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Abstract: This research addresses energy-aware task offloading within the Internet of Things (IoT) networks. In today’s interconnected 

world, IoT devices play an increasingly pivotal role. However, they often face limitations regarding energy consumption, which hinders 

their prolonged operation and effectiveness. Existing IoT task offloading strategies focus on isolated aspects of energy optimization, 

overlooking the holistic nature of energy management. This leads to suboptimal utilization of device resources, reduced device lifespans, 

and potential performance bottlenecks. This proposes the Energy Prediction and Task Optimization (EPTO) algorithm; we leverage 

multi-dimensional profiling, real-time monitoring, and adaptive decision-making. EPTO consistently outperforms traditional strategies, 

enhancing energy efficiency, device lifespan and quality of service. EPTO combines innovative methods, including LSTM-based energy 

prediction, adaptive offloading policies, and dynamic resource allocation. It employs a comprehensive mathematical modeling approach 

that integrates data from diverse sources, offering unparalleled adaptability in dynamic IoT environments.in this paper we employed a 

diverse dataset comprising various IoT devices, each characterized by battery levels, computation intensity, data transmission energy, 

historical energy consumption patterns, and task characteristics. This dataset enabled realistic simulations and robust performance 

evaluations. Our proposed work evaluated with the following performance metrics, including Energy Efficiency Ratio (EER), Task 

Completion Time (TCT), Battery Lifetime Extension (BLE), Resource Utilization (RU), and Rate of Offloaded Tasks (ROB). Our 

quantitative results demonstrate substantial improvements in energy efficiency, with EER values exceeding 0.85. Task Completion Time 

is notably reduced, with TCT averaging 65 seconds, while BLE metrics show significant device lifespan extensions of up to 30%. 

EPTO's adaptability suits various IoT domains like smart cities, healthcare, and industrial automation. Its responsive resource 

management supports diverse IoT scenarios. EPTO addresses IoT sustainability and optimization, shaping greener and more efficient 

ecosystems. It revolutionizes energy management, paving the way for smarter IoT networks. 
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1 Introduction 

The convergence of extensive machine learning (ML) 

models with the decentralized operation of resource-

limited Internet of Things (IoT) devices has presented 

difficulties regarding energy consumption and network 

performance in recent times [1]. The execution of 

machine learning activities on cloud platforms may give 

rise to challenges such as network latency, data transfer 

rates, and privacy issues. Conversely, low computational 

resources may hinder conducting these tasks on Internet 

of Things (IoT) devices [1]. Efficient routing protocols 

are an alternative strategy for optimizing Internet of 

Things (IoT) network energy consumption.  

The QoS-based Optimized Energy Clustering Routing 

(QOECR) protocol has been suggested as a means to 

improve network performance and decrease energy usage 

in wireless sensor networks (WSN) based on the Internet 

of Things (IoT) [2].  

In addition, the energy efficiency of IoT networks may 

be enhanced by carefully choosing suitable wireless 

technologies and routing protocols. An illustration of the 

application of LoRa technology [3] in wireless sensor 

networks (WSN) for urban areas in Bulgaria has 

demonstrated notable benefits in transmission range and 

energy efficiency [4]. The implementation of suitable 

routing protocols may achieve the optimization of energy 

consumption in Wireless Sensor Networks (WSNs). This 

optimization can enhance performance and the possible 

use of WSNs in Internet of Things (IoT) settings [4]. 

The issue of energy consumption during the execution of 

tasks in Internet of Things (IoT) networks is a notable 

difficulty owing to the limited resources of IoT devices 

and the imperative for optimal network performance. 

Proposed ways to overcome the problems and reduce 

energy consumption in IoT networks include adaptive 

inference systems, efficient routing protocols, 
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mechanisms based on Low Power Wide Area Networks 

(LPWAN), and selecting suitable wireless technologies 

and routing protocols. 

Energy consumption is a significant challenge in IoT 

networks that needs to be addressed. Routing protocols 

are crucial in determining the data transfer rate on IoT 

networks [5]. Based on Shannon capacity, the energy 

consumption profile and its lower bound for an IoT end 

device have been formulated [6]. In addition to data 

transmission, data processing also consumes energy in 

IoT networks. Therefore, energy-efficient algorithms and 

protocols are required to minimize energy consumption 

during data processing [7]. The gateway’s placement 

significantly impacts the network lifetime, and 

optimization results reveal that the network lifetime 

increases by almost 36% if the gateway is in the optimal 

location [8]. Reliability is an essential performance 

requirement for many IoT applications, and energy 

consumption can affect the network’s reliability [9]. 

Therefore, correctly forecasting Packet Delivery Ratio 

(PDR) and Energy Consumption (EC) can play a 

significant role in different loss-sensitive application 

environments [10]. Different regression models, 

including linear, gradient boosting, random forest, and 

deep learning, predict PDR and EC based on 

communication parameters [10]. 

The research problem addressed in this study is the 

necessity for energy-efficient task offloading strategies 

within IoT networks. The relevance of this problem 

within the IoT domain is paramount due to the growing 

ubiquity of IoT devices and the increased demand for 

efficient energy management. With their diverse energy 

consumption patterns and limited power resources, IoT 

devices require intelligent task offloading mechanisms to 

optimize energy utilization. The challenge lies in 

developing strategies considering the computation and 

data transmission energy and accounting for the device’s 

battery levels. This comprehensive approach ensures IoT 

networks’ longevity and optimal operation. 

This research aims to achieve the following 

contributions: 

1. Energy-aware Task Profiling: Develop a multi-

dimensional energy profiling mechanism that 

captures various energy consumption patterns of 

IoT devices during task execution. This mechanism 

will encompass computation intensity, data 

transmission energy, and battery levels. 

2. Intelligent Offloading Strategy: Create an 

intelligent offloading strategy that leverages the 

insights gained from energy profiling. This strategy 

will make dynamic decisions regarding task 

offloading, considering the multi-dimensional 

energy landscape of IoT devices. 

3. Advancing IoT State-of-the-art: By addressing the 

need for comprehensive energy management in IoT 

networks, this research advances the current state of 

IoT task offloading, making it more sustainable and 

efficient. 

The paper presents these contributions and demonstrates 

their significance in addressing the pressing challenges 

of energy-efficient task offloading in IoT networks. The 

paper follows a structured approach to comprehensively 

investigate the proposed EPTO algorithm for task 

offloading in IoT and edge computing environments. 

Remaining paper has been organised as follows:  it 

begins with an introductory section that outlines the 

context, challenges, and the need for efficient task-

offloading strategies. The subsequent section delves into 

the system model, elaborating on the key components, 

including IoT devices, energy prediction models, and 

offloading decision logic. The experimental methodology 

is then detailed, covering the generation of synthetic IoT 

devices and tasks, the training of energy prediction 

models, and the simulation setup. The paper presents 

results in several sections, highlighting EPTO’s 

performance in energy savings, task completion, and 

system efficiency. The paper compares EPTO with 

existing offloading strategies to evaluate its 

effectiveness. The discussion section provides insights 

into the advantages and improvements introduced by 

EPTO. The paper acknowledges limitations and suggests 

avenues for future research to address these constraints. 

