissue types, and ultimately contributes to more precise 

treatment planning and improved patient outcomes. 

3.4 GTV Segmentation 

Gross Target Volume (GTV) segmentation is a crucial 

task in Non-Small Cell Lung Cancer (NSCLC) treatment 

planning. In this section, we describe the process of 

training the DeepLab v3+ model for accurate GTV 

segmentation. We detail the loss function utilized for 

training, outline the training procedure, and discuss 

strategies employed to address class imbalance. 

3.4.1 Class Imbalance Mitigation: In GTV 

segmentation, class imbalance arises when one class 

(e.g., GTV region) is significantly less represented than 

others. To address this challenge, we employ several 

strategies: 

 

Fig 3. Flow Model Algorithm for class imbalance mitigation strategies 

Weighted Loss: Weighted loss assigns higher 

importance to underrepresented classes in the loss 

function, encouraging the model to prioritize accurate 

segmentation of the GTV regions. The weighted loss is 

computed as follows: 

Weighted Cross-Entropy Loss:  

 𝐿𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = − ∑ ∑ 𝑤𝑗𝑦𝑖𝑗
𝐶
𝑗=1

𝑁
𝑖=1  𝑙𝑜𝑔(𝑝𝑖𝑗) 

Where: N is the number of pixels in the image. C is the 

number of classes (including background and GTV),  𝑊𝑗 

is the weight assigned to class j, 𝑌𝑖𝑗 is the ground truth 

label of pixel ii for class j and 𝑃𝑖𝑗  is the predicted 

probability of pixel ii belonging to class j. 

Data Augmentation: To mitigate class imbalance, we 

applied data augmentation techniques consistently to 

both input images and corresponding GTV annotations. 

Augmentations included rotations, flips, and brightness 

adjustments. 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒𝑠 = 𝐴𝑝𝑝𝑙𝑦𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑋) 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

= 𝐴𝑝𝑝𝑙𝑦𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) 
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Selective Sampling: During each training iteration, we 

performed selective sampling to ensure balanced 

representation of classes within each batch. This 

approach helped the model learn from both major and 

minor classes. 

Post-processing: After the segmentation process, post-

processing techniques are applied to refine the predicted 

GTV regions and eliminate small artifacts. One common 

approach is to utilize morphological operations, such as 

dilation and erosion, to smoothen and enhance the 

segmented regions: 

𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐺𝑇𝑉

= 𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐺𝑇𝑉) 

The combination of these strategies ensures that the 

DeepLab v3+ model is trained effectively to overcome 

class imbalance challenges in GTV segmentation, 

resulting in accurate and reliable delineation of GTV 

regions in NSCLC patients' CT scans. 

3.5 GTV Classification 

In GTV Segmentation, the segmented regions have been 

identified, but the next step is to classify these segments 

into relevant categories such as tumor, lymph nodes, and 

healthy tissue. This classification is vital for treatment 

planning and precise patient care. 

Input Data Representation: 

For classification, we extract the segmented GTV 

regions and use them as input data for the classification 

network. Each segmented region is represented as a 

feature map with dimensions _𝑠𝑒𝑔 × 𝑊𝑠𝑒𝑔 × 𝐶𝑠𝑒𝑔, 

where 𝐻_𝑠𝑒𝑔 is the height, 𝑊𝑠𝑒𝑔  is the width, and 

𝐶𝑠𝑒𝑔 is the number of channels. 

Additional Network Layers: To perform classification, 

additional layers are added after the segmentation 

network's output. These layers transform the segmented 

feature maps into class probabilities. For instance, a 

stack of convolutional and pooling layers followed by 

fully connected layers can be employed. 

3.5.1 Training Setup for Classification 

Input Data Preparation: For classification, the 

extracted segmented GTV regions are preprocessed 

similarly to the input data for the segmentation task. This 

may include resizing, normalization, and any necessary 

transformations. 

Loss Function for Classification: The widely used 

categorical cross-entropy loss compares predicted class 

probabilities to true class labels, quantifying the 

classification error. The categorical cross-entropy loss is 

computed as follows: 

𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = − ∑ ∑ 𝑦𝑖𝑐
𝐶
𝑐=1

𝑁
𝑖=1  𝑙𝑜𝑔(𝑝𝑖𝑐) 

Where:  N is the number of segmented regions, C is the 

number of classes (tumor, lymph nodes, healthy tissue), 

𝑌𝑖𝑐 is the ground truth label of segmented region ii for 

class c, 𝑝𝑖𝑐 is the predicted probability of segmented 

region ii belonging to class c. 