Finally, a conclusion summarizes the findings, 

emphasizing the significance of EPTO in optimizing IoT 

and edge computing operations. 

2 Literature Review 

Numerous task-offloading solutions in IoT networks 

have been presented in the available research. These 

solutions aim to enhance the efficiency of IoT networks 

by transferring jobs from IoT devices with limited 

resources to edge or cloud servers with greater 

computational capabilities.  

The paper [11] presents a load-balancing methodology 

for Internet of Things (IoT) devices, which use energy 

profiling as a means to equilibrate power usage in the 

context of inter-cluster data transit. The suggested 

methodology aims to optimize power consumption in 

inter-cluster data routing, enhancing the longevity of 

relay cluster heads and enabling nodes to run for longer 

durations. In this part, the citation will be derived from 

an objective document.  
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Another article by the author [12] introduces a task 

scheduler designed for batteryless Internet of Things 

(IoT) devices. This scheduler incorporates an energy-

aware approach to determine the optimal timing for 

executing individual tasks, considering the amount of 

collected and accessible energy, the energy consumption 

associated with each activity, and the priority assigned to 

it. To maintain the continuity of progress, the scheduler 

prioritizes the selection of tasks with the greatest priority 

for execution before each iteration.  

Another paper [13] presents a novel approach based on 

deep reinforcement learning. The program aims to reduce 

the average long-term service cost by considering power 

consumption and buffering delay. The method under 

consideration employs the deep deterministic policy 

gradient (DDPG) technique for addressing continuous 

action domains while utilizing the dueling double deep Q 

networks (D3QN) approach for handling discrete action 

domains.  

There are several articles published that discussion the 

solutions for the previous problems but those solutions 

also present limitations with a scope for future research. 

One of the solutions suggested by the another paper [14] 

that may be employed is the approach of computation 

offloading, wherein compute-intensive jobs are 

transferred to edge or cloud servers. As mentioned 

earlier, the methodology has the benefit of diminishing 

the energy consumption of Internet of Things (IoT) 

devices. However, it may also give rise to latency issues 

due to the temporal duration needed for data 

transmission to and from the server.  

Another solution presented by the author [15] that may 

be employed is the utilization of the communication 

offloading approach, wherein communication-intensive 

jobs are transferred to edge or cloud servers. This 

methodology can potentially decrease the 

communication burden associated with Internet of 

Things (IoT) devices; nevertheless, it also brings out 

significant apprehensions regarding security and privacy. 

 A solution by the author [16] entails adopting a hybrid 

approach to compute and communication offloading. 

This approach involves the transfer of jobs that need 

significant computational or communication resources to 

servers located at the edge or in the cloud. This 

methodology has the potential to achieve a harmonious 

equilibrium between energy consumption and 

communication overhead. However, it is important to 

acknowledge that it may also create heightened intricacy 

in the decision-making process for job offloading. The 

summary these solutions covering the strengths, 

weaknesses, and limitations of these strategies can be 

summarized in a table as follows: 

Table 1: Literature Summary of Computations Offloading 

Citation Strategy Strengths Weaknesses Limitations 

 [11] [14] 
Computation 

offloading 

Reduces energy 

consumption 

Introduces 

latency 

Limited by 

network bandwidth 

 [12] [15] 
Communication 

offloading 

Reduces 

communication 

overhead 

Introduces 

security and 

privacy concerns 

Limited by 

network bandwidth 

 [13] [16] 

Joint computation 

and 

communication 

offloading 

Provides a balance 

between energy 

consumption and 

communication 

overhead 

Introduces 

additional 

complexity in 

task offloading 

decisions 

Limited by 

network bandwidth 

and latency 

 

These task-offloading strategies can potentially improve 

the performance of IoT networks, but their effectiveness 

depends on the specific characteristics of the network 

and the tasks being offloaded. Further research is needed 

to develop more effective and efficient task-offloading 

strategies for IoT networks.  

3 Proposed Multi-Dimensional Energy 

Profiling Mechanism 

The proposed structure signifies a pioneering paradigm 

shift towards energy-conscious task offloading within 

IoT networks. Its innovativeness is deeply embedded in 

its comprehensive interpretation of energy management, 

ingeniously structured with multi-tier components 

encompassing sensors, data analysis, machine learning, 

astute offloading, and ecosystem amalgamation. At its 

core, the Energy Profiling Mechanism revolutionizes 

energy surveillance by employing various sensors, 

encompassing power detectors, CPU usage sensors, 

network activity monitors, and battery health 

scrutinizers. These sensorial inputs nourish the Data 

Processing Layer, where intricate data preprocessing and 
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multi-dimensional fusion conjure magic. The Energy 

Analytics Module takes hold of this refined data to craft 

all-encompassing energy profiles. What distinguishes 

this architecture is the infusion of cutting-edge machine 

learning models and stealthy anomaly detection 

algorithms, enabling pinpoint prognostication and 

clandestine anomaly unearthing within energy 

expenditure patterns. The sagacious Offloading Strategy, 

propelled by these energy revelations, masterminds task 

scheduling and resource allocation with unparalleled 

adeptness. The architecture does not halt at abstract 

conjecture; it envisages pragmatic realization, extending 

a robust evaluation and validation framework. Through 

covert simulations and clandestine real-world 

deployments, its efficacy is clandestinely examined and 

covertly benchmarked against existing strategies, 

including the renowned work by author [17] The 

architecture does not reside in seclusion; it unshrouds 

doors to a discreet Energy-Conscious IoT Ecosystem, 

bestowing APIs and confidential recommendations for 

selecting energy-efficient IoT devices. This all-

encompassing approach covertly redefines energy-

efficient task offloading, clandestinely positioning it as a 

pivotal innovation within the IoT network domain. 

 

 

Fig 1: Proposed Architecture for EPTO Algorithm 

The novelty of this research lies in its comprehensive 

approach to addressing the research gap in existing IoT 

task offloading strategies. Here are the critical points of 

novelty: 

1. Multi-Dimensional Energy Profiling: The research 

introduces a novel energy profiling mechanism that 

captures various dimensions of energy consumption 

patterns during IoT device task execution. This 

includes computation intensity, data transmission 

energy, battery levels, and other factors. This 

holistic approach to energy profiling significantly 

departs from many existing strategies focusing on 

specific energy consumption aspects. 

2. Real-Time Energy Monitoring: By incorporating 

sensors for real-time energy monitoring, the 

research enables dynamic and up-to-date 

information about the energy state of IoT devices. 

This real-time data forms the basis for intelligent 

decision-making, allowing the system to adapt to 

changing conditions. 

3. Machine Learning for Predictive Analysis: Using 

machine learning models for predictive analysis of 

energy consumption is a novel aspect. Predicting 

future energy consumption based on historical data 

and task characteristics enables proactive and 

optimized task offloading decisions. 

4. Anomaly Detection: Including anomaly detection 

algorithms to identify unusual energy consumption 

patterns adds a layer of sophistication to the system. 

This can be essential for detecting hardware or 

software issues in IoT devices. 

5. Intelligent Offloading Strategy: The research aims 

to develop an intelligent offloading strategy 

considering multi-dimensional energy profiles. It 

doesn’t just stop at profiling; it leverages this data 

to make dynamic decisions regarding task 

offloading. This dynamic and adaptive offloading 

strategy is a novel approach to optimizing energy 

efficiency in IoT networks. 

6. Benchmarking and Validation: The research 

proposes rigorous benchmarking and validation 

procedures in simulated environments and real-

world deployments. This comprehensive evaluation 
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approach ensures that the proposed strategy’s 

effectiveness is thoroughly tested and validated. 

7. Integration with IoT Ecosystem: The research 

envisions integration with the broader IoT 

ecosystem, providing APIs and mechanisms for 

other devices and systems to benefit from the 

energy-aware profiling and offloading capabilities. 

This interoperability is critical for widespread 

adoption. 

The novelty of this research lies in its holistic approach 

to energy-aware task profiling and offloading in IoT 

networks, incorporating real-time monitoring, machine 

learning, anomaly detection, and an intelligent offloading 

strategy that collectively comprehensively addresses 

energy consumption patterns. It also emphasizes 

thorough validation and integration into the broader IoT 

landscape. This comprehensive and multi-dimensional 

approach sets it apart from many existing strategies that 

focus on individual aspects of energy optimization. A 

novel method related to the energy-aware task profiling 

and offloading strategy for IoT devices is presented in 

this paper. This method focuses on the creation of an 

Energy Prediction and Task Optimization (EPTO) 

algorithm: 

3.1 Proposed Novel Method: Energy Prediction 

and Task Optimization (EPTO) Algorithm 

The EPTO algorithm is an energy-efficient task 

offloading algorithm for IoT devices. It takes as input the 

set of IoT devices, their information (battery level, 

computation intensity, data transmission energy, and 

historical energy consumption patterns), the edge and 

cloud server information (power consumption), and the 

offloading policies and parameters. 

EPTO Algorithm 

Input: Set of IoT Devices: {𝑫𝟏, 𝑫𝟐, … , 𝑫𝑵} where N is 

the number of devices. 

IoT Device Information for Device : 

Battery Level: 𝑬𝒊(𝒕) 

Computation Intensity: 𝑪𝒊(𝒕) 

Data Transmission Energy: 𝑫𝒊(𝒕) 

Historical Energy Consumption Patterns:  

𝑯𝒊(𝒕) =  [𝑬𝒊(𝒕 − 𝒌]𝒌=𝟏
𝑵  

Task Characteristics: 𝑻𝒊 = (𝑪𝒊, 𝑻𝒆𝒙𝒆𝒄(𝒊)) 

Edge and Cloud Server Information: 

Power Consumption: 𝑷𝒆(𝒕), 𝑷𝒄(𝒕) 

Offloading Policies and Parameters 

Output:Task Offloading Decisions for Device 𝑫𝒊: 𝑶𝒊

(𝒕)𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐, … , 𝑵 

Where The power consumption of the cloud server can 

be calculated as follows: Pe(t) = a * N(t) + b 

• 𝒂 is a constant that depends on the efficiency of 

the cloud server and b is a constant that 

represents the power consumption of the cloud 

server when it is idle 

• 𝑵(𝒕) is the number of tasks that are being 

executed by the cloud server at time t 

The power consumption of the edge server can be 

calculated as follows: 𝑷𝒄(𝒕) =  𝒄 ∗  𝑵(𝒕) +  𝒅 

where: 

• c is a constant that depends on the efficiency of 

the edge server 

• d is a constant that represents the power 

consumption of the edge server when it is idle 

• 𝑵(𝒕) is the number of tasks that are being 

executed by the edge server at time 𝒕 

The value of c and d can be determined experimentally 

or by using a power consumption model. 

Historical Energy Consumption Patterns:  

𝑯𝒊(𝒕) =  [𝑬𝒊(𝒕 − 𝒌]𝒌=𝟏
𝑵  

Where 𝑯𝒊(t) is the historical energy consumption pattern 

of IoT device i at time t. It is a vector of length N, where 

each element of the vector represents the energy 

consumption of the device at time t-k, for k = 1, 2, ..., N. 

The meaning of k is the number of previous time steps 

that are considered when calculating the historical energy 

consumption pattern. A higher value of k will give a 

more accurate estimate of the historical energy 

consumption pattern, but it will also require more data 

storage and computation time. 

Initialization: 

Initialize historical energy consumption patterns 𝐻𝑖(𝑡) 

for all devices 

Initialize LSTM-based energy prediction models 𝑌𝑖(𝑡) 

for all devices 

Define offloading policies and parameters 

Algorithm Steps: 

For Each IoT Device Di: 

Update Device Information:  

𝐸𝑖(𝑡) = Update Battery Level for Device 𝐷𝑖  

𝐶𝑖(𝑡) = Update Computation Intensity for Device 

𝐷𝑖 
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𝐷𝑖(𝑡) = Update Data Transmission Energy for 

Device 𝐷𝑖 

𝑇𝑖  =Update Task Characteristics for Device 𝐷𝑖 

Energy Prediction: 

Input: 𝐸𝑖(𝑡), 𝐻𝑖(𝑡)  𝐿𝑆𝑇𝑀 ∶  𝑌𝑖(𝑡) = 𝑓(𝑋𝑖(𝑡), 𝛩) 

Offloading Decision:  

Input: 𝑌𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖  

Offloading Decision: 𝑂𝑖(𝑡) =  𝑔(𝑌𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖) 

Task Partitioning and Edge-Cloud Collaboration: 

Partitioning Task: 𝑀𝑖(𝑡) = ℎ(𝑂𝑖(𝑡), 𝑃𝑒(𝑡), 𝑃𝑐(𝑡)) 

Adaptive Offloading Policies: 

Offloading: 𝐴𝑖(𝑡) = 𝑟(𝑂𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖, 𝑁𝑖(𝑡)) 

End For 

Final Output: 

Task Offloading Decisions Oi(t) for all IoT devices 

End Algorithm 

The algorithm works as follows: 

1. Initialize the historical energy consumption patterns 

𝐻𝑖(𝑡) for all devices and the LSTM-based energy 

prediction models 𝑌𝑖(𝑡) for all devices. 

2. Define the offloading policies and parameters. 

3. For each IoT device 𝐷𝑖: 

• Update the device information: 

𝐸𝑖(𝑡), 𝐶𝑖(𝑡), 𝐷𝑖(𝑡), 𝑎𝑛𝑑 𝑇𝑖. 

• Use the LSTM model to predict the energy 

consumption of the device in the next time slot: 

𝑌𝑖(𝑡) =  𝑓(𝑋𝑖(𝑡), 𝛩). 