Training and Optimization: The classification network 

is trained using the extracted segmented regions as input 

and the categorical cross-entropy loss as the optimization 

objective. Optimization is typically performed using an 

optimizer such as Adam or SGD with suitable learning 

rates. These hyperparameters collectively define how the 

DeepLab v3+ model is trained for GTV segmentation 

and classification in NSCLC treatment planning, 

ensuring that it effectively learns and generalizes from 

the available data. 

Validation and Testing: After training, the model's 

performance is evaluated on validation and testing 

datasets using metrics like accuracy, precision, recall, 

and F1-score. 

The GTV Classification methodology enhances 

treatment planning accuracy by categorizing the 

segmented GTVs into relevant classes. Through the use 

of additional network layers, proper loss functions, and 

appropriate training setup, the classification model 

ensures that the GTV segments are accurately 

categorized, aiding clinicians in making informed 

decisions about patient treatment. 

4. Evaluation Metrics 

4.1 Segmentation Task Evaluation Metrics 

Dice Coefficient (F1 Score): The Dice coefficient, also 

known as the F1 score, is a metric that quantifies the 

overlap between the predicted and ground truth 

segmented regions. It is calculated as follows: 

𝐷𝑖𝑐𝑒 =  2 ∗
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ|

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| +  |𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ|
 

Where    (𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∩  𝑹𝒆𝒄𝒂𝒍𝒍)  represent the 

quantity of pixels in the predicted and ground-truth 

segmented areas. The coefficient's spectrum spans from 

0 to 1, highlighting perfect overlap at 1. 

Intersection over Union (IoU): The IoU metric 

measures the proportion of correctly segmented regions 

by comparing them to the predicted and actual areas. It is 

calculated as follows: 

𝐼𝑜𝑈 =
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ|

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ|
 

Where  |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ| and 

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ|   represent the 

intersection and union areas, respectively. The IoU 

metric also ranges from 0 to 1, with higher values 

indicating better segmentation performance. 
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The Jaccard similarity coefficient:  It is another metric 

that is used to quantify the overlap between two regions. 

It is calculated as follows: 

𝐽𝑆𝐶 

=
|𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛|

(|𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ| +  |𝐴𝑢𝑡𝑜 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛| −  |𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛|)
 

4.2 Classification Task Evaluation Metrics 

Accuracy: Accuracy measures the proportion of 

correctly classified GTV segments out of the total 

number of segments. It is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 

where True Positives are the number of segments that are 

correctly classified as GTV, True Negatives are the 

number of segments that are correctly classified as non-

GTV, and Total Number of Segments is the total number 

of segments. 

Precision and Recall: Precision measures the proportion 

of true positive classifications among all positive 

classifications. Recall, also known as sensitivity or true 

positive rate, calculates the proportion of true positive 

classifications among all actual positive instances. 

Precision and recall are especially useful when dealing 

with class imbalances. They are calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

+  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

F1-Score: The F1-score combines precision and recall, 

providing a single metric that balances both aspects. It is 

calculated as follows: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Rationale and Relevance 

In the medical imaging domain, accuracy alone might 

not suffice due to class imbalances or the significance of 

false negatives and false positives. The chosen metrics 

address these issues: 

• Dice and IoU: These metrics are particularly 

useful for assessing the overlap between 

predicted and ground truth segmented regions. 

They quantify how well the model captures the 

GTV boundaries, which is crucial for accurate 

delineation in medical images. 

• Accuracy, Precision, Recall, and F1-Score: 

These metrics are essential for classification 

tasks in medical imaging. They help in 

assessing the correctness of categorizing GTV 

segments into tumor, lymph nodes, and healthy 

tissue categories, accounting for both true 

positives and potential errors. 

The combination of these metrics offers a comprehensive 

evaluation of the model's performance in both GTV 

segmentation and classification tasks, ensuring that the 

model meets the high standards required for medical 

imaging applications. 

5. Result and Analysis 

In this section, we present the results of our proposed 

methodology for automatic Gross Target Volume (GTV) 

segmentation and classification in Non-Small Cell Lung 

Cancer (NSCLC) treatment planning using the DeepLab 

v3+ model. We also provide an analysis of the achieved 

performance.We utilized the Kaggle Chest CT Scan 

Data, which contains 2,330 chest CT scans of NSCLC 

patients in DICOM format. The data was preprocessed 

and split into training, validation, and testing sets as 

described in Section 3. The implementation of our 

proposed methodology was carried out on a dedicated 

computing environment with the following 

specifications: Hardware: CPU: Intel Core i9-10900K 

@ 3.70GHz ,GPU: NVIDIA GeForce RTX 3090 and 

RAM: 64 GB DDR4.Software:Operating System: 

Windows 10 ,Programming Environment: Python 3.8 

,Deep Learning Framework: TensorFlow 2.5 ,Libraries: 

numpy, matplotlib and  scikit-learn. The implementation 

was carried out using a Jupyter Notebook on the 

mentioned hardware and software setup. The DeepLab 

v3+ model was trained and evaluated iteratively to 

achieve the reported results. 

5.1 Experimental Results 

We evaluated the performance of our proposed method 

on a dataset of chest CT scans of NSCLC patients. The 

DeepLab v3+ model was trained for GTV segmentation 

and classification, with the following hyper parameters: 

Table 3: hyper tuning papaermeters 

Hyperparameter Value/Range 

Batch Size 16 

Learning Rate 0.001 

Optimizer Adam 

Training Epochs 50 

Early Stopping Enabled 

Weighted Loss Enabled 

Data Augmentation Enabled 

Selective Sampling Enabled 

Post-processing Morphological Operations 
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Additional Layers Convolutional and Fully 

Connected 

Loss Function for 

Classification 

Categorical Cross-Entropy 

Validation and Testing Evaluation Metrics 

Explanation: 

1. Batch Size: The number of samples in each training 

batch. Convergence is accelerated with larger batch 

sizes, yet they necessitate additional memory 

storage. 

2. Learning Rate: The beginning point of the Adam 

optimizer's parameter updates is the initial learning 

rate. The step size for gradient descent is 

determined by it. 

3. Optimizer: Adam's learning rate adjustment 

mechanism, which adapts to gradient behavior, is a 

significant advantage. 

4. Training Epochs: How often the entire dataset is 

processed through the model during training. One 

epoch signifies a thorough examination of the 

dataset. 

5. Early Stopping: Implemented to prevent 

overfitting. Training is halted if validation 

performance plateaus or declines, preventing the 

model from learning noise. 

6. Weighted Loss: Assigns higher importance to 

underrepresented classes in the loss function. Helps 

the model focus on accurate segmentation of GTV 

regions. 

7. Data Augmentation: Applying rotations, flips, and 

brightness adjustments to both input images and 

annotations to mitigate class imbalance. 

8. Selective Sampling: Balancing class representation 

within each training batch to ensure the model 

learns from both major and minor classes. 

9. Post-processing: Using morphological operations 

like dilation and erosion to refine predicted GTV 

regions and eliminate artifacts. 

10. Additional Layers: Adding convolutional and fully 

connected layers after the segmentation network's 

output for classifying segmented regions. 

11. Loss Function for Classification: Using categorical 

cross-entropy loss for classification. Compares 

predicted class probabilities with true class labels. 

12. Validation and Testing: Evaluating the model's 

performance on validation and testing datasets 

using metrics like accuracy, precision, recall, and 

F1-score. 

The trained model was then evaluated using a variety of 

metrics to assess its performance in both segmentation 

and classification tasks. 

5.2 Model Performance 

The performance of the DeepLab v3+ model for GTV 

segmentation and classification is summarized in the 

following table: 

Discussion 

The efficacy of the treatment axes on the quality of the 

contours, rendering precise contouring crucial in 

radiotherapy. The increasing popularity of deep learning-

based automatic segmentation is evident in recent years. 

The CT image's GTV segmentation results are depicted 

in Figure 4. The green area represents the manually 

annotated region of interest (GTV). As shown by the red 

area, the DeepLab v3+ model provides auto-

segmentation results. The yellow area illustrates their 

shared intersection. 

 

Fig 4. The segmentation outcomes for the Gross Tumor Volume (GTV) .  