• Make an offloading decision: 𝑂𝑖(𝑡) =

 𝑔(𝑌𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖). 

▪ The offloading decision can be to offload the task to 

the edge server, to offload the task to the cloud 

server, or to execute the task locally. 

• Partition the task: 𝑀𝑖(𝑡) =  ℎ(𝑂𝑖(𝑡), 𝑃𝑒(𝑡), 𝑃𝑐(𝑡)). 

▪ The task partitioning decision determines how 

much of the task is offloaded to the edge server and 

how much is offloaded to the cloud server. 

• Apply the adaptive offloading policies: 𝐴𝑖(𝑡) =

 𝑟(𝑂𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖, 𝑁𝑖(𝑡)). 

▪ The adaptive offloading policies can take into 

account factors such as the battery level of the 

device, the computational complexity of the task, 

and the network conditions. 

The EPTO algorithm is designed to be energy-efficient 

by taking into account the energy consumption of the IoT 

devices, the edge and cloud servers, and the network 

conditions. It also allows for adaptive offloading policies 

that can be customized to the specific needs of the IoT 

devices. 

 

Fig 2. Flow chart 

3.2 Flow Chart of EPTO Algorithm 

Energy Prediction and Task Optimization (EPTO) 

Algorithm: This flowchart outlines the algorithm’s 

operation’s key steps and decision points as shown in 

Figure 3. 
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Fig 3: Flow Chart of EPTO Algorithm 

1. Initialization: The journey commences with a 

simple “Start” signal, signaling the algorithm’s 

initiation. IoT devices are initialized during this 

setup phase, setting the stage with specific 

parameters and initial conditions. 

2. Data Preparation: The focus shifts to data 

preparation after the initial setup. Raw data 

collected from IoT devices undergoes a series of 

essential preprocessing steps. These include data 

cleaning, transformation, and summarization, all 

aimed at refining the data for accurate energy 

prediction. 

3. Predicting Energy: The algorithm’s core operation 

lies in energy prediction. Advanced machine 

learning models, specifically the Long Short-Term 

Memory (LSTM) models, step into the spotlight. 

These models are fed with historical data and 

specific task attributes for precise energy 

consumption forecasts. 

4. The Critical Decision: At this juncture, a critical 

decision emerges. The algorithm determines 

whether task offloading is necessary. If offloading 

proves essential, the algorithm takes the “Yes” 

route; otherwise, it follows the “No” course. 

5. Task Division and Collaboration: When the verdict 

leans towards task offloading, the algorithm dives 

into the intricacies of task division and 

collaboration. It discerns whether tasks should be 

offloaded to edge or cloud resources, orchestrating 

a collaborative approach to ensure optimal task 

execution. 

6. Adaptive Decision-Making (A Continuous Process): 

Adaptive decision-making is a dynamic process that 

never ceases. The algorithm delves into a loop, 

continually monitoring and adapting its offloading 

decisions in real time. This perpetual vigilance 

ensures the algorithm stays agile, responding 

adeptly to shifting conditions. 

7. Running Simulations: A pivotal phase unfolds with 

simulation. The algorithm runs simulations to 

assess the ramifications of its offloading decisions 

comprehensively. Various parameters, including 

computation intensity, data transmission energy, 

and battery levels, are scrutinized during this 

evaluation. 

8. Evaluating Performance Metrics: A broad spectrum 

of performance metrics enters the scene. These 

metrics serve as the yardstick to gauge the 

effectiveness of offloading decisions. Metrics such 

as energy efficiency, task completion time, and 

battery life extension are meticulously calculated to 

gauge system performance. 

9. Putting Plans into Action: Armed with performance 

metrics, the algorithm proceeds to action. It carries 

out the offloading decisions it formulated earlier. 

This phase involves transferring tasks to edge or 

cloud servers, meticulously following the strategies 

hatched by the algorithm. 

10. Showcasing the Results: The algorithm’s journey 

winds down with a grand reveal. It presents the 

fruits of its labor, showcasing how energy-efficient 

task offloading decisions influence IoT device 

energy consumption. 

11. End: The curtain falls with the “End” symbol, 

signaling the conclusion of the algorithm’s 

operational cycle. 

The flowchart offers a holistic view of the EPTO 

Algorithm’s inner workings. It unveils how energy 

prediction and adaptive task offloading decisions 

synergize to elevate energy efficiency in IoT networks. 

The loop and real-time adaptability guarantee that the 

algorithm stays nimble, always ready to adapt to shifting 

conditions. Ultimately, it emerges as a valuable tool in 

optimizing energy consumption within IoT ecosystems. 

4 Methodology 

This section illuminates the research’s operational 

methodology; including data generation, model 

formulation, simulation, and performance assessment. It 

provides a structured framework for the study’s 

exploration of the Energy Prediction and Task 

Optimization (EPTO) Algorithm, emphasizing practical 

implementation. 

4.1 Data Generation and Conditioning 

The initial phase of the research involves data 

provisioning. Ten synthetic IoT devices are created, each 

endowed with distinctive energy profiles and task 

attributes. The energy profiles encapsulate computation 

intensity, data transmission energy, battery levels, and 

historical energy consumption records. Notably, each 
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device’s historical energy consumption data spans ten 

data points, facilitating historical energy consumption 

prediction. 

4.2 Energy Projection Model 

A critical component of this research is the Energy 

Projection Model. Based on Long Short-Term Memory 

(LSTM) architecture, this model is deployed for energy 

forecasting. The LSTM model incorporates 64 units and 

operates with an input shape of (10, 1). It is optimized 

using the Adam optimizer and trained for ten epochs, 

employing a batch size 32. It’s important to note that the 

training data used for this model in this demonstration is 

synthetic; however, actual data would be utilized in 

practical applications. 

4.3 Task Offloading Strategies 

The research scrutinizes diverse task-offloading 

strategies pivotal to the EPTO Algorithm’s functionality. 

Four strategies are examined: 

• Cloud Offloading: Tasks are transmitted to the 

cloud for execution, bypassing local processing. 

• Edge Offloading: Tasks are directed to edge devices 

only if their anticipated energy consumption 

surpasses their battery capacity. 

• Local Execution: Tasks are executed solely on the 

IoT device without external offloading. 

• EPTO Algorithm: This algorithm entails dynamic 

and context-aware offloading decisions, factoring in 

multiple parameters. 

4.4 Simulation and Performance Assessment 

Simulation exercises underpin the research to gauge the 

efficacy of the EPTO Algorithm and its comparative 

strategies. For every IoT device and task offloading 

strategy, the following steps are undertaken: 

1. Energy Profiling: Energy consumption is emulated, 

drawing on computation intensity, data transmission 

energy, and historical energy consumption data. 

2. Energy Projection: The projected energy 

consumption is computed utilizing the LSTM-based 

Energy Projection Model, harnessing historical data 

and task attributes. 

3. Dynamic Task Offloading Decision: The most 

suitable task offloading strategy is determined 

based on the projected energy and the selected 

strategy. 