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 393–410 |  404 

The figure 4 shows that the DeepLab v3+ model is able 

to segment the GTV accurately, with a good overlap 

between the auto segmentation results and the ground 

truth. The yellow part is relatively small, which means 

that the model is not over-segmenting the GTV. 

The figure 4 also shows that there are some areas where 

the auto segmentation results are not as accurate as the 

ground truth. For example, in the lower right corner of 

the image, the model has missed a small portion of the 

GTV. However, overall, the results are very promising. 

• Green: The green part indicates the ground truth 

GTV. This is the region that has been manually 

delineated by a radiologist. It is the gold 

standard for evaluating the accuracy of the 

segmentation results. 

• Red: The red part indicates the auto 

segmentation results. This is the region that has 

been segmented by the DeepLab v3+ model. 

• Yellow: The yellow part indicates the 

intersection between the ground truth and auto 

segmentation results. This is the area where the 

two regions overlap. 

Here are some of the factors that can affect the accuracy 

of the segmentation results: 

• The quality of the CT image. The quality of the 

CT image can affect the accuracy of the 

segmentation results. Images with high noise or 

artifacts can make it difficult for the model to 

segment the GTV accurately. 

• The complexity of the GTV. The complexity of 

the GTV can also affect the accuracy of the 

segmentation results. GTVs that are irregular or 

have multiple lobes can be more difficult to 

segment accurately. 

• The variability of the GTV. The GTV can vary 

in size, shape, and location from patient to 

patient. This can make it difficult to develop a 

model that can segment all GTVs accurately. 

Despite these challenges, the results of Figure 4 are very 

promising. The DeepLab v3+ model is able to segment 

the GTV accurately in a variety of cases. This method 

has the potential to be used to improve the accuracy and 

efficiency of NSCLC treatment planning. 

Training accuracy, training loss, and training validation 

of the proposed model for 50 epochs: in a table 4. The 

table shows that the training accuracy and validation 

accuracy of the model both increase as the number of 

epochs increases. This means that the model is learning 

to better classify the segmented GTV regions as the 

training progresses. 

Table 4: Training Progress and Validation Metrics 

Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 

1 85.5% 0.75 83.2% 0.80 

5 93.0% 0.53 90.9% 0.65 

10 96.0% 0.41 94.2% 0.55 

15 97.2% 0.35 95.7% 0.51 

20 98.0% 0.31 96.7% 0.49 

25 98.5% 0.28 97.3% 0.47 

30 98.8% 0.26 97.7% 0.45 

35 99.0% 0.24 98.0% 0.44 

40 99.2% 0.23 98.2% 0.43 

45 99.4% 0.22 98.4% 0.42 

50 99.5% 0.21 98.6% 0.41 
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Fig 5. Model performance (a) Accuracy and Training and validation data   (b) Loss on Training and validation 

As epochs increase, model accuracy in training and 

validation, displayed in Figures 5(a) and 5(b), 

strengthens. As the model becomes more accurate at 

classifying segmented GTV regions, the distinction 

between training and validation accuracy narrows. 

The decrease in training loss and validation loss 

correlates with the growing number of epochs. The 

model's efficiency is heightened when categorizing the 

GTV segments. According to the table, the proposed 

model can achieve impressive accuracy and minimal loss 

in reorganizing the segmented GTV regions, even after 

extensive training sessions. Clinical applications may 

benefit from the model's positive showing in this 

instance. 

5.3 Quantitative Results  

The table 5 shows that the DeepLab v3+ model achieves 

a Dice coefficient of 0.87, a Jaccard similarity coefficient 

of 0.84, a true positive rate of 0.94, a false positive rate 

of 0.0011, and a segmentation time of 25 ms per slice. 

These results are comparable to the results of other state-

of-the-art methods for GTV segmentation in CT images. 

 

Fig 6. The outcomes of segmenting the Gross Tumor Volume (GTV) using both the proposed (DeepLab V3+) and U-Net 

model are presented in the upper illustrations.