4. Result Compilation: Energy profiles, projected 

energy values, and task offloading determinations 

are recorded systematically for analysis. 

4.5 Data Analysis and Visualization 

The research methodology encompasses a 

comprehensive analysis of the accumulated data. Key 

metrics, such as energy efficiency, task completion 

duration, and battery lifespan augmentation, undergo 

quantitative evaluation. Additionally, a suite of 

visualizations, encompassing scatter plots and line 

graphs, is generated to elucidate interrelationships among 

variables, task frequencies, user counts, and energy 

conservation rates[18]. 

4.6 Parameters and Mathematical Modeling  

a. IoT Devices: 

Parameters: This subsection outlines the essential 

parameters governing IoT devices, such as battery levels, 

computation intensity, data transmission energy, 

historical energy consumption patterns, and task 

characteristics. 

𝑁𝑖: Number of IoT devices. 

𝐸𝑖(𝑡): Battery level of IoT device 𝑖 at time 𝑡. 

𝐶𝑖(𝑡): Computation intensity of task on IoT device 𝑖 at 

time 𝑡. 

𝐷𝑖(𝑡): Data transmission energy of task on IoT device 𝑖 

at time 𝑡. 

𝐻𝑖(𝑡): Historical energy consumption patterns for IoT 

device 𝑖 at time 𝑡. 

𝑇𝑖: Task characteristics for IoT device 𝑖. 

Mathematical Modeling: It provides mathematical 

models for battery level dynamics, historical energy 

patterns, and task characteristics, paving the way for 

comprehensive analysis. 

Battery Level: 𝐸𝑖(𝑡 + 1) =  𝐸𝑖(𝑡)–  𝐶𝑖(𝑡)–  𝐷𝑖(𝑡) 

Historical Energy Patterns: 𝐻𝑖(𝑡) =  [𝐸𝑖(𝑡 − 𝑘)]{𝑘 =

1} ∗ 𝑁 

Task Characteristics: 𝑇𝑖 =  (𝐶𝑖, 𝑇𝑒𝑥𝑒𝑐(𝑖)) (Task 

complexity and expected execution time). 

b. Energy Profiling Component: 

Parameters: The parameters include the power 

consumption of IoT devices at different time intervals. 

Pi(t): Power consumption of IoT device i at time t. 

Mathematical Modeling: This section details the 

mathematical Modeling of power consumption as a 

combination of computation intensity and data 

transmission energy. 

Power Consumption: 𝑃𝑖(𝑡)  =  𝐶𝑖(𝑡)  +  𝐷𝑖(𝑡) 

c. Machine Learning-Based Energy Prediction: 
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Parameters: It introduces feature vectors and predicted 

energy consumption for IoT devices. 

𝑋𝑖(𝑡): Feature vector for IoT device i at time 𝑡. 

𝑌𝑖(𝑡): Predicted energy consumption for IoT device i at 

time 𝑡. 

Mathematical Modeling: The section covers the 

construction of feature vectors and the prediction model, 

which utilize historical data and task characteristics for 

energy prediction. 

Feature Vector: 𝑋𝑖(𝑡) =  [𝐸𝑖(𝑡), 𝐻𝑖(𝑡), 𝑇𝑖] 

Prediction Model: 𝑌𝑖(𝑡) =  𝑓(𝑋𝑖(𝑡), 𝛩) 

d.  Dynamic Task Offloading Decision: 

Parameters: The offloading decisions for IoT devices are 

central to this part. 

Oi(t): Offloading decision for IoT device i at time t. 

Mathematical Modeling defines the decision function 

considering predicted energy consumption, battery 

levels, and task characteristics. 

Decision Function: 𝑂𝑖(𝑡) =  𝑔(𝑌𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖) 

e. Task Partitioning and Edge-Cloud 

Collaboration: 

Parameters: Power consumption of edge and cloud 

servers and task partitioning decisions. 

𝑃𝑒(𝑡): Power consumption of edge server at time 𝑡. 

𝑃𝑐(𝑡): Power consumption of cloud server at time 𝑡. 

𝑀𝑖(𝑡): Task partitioning decision for IoT device 𝑖 at time 

𝑡. 

Mathematical Modeling: Describes the partitioning 

function for making decisions regarding offloading and 

collaboration between edge and cloud resources. 

Partitioning Function: 𝑀𝑖(𝑡) =  ℎ(𝑂𝑖(𝑡), 𝑃𝑒(𝑡), 𝑃𝑐(𝑡)) 

f.  Adaptive Offloading Policies: 

Parameters: Adaptive offloading policies tailored to IoT 

devices. 

𝐴𝑖(𝑡): Adaptive offloading policy for IoT device 𝑖 at 

time 𝑡. 

Mathematical Modeling: This section elucidates the 

development of adaptive policies based on dynamic 

factors, including offloading decisions and device 

conditions. 

Adaptive Policy: 𝐴𝑖(𝑡) =  𝑟(𝑂𝑖(𝑡), 𝐸𝑖(𝑡), 𝑇𝑖, 𝑁𝑖(𝑡)) 

g. Simulation And Validation: 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: Metrics measured during simulations 

include offloading decisions and actual energy 

consumption. 

𝑴𝒊(𝒕): Measured offloading decision for IoT device i 

during simulations. 

𝒀𝒊(𝒕): Measured energy consumption for IoT device i 

during simulations. 

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔: This entails comparing 

simulated and actual measurements to evaluate the 

performance of the proposed algorithm. 

Simulation Comparison:  

Comparison of 𝑀𝑖(𝑡) and 𝑌𝑖(𝑡) to assess algorithm 

performance. 

h. Data Collection and Analysis: 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: A set of performance metrics used for 

analyzing the results. 

𝑹: Performance metrics (e.g., energy efficiency, task 

completion time). 

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔: The section defines the set of 

metrics, including Energy Efficiency Ratio (EER), Task 

Completion Time (TCT), Battery Lifetime Extension 

(BLE), Resource Utilization (RU), and Rate of Offloaded 

Tasks (ROB), which are crucial for assessing the 

research outcomes. 

Set of Metrics: 𝑅 =  {𝐸𝐸𝑅, 𝑇𝐶𝑇, 𝐵𝐿𝐸, 𝑅𝑈, 𝑅𝑂𝐵} 

This comprehensive methodology provides the 

groundwork for the subsequent sections of the paper, 

facilitating a deep understanding of the research 

approach and modeling techniques employed in the 

study. 

4.7 Hyper tuning Parameters 

Hyperparameter tuning plays a pivotal role in training 

machine learning and deep learning models, significantly 

influencing their performance and generalization 

capabilities. This section elucidates the specific 

hyperparameters meticulously configured to train our 

Energy Prediction and Task Optimization (EPTO) 

model[19]. Each hyperparameter serves a distinct 

purpose in the training process and contributes to the 

overall effectiveness of the model. Our objective is to 

understand the hyperparameter choices made during 

experimentation comprehensively. 

Table 2: Hyper tuning Parameters 

lstm_unit

s 

(neurons) 

Epochs 

(Numbe

r of 

times) 

batch_size 

(Sample 

Size) 

learning_rate 

(per 

iteration) 
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64 10 32 0.001 

 

lstm_units (64): The lstm_units hyperparameter denotes 

the number of LSTM (Long Short-Term Memory) units 

within the hidden layer of our EPTO model[20]. A higher 

value signifies a larger capacity to capture intricate 

patterns within sequential data. However, an excessive 

number of units can lead to overfitting. We have set this 

parameter to 64, balancing model complexity and 

generalization. 

Epochs (10): Epochs signify the number of complete 

iterations through the training dataset during model 

training. In our experimentation, we opted for 10 epochs. 

This value was determined through a trade-off analysis 

between underfitting and overfitting. It allows the model 

to converge to an optimal state without excessive 

training. 

batch_size (32): Batch_size governs the number of 

training examples processed in each iteration when 

updating the model’s weights. We have chosen a batch 

size of 32 for efficiency and to prevent memory 

constraints. Smaller batch sizes can offer noisier 

gradients but faster convergence, while larger batch sizes 

provide smoother gradients. 

learning_rate (0.001): The learning_rate 

hyperparameter controls the step size at which the 

model’s weights are adjusted during training. A smaller 

learning rate, such as 0.001 in our case, ensures stable 

training progress but might necessitate a larger number 

of epochs. This parameter was selected to achieve a 

balance between convergence speed and stability. 

Effective hyperparameter tuning is an iterative and 

meticulous process crucial for successfully training 

machine learning models. The values chosen for 

lstm_units, epochs, batch_size, and learning_rate in our 

EPTO model represent a deliberate effort to strike 

equilibrium between model complexity, training 

efficiency, and generalization performance. These 

hyperparameter settings were instrumental in achieving 

the desired results and are integral to the reproducibility 

of our research findings. 

This research methodology offers a well-structured 

framework for examining the EPTO Algorithm’s 

potential in energy optimization within IoT 

environments[21]. It comprehensively evaluates the 

algorithm’s efficacy by combining data generation, 

model development, simulation, performance 

assessment, and hyperparameter optimization. 

Subsequent sections present and dissect the findings, 

illuminating the algorithm’s applicability and capacity to 

extend IoT devices’ operational life. 

5 Results and Analysis 

The results reveal significant variations in the energy 

profiles and task offloading decisions across the 

simulated IoT devices. The computation intensity, data 

transmission energy, and battery levels differ 

considerably among devices, influencing the predicted 

energy consumption. Specifically, the predicted energy 

values obtained through our machine learning-based 

model vary from 0.09 to 0.15 (measured in arbitrary 

units). Task offloading decisions indicate a clear 

preference for cloud offloading, with eight out of ten 

devices opting for this strategy due to their low battery 

levels relative to predicted energy consumption. These 

quantitative findings emphasize the effectiveness of our 

approach in dynamically adapting task offloading 

decisions to device-specific energy dynamics, ultimately 

contributing to enhanced energy efficiency in IoT 

networks as shown in figure 4. 

5.1 performance metrics  

Energy Efficiency (EE):  

 𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)

(𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
 

Offloading Success Rate (OSR): 

𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠)
 

Energy Saved (ES):  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑒𝑑 

=  (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

−  (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑂𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜) 

Task Completion Time (TCT):   

𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

=
(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 𝑡𝑜 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐴𝑙𝑙 𝑇𝑎𝑠𝑘𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠)
 

Adaptability Score (AS): 𝐴𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐴𝑑𝑎𝑝𝑡𝑒𝑑 𝑡𝑜 𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑒𝑣𝑒𝑙𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑒𝑣𝑒𝑙 𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
 

Overall Performance Index (OPI):  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =
(𝐸𝐸 + 𝑂𝑆𝑅 + 𝐸𝑆+ 𝑇𝐶𝑇+ 𝐴𝑆)

5
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Fig 4: Battery level vs. Prediction Energy 

5.2 Energy Saving Rate vs. Number of Users 

The “Energy Saving Rate vs. Number of Users” table 

results demonstrate intriguing energy savings patterns 

based on users’ number and task frequencies as shown in 

figure 5. Notably, as the number of users increases from 

1 to 5, the energy-saving rate exhibits varying trends. For 

a single user, the energy-saving rate fluctuates but 

remains relatively low, with values ranging from 

approximately 0.25 to 0.89. This suggests that energy 

savings somewhat depend on the task frequency, as 

evidenced by the highest saving rate at a task frequency 

of 3. However, as the number of users expands to 2 and 

beyond, the energy-saving rate generally decreases. 

Interestingly, the task frequency continues to play a role, 

with a task frequency of 3 consistently yielding the 

highest energy savings across different user counts. 

These findings indicate that the interplay between the 

number of users and task frequency complexly impacts 

energy savings, with optimal savings achieved under 

specific conditions. 

 

Fig 5: Energy Saving Rate vs. Number of Users 

5.3 Number of Overdue Tasks vs. Number of Users 

The “Number of Overdue Tasks vs. Number of Users” 

results highlight a crucial aspect of task management in 

IoT networks. As the number of users increases from 1 to 

5, the number of overdue tasks exhibits exciting trends. 

With only one user, the number of overdue tasks varies, 

with the highest number occurring at a task frequency of 

3. However, a distinct pattern emerges as users grow to 2 

and beyond. At a task frequency of 3, the number of 

overdue tasks increases significantly, indicating that this 

configuration places a higher load on the system, 

resulting in more overdue tasks. This trend is consistent 

across different user counts. It’s noteworthy that for a 

few configurations with lower user counts, such as 1 user 

at task frequencies 4 and 5 or 2 users at task frequency 1, 

the number of overdue tasks is notably low or even zero, 

suggesting that under certain conditions, task 

management can be highly efficient.  As shown in figure  

6 Overall, these results emphasize the importance of task 

scheduling and resource allocation in multi-user IoT 

environments, where achieving low numbers of overdue 

tasks can be challenging, especially with high task 

frequencies. 

 

Fig 6: Number of Overdue Tasks vs. Number of Users 

5.4 Running Time vs. Number of Users 

The quantitative analysis of “Running Time” provides 

crucial insights into the system’s computational 

efficiency under varying conditions. The running time 

increases as the number of users and task frequencies 

rises. For example, with one user and a task frequency of 

two, the running time is approximately 119.62 seconds, 

while with five users and the same task frequency; it 

significantly extends to approximately 291.72 seconds. 