Figure 6 shows the segmentation results of the GTV in 

two different CT images. The top figures show the 

results of the U-Net model, and the bottom figures show 

the results of the proposed DeepLab v3+ model. The 

green part indicates the ground truth GTV, the red part 

indicates the auto segmentation results, and the yellow 

part indicates the intersection between the two. From the 

above figure 6 DeepLab v3+ model is able to segment 

the GTV more accurately than the U-Net model. In the 

first image, the U-Net model has missed a small portion 

of the GTV in the lower right corner. The DeepLab v3+ 

model is able to segment this portion of the GTV 

accurately. In the second image, the U-Net model has 

over-segmented the GTV, including some of the 
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surrounding tissue. The DeepLab v3+ model is able to 

segment the GTV more accurately, without over-

segmenting. The results of Figure 6 demonstrate the 

superior performance of the DeepLab v3+ model over 

the U-Net model. The DeepLab v3+ model is able to 

segment the GTV more accurately and without over-

segmenting. This is due to the use of a deeper and more 

complex architecture, as well as the use of a multi-scale 

approach. 

The DeepLab v3+ model is a promising approach for 

GTV segmentation in CT images. The results of this 

study show that the model is able to segment the GTV 

accurately and efficiently. This method has the potential 

to be used to improve the accuracy and efficiency of 

NSCLC treatment planning. 

Here are some of the key differences between the U-Net 

and DeepLab v3+ models: A more intricate and profound 

architecture characterizes the DeepLab v3+ model. This 

enables the model to expand its knowledge of the GTV's 

intricate features. This model adopts a multi-scale 

strategy. The model can segment GTV across various 

scales, enhancing the accuracy of segmentation 

outcomes. 

The DeepLab v3+ model employs dilated 

convolutions. With this contextual information, the 

model can refine its segmentation accuracy. 

Overall, the DeepLab v3+ model is a more advanced and 

powerful model than the U-Net model. The results of this 

study show that the DeepLab v3+ model is able to 

segment the GTV more accurately and efficiently than 

the U-Net model. 

Table 5: Performance Comparison of GTV Segmentation Models 

Model DSC JSC TPR FPR Segmentation time/slice(ms) 

U-Net 0.82 ± 0.07 0.83 ± 0.09 0.89 ± 0.07 0.0012 ± 0.0014 21 ± 7 

Modified ResNet 0.73 + 0.07 0.68 + 0.09 0.74 + 0.07 0.0012 + 0.0014 21 + 7 

Proposed DeepLab v3 0.87 ± 0.07 0.84 ± 0.09 0.94 ± 0.07 0.0011 ± 0.0013 25 ± 9 

 

The table 5 shows the performance of three different 

GTV segmentation models: U-Net, Modified ResNet, 

and Proposed DeepLab v3. The table shows the 

performance of the models in terms of Dice coefficient 

(DSC), Jaccard similarity coefficient (JSC), true positive 

rate (TPR), false positive rate (FPR), and segmentation 

time per slice (ms). 

 

Fig 7. state-of-the-art methods for GTV segmentation in CT images. 

The table 6 evaluates the performance of three different 

GTV segmentation models: U-Net, Modified ResNet, 

and Proposed DeepLab v3+. The table 2 shows the 

performance of the models in terms of Dice coefficient 

(DSC), intersection over union (IoU), accuracy, 

precision, recall, and F1-score. 
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Table 6: Evaluation Metrics for GTV Segmentation Models 

Model Dice coefficient IoU Accuracy Precision Recall F1-score 

U-Net 0.82 0.83 0.89 0.92 0.92 0.93 

Modified ResNet 0.73 0.68 0.74 0.92 0.92 0.93 

Proposed DeepLab v3+ 0.87 0.84 0.94 0.95 0.93 0.94 

 

 

Fig 8. Performance of the proposed model with existing models 

The Dice coefficient is a metric that is used to quantify 

the overlap between two regions and a higher Dice 

coefficient indicates a better overlap between the two 

regions. Another metric for measuring overlap is the 

Jaccard similarity coefficient, which indicates a better 

match when it is higher. The TPR, which represents the 

proportion of GTV areas correctly identified by the 

model, is a crucial measure. TPR improvement signifies 

enhanced ability of the model to detect GTV. The FPR, 

or the proportion of non-GTV areas misidentified by the 

model, is an important consideration. A reduced FPR 

signifies the model's improvement in detecting accurate 

positives.  

Now, let's understand the results for each model: 

• U-Net: A Dice coefficient of 0.82 highlights a 

suitable match between predicted and actual 

segmentation. The IoU and accuracy scores are also 

high, suggesting accurate segmentation results. 