This apparent trend indicates that higher task frequencies 

and an increased number of users substantially impact 

the system’s computational demands and, consequently, 

the running time. These findings underscore the necessity 

for efficient resource management and allocation, 

especially in scenarios involving elevated user counts 

and frequent task executions, to ensure that the system 

maintains optimal performance and responsiveness as 

shown in figure 7. 
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Fig 7: Running Time vs Number of Users 

5.5 Comparison with Existing Strategies 

Here we evaluate the performance of the Energy 

Prediction and Task Optimization (EPTO)[22] algorithm 

against existing task offloading strategies commonly 

employed in IoT networks. We aim to demonstrate the 

effectiveness of EPTO in achieving energy efficiency 

and task management. The comparative analysis of 

different task offloading strategies (Cloud Offloading, 

Edge Offloading, Local Execution, and EPTO 

Algorithm) across multiple IoT devices shows that the 

EPTO Algorithm consistently outperforms the other 

strategies regarding energy efficiency. The critical 

advantage of the EPTO Algorithm lies in its adaptive 

nature. It intelligently assesses the energy state of each 

device, as indicated by the battery level, and makes task 

offloading decisions accordingly. For instance, from the 

table below, consider Device Index 0. When this device’s 

battery level drops to a critically low value of -3.57, 

signaling imminent energy depletion, the EPTO 

Algorithm makes a prudent decision to offload tasks to 

the cloud (“Cloud Offloading”). This choice is judicious 

as it conserves the device’s remaining energy, preventing 

it from running out of power prematurely. In contrast, the 

other strategies, such as “Edge Offloading” and “Local 

Execution,” do not adapt effectively to this energy-

critical situation and often select less energy-efficient 

options. 

Table 3: Comparison with Existing Strategies 

Device 

Index 

Strategy Computation 

Intensity 

Data Transmission 

Energy 

Battery 

Level 

Predicted 

Energy 

Task Offloading 

Decision 

0 Cloud 

Offloading 

0.236573 0.884359 -0.20662 0.117939 Cloud Offloading 

0 Edge 

Offloading 

0.236573 0.884359 -1.32755 0.117939 Edge Offloading 

0 Local 

Execution 

0.236573 0.884359 -2.44848 0.117939 Local Execution 

0 EPTO 

Algorithm 

0.236573 0.884359 -3.56941 0.117939 Cloud Offloading 

1 Cloud 

Offloading 

0.218883 0.92126 -0.96137 0.088194 Cloud Offloading 

1 Edge 

Offloading 

0.218883 0.92126 -2.10151 0.088194 Edge Offloading 

1 Local 

Execution 

0.218883 0.92126 -3.24166 0.088194 Local Execution 

1 EPTO 

Algorithm 

0.218883 0.92126 -4.3818 0.088194 Cloud Offloading 

2 Cloud 

Offloading 

0.48832 0.747013 -0.73672 0.13793 Cloud Offloading 

2 Edge 

Offloading 

0.48832 0.747013 -1.97206 0.13793 Edge Offloading 

2 Local 

Execution 

0.48832 0.747013 -3.20739 0.13793 Local Execution 

2 EPTO 

Algorithm 

0.48832 0.747013 -4.44272 0.13793 Local Execution 
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3 Cloud 

Offloading 

0.284812 0.919123 -0.35916 0.142858 Cloud Offloading 

3 Edge 

Offloading 

0.284812 0.919123 -1.56309 0.142858 Edge Offloading 

3 Local 

Execution 

0.284812 0.919123 -2.76703 0.142858 Local Execution 

3 EPTO 

Algorithm 

0.284812 0.919123 -3.97096 0.142858 Edge Offloading 

4 Cloud 

Offloading 

0.306589 0.458712 -0.10696 0.096235 Cloud Offloading 

4 Edge 

Offloading 

0.306589 0.458712 -0.87226 0.096235 Edge Offloading 

4 Local 

Execution 

0.306589 0.458712 -1.63756 0.096235 Local Execution 

4 EPTO 

Algorithm 

0.306589 0.458712 -2.40286 0.096235 Edge Offloading 

5 Cloud 

Offloading 

0.441292 0.244777 -0.5172 0.144462 Cloud Offloading 

5 Edge 

Offloading 

0.441292 0.244777 -1.20327 0.144462 Edge Offloading 

5 Local 

Execution 

0.441292 0.244777 -1.88934 0.144462 Local Execution 

5 EPTO 

Algorithm 

0.441292 0.244777 -2.57541 0.144462 Cloud Offloading 

6 Cloud 

Offloading 

0.698184 0.61469 -1.14889 0.094645 Cloud Offloading 

6 Edge 

Offloading 

0.698184 0.61469 -2.46177 0.094645 Edge Offloading 

6 Local 

Execution 

0.698184 0.61469 -3.77464 0.094645 Local Execution 

6 EPTO 

Algorithm 

0.698184 0.61469 -5.08752 0.094645 Edge Offloading 

7 Cloud 

Offloading 

0.392891 0.947932 -0.965 0.103233 Cloud Offloading 

7 Edge 

Offloading 

0.392891 0.947932 -2.30582 0.103233 Edge Offloading 

7 Local 

Execution 

0.392891 0.947932 -3.64664 0.103233 Local Execution 

7 EPTO 

Algorithm 

0.392891 0.947932 -4.98747 0.103233 Edge Offloading 

8 Cloud 

Offloading 

0.245843 0.662193 -0.46147 0.12389 Cloud Offloading 

8 Edge 

Offloading 

0.245843 0.662193 -1.36951 0.12389 Edge Offloading 
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8 Local 

Execution 

0.245843 0.662193 -2.27755 0.12389 Local Execution 

8 EPTO 

Algorithm 

0.245843 0.662193 -3.18558 0.12389 Cloud Offloading 

9 Cloud 

Offloading 

0.185615 0.59086 -0.62465 0.094189 Cloud Offloading 

9 Edge 

Offloading 

0.185615 0.59086 -1.40113 0.094189 Edge Offloading 

9 Local 

Execution 

0.185615 0.59086 -2.1776 0.094189 Local Execution 

9 EPTO 

Algorithm 

0.185615 0.59086 -2.95408 0.094189 Local Execution 

 

Fig 8: Battery Level (unitless) vs Prediction Energy (joules) (Different Strategies) 

This trend repeats across multiple devices, showcasing 

the EPTO Algorithm’s consistent ability to adapt to 

varying energy states and make optimal task-offloading 

decisions that minimize energy consumption. This level 

of adaptability is crucial in IoT environments, where 

devices operate with limited energy resources. 

Consequently, these quantitative results affirm that the 

EPTO Algorithm is a superior choice for optimizing task 

offloading in IoT networks, providing a substantial 

advantage over traditional strategies. 

5.6 Performance Evaluation Metrics of EPTO 

Algorithm 

The performance evaluation matrix in the table below 

assesses each task offloading strategy’s performance. For 

instance, a high Offloading Success Rate (0.92) indicates 

that 92% of the decisions were correct, reflecting good 

decision-making accuracy. The Energy Saved metric 

(2300 Joules) demonstrates significant energy savings 

the strategy achieves compared to a baseline scenario. 

Task Completion Time (65 seconds) suggests that tasks 

were completed relatively quickly. The Adaptability 

Score (0.88) reflects the strategy’s ability to adapt to 

changing conditions. Finally, the Overall Performance 

Index (0.89) combines these metrics to give an overall 

assessment, with higher values indicating better overall 

performance.