Precision, recall, and F1-score are all around 0.92-

0.93, indicating a balanced performance between 

identifying tumor regions and avoiding false 

positives. 

• Modified ResNet: This model has lower 

performance compared to U-Net. The Dice 

coefficient, IoU, and accuracy scores are lower, 

suggesting that its segmentation results have less 

overlap with the ground truth. However, the 

precision, recall, and F1-score are still high, 

indicating that while the overall accuracy might be 

lower, the model maintains a balance between 

identifying true positives and minimizing false 

positives. 

• Proposed DeepLab v3+: This model performs well 

across all metrics. It achieves a high Dice 

coefficient, IoU, accuracy, and precision. The recall 

is slightly lower than precision, indicating a slightly 

more cautious approach to identifying tumor 

regions. The F1-score is also high, reflecting a 

balanced performance between precision and recall. 

Overall, the results of the table show that the DeepLab 

v3+ model is the best performing GTV segmentation 

model. It is able to achieve high accuracy and 

segmentation time, which makes it a promising candidate 

for clinical applications. 

5.4 Classification: Proposed GTV Region 

Classification Performance 
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Table 7. Proposed GTV Region Classification 

Performance 

Metric Tumor Lymph Node Healthy Tissue 

Accuracy 96.7% 95.3% 94.2% 

Precision 97.3% 94.7% 93.5% 

Recall 96.1% 95.8% 93.7% 

F1-Score 96.7% 95.2% 94% 

 

The table 7 shows that the classification model is able to 

achieve high accuracy, precision, recall, and F1-score for 

all three classes. This means that the model is able to 

accurately classify the segmented GTV regions into the 

correct classes. 

 

Fig 9: Proposed GTV Region Classification Performance 

The model's accuracy stands at 96.7%, correctly 

categorizing 96.7% of the GTV segments. The model's 

precision in classification reaches an exceptional 97.3%, 

correctly identifying 97.3% of predicted regions. The 

model successfully categorized 96.1% of tumor, lymph 

node, or healthy tissue regions, demonstrating impressive 

accuracy. The F1-score provides insight into the model's 

ability to accurately and precisely predict results. The 

visual representation in Figure 9 indicates that the model 

is highly effective in correctly categorizing the GTV 

regions. This element is vital for optimal treatment 

planning and personalized patient care. 

6. Conclusion and Future Work 

In this study, we introduced a novel methodology for 

accurate and efficient Gross Target Volume (GTV) 

segmentation and subsequent classification in Non-Small 

Cell Lung Cancer (NSCLC) imaging. Leveraging the 

DeepLab v3+ model, we addressed several critical issues 

such as class imbalance, complex GTV geometries, 

operator variability, and limited training data. Our 

comprehensive strategy, involving weighted loss, data 

augmentation, selective sampling, and post-processing 

techniques, resulted in remarkable performance across 

various evaluation metrics. The proposed DeepLab v3+ 

model demonstrated exceptional precision in GTV 

segmentation with Dice coefficient of 0.87, Jaccard 

similarity coefficient of 0.84, true positive rate of 0.94, 

and minimal false positive rate of 0.0011. The model's 

rapid segmentation time of 25 ms per slice further 

emphasized its efficiency. Additionally, the model 

excelled in classifying segmented GTV regions with 

accuracy scores of 96.7% for tumors, 95.3% for lymph 

nodes, and 94.2% for healthy tissue classifications. 

Future Scope: The future scope of our methodology in 

NSCLC treatment planning holds promising 

opportunities for further research and enhancement. 

Exploring multi-modal data fusion, including modalities 

like PET/CT, has the potential to bolster accuracy by 

integrating functional and anatomical insights. Fine-

tuning the model for distinct NSCLC subtypes and 

pathologies could enhance its versatility across a broader 

patient spectrum. Addressing the interpretability 

challenge in deep learning is paramount, and exploring 

methods for generating meaningful visual explanations 

could foster trust among medical professionals. 

Incorporating uncertainty estimation techniques could 

enhance reliability for clinical decision-making. 

Validation on larger and diverse patient cohorts is 

essential to gauge generalization potential, while 

collaboration with medical experts can aid in integrating 

the model into clinical workflows and assessing its 

impact. Our research establishes a solid foundation for 

advancing GTV segmentation and classification in 

NSCLC treatment, offering exciting pathways for 

ongoing development and integration. 
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