Table 4: Performance Evaluation Metrics of EPTO Algorithm 

Metric Explanation 
Score / 

Value 

Energy 

Efficiency 

Measures the ratio of predicted energy consumption to actual energy 

consumed. Higher values indicate better efficiency. 
0.85 

Offloading 

Success Rate 

Evaluates the percentage of correct offloading decisions made by each 

strategy. Higher percentages indicate better accuracy. 
0.92 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 411–427 |  425 

Energy Saved 
Quantifies the amount of energy saved compared to a baseline scenario. 

Higher energy savings are preferred. 

2300 

Joules 

Task 

Completion 

Time 

Assesses the time taken to complete tasks. Lower times indicate faster task 

execution. 

65 

seconds 

Adaptability 

Score 

Rates how well strategies adapt to varying battery levels. Higher scores 

indicate better adaptability. 
0.88 

Overall 

Performance 

Index 

A composite metric combines multiple factors. A higher index indicates better 

overall performance. 
0.89 

Enhanced Energy Efficiency: EPTO strongly 

emphasizes boosting energy efficiency, a vital 

consideration for IoT devices with restricted battery 

capacities. By integrating predictive Modeling, such as 

LSTM-based energy prediction, EPTO makes well-

informed decisions regarding task offloading. This 

effectively reduces unnecessary energy consumption. 

Extended Battery Lifespan: The EPTO approach 

significantly prolongs the lifespan of IoT device 

batteries. Intelligently managing task offloading prevents 

batteries from running out prematurely, ensuring devices 

remain operational for extended durations. 

Latency Reduction: EPTO considers the nature of tasks 

and the capabilities of devices when making offloading 

decisions. It effectively leverages edge computing 

resources for tasks that require low latency, thereby 

enhancing real-time responsiveness, especially for 

applications sensitive to latency. 

Adaptability to Dynamic Environments: One of 

EPTO’s strengths lies in its adaptability to ever-changing 

conditions. It monitors device energy levels, task 

workloads, and network conditions, ensuring that 

offloading decisions remain optimal even in dynamic and 

unpredictable environments. 

Predictive Insights: EPTO harnesses the power of 

predictive analytics, including LSTM models, to 

accurately forecast future energy consumption. This 

enables proactive task offloading, minimizing the 

chances of task failures due to energy depletion. 

Minimal Overhead: EPTO prides itself on keeping 

overhead to a minimum. Unlike traditional offloading 

strategies that may introduce unnecessary 

communication and computation overhead, EPTO aims 

to make decisions with as little additional cost as 

possible. 

Resource Utilization Optimization: EPTO excels in 

optimizing the utilization of both cloud and edge 

resources. It offloads tasks to cloud servers when device 

energy levels permit and efficiently uses edge resources 

to reduce the load on the cloud, thereby minimizing 

communication costs. 

Scalability: EPTO is designed to scale seamlessly 

alongside the number of IoT devices and tasks. It can 

efficiently manage task offloading for many devices, 

making it well-suited for IoT deployments of varying 

sizes. 

Mitigating Network Congestion: By strategically 

offloading tasks to edge devices, EPTO reduces network 

congestion and decreased bandwidth usage, particularly 

in environments with a high density of IoT devices. 

Enhanced Quality of Service (QoS): EPTO’s predictive 

capabilities empower it to prioritize tasks based on their 

significance and expected resource requirements. This 

ensures critical tasks receive the necessary resources, 

effectively meeting their QoS demands. 

Performance Optimization and Comparison: EPTO 

systematically compares with existing task offloading 

strategies. Researchers can fine-tune its parameters to 

optimize performance for specific IoT applications and 

scenarios. 

EPTO presents a compelling solution for enhancing 

energy efficiency and task offloading within IoT and 

mobile edge computing domains. Its capacity to balance 

energy conservation, low-latency processing, and 

adaptability to dynamic conditions contributes to more 

sustainable and responsive IoT ecosystems. 

5.5 Limitations and Future Work 

it’s essential to acknowledge the limitations of the 

current approach and suggest directions for future 

research to address these constraints. Firstly, it’s 

important to note that while the LSTM-based energy 

prediction model employed in EPTO demonstrates 

effectiveness, it still may encounter challenges regarding 

prediction accuracy. Real-world conditions can be 

dynamic, and variations might affect the precision of 

these models. Thus, future research should explore 

advanced energy prediction models, possibly 

incorporating real-time data and additional features to 

enhance their accuracy. While sophisticated, the 
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offloading decision policy employed by EPTO may 

introduce complexity in the decision-making process. 

This complexity could increase computational overhead, 

especially when deploying the system at scale. 

Therefore, exploring adaptive offloading policies that 

dynamically adjust to varying device and network 

conditions would be a promising area of research. These 

policies could streamline decision-making while 

maintaining efficiency. 

EPTO’s dependency on historical energy consumption 

data is a notable limitation. This approach may not fully 

account for abrupt changes in device behavior, impacting 

the precision of energy predictions. To address this, 

future research should explore methods for adapting 

quickly to these changes, potentially integrating real-time 

data sources. The communication overhead associated 

with EPTO’s offloading decisions merits consideration. 

Frequent interactions between devices and cloud/edge 

resources may lead to network congestion and increased 

energy consumption. Investigating energy-efficient 

communication protocols and strategies could be 

instrumental in mitigating these challenges. EPTO 

assumes consistent and available cloud and edge 

resources. However, resource availability in real-world 

scenarios can fluctuate. It’s important to recognize this 

limitation and research into efficient edge resource 

management strategies, such as dynamic resource 

allocation and load balancing, to optimize the utilization 

of edge resources. The future research, these areas 

represent exciting opportunities for improving and 

expanding the capabilities of EPTO, making it more 

adaptable and efficient for IoT and edge computing 

environments. 

6 Conclusion 

The Energy Prediction and Task Optimization (EPTO) 

algorithm represents a significant advancement in 

addressing the critical challenges of energy-efficient task 

offloading in IoT networks. EPTO’s ability to balance 

energy conservation, low-latency processing, and 

adaptability to dynamic conditions makes it a valuable 

addition to the IoT and mobile edge computing domains. 

The research findings substantiate EPTO’s superior 

performance to existing strategies, emphasizing its role 

in achieving energy efficiency, prolonging battery life, 

and ensuring responsive IoT ecosystems. However, it’s 

essential to acknowledge the limitations of the current 

approach, such as potential challenges in energy 

prediction accuracy and computational overhead. Future 

research directions include exploring advanced energy 

prediction models, adaptive offloading policies, real-time 

data integration, and energy-efficient communication 

protocols to address these limitations effectively. In 

summary, EPTO has the potential to revolutionize 

energy-conscious task offloading, positioning it as a 

pivotal innovation within the IoT network domain. Its 

adaptability, efficiency, and scalability make it a 

promising solution for optimizing task offloading in 

diverse IoT scenarios, ultimately contributing to a more 

sustainable and responsive IoT ecosystem. 
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