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Abstract: In the realm of medical image analysis, accurate classification of COVID-19 from radiological imaging remains a critical 

challenge. Leveraging the complementary strengths of deep sequential learning and ensemble methods, this research presents a novel 

approach that amalgamates Bidirectional Gated Recurrent Units (Bi-GRU) with Random Forest to achieve precise COVID-19 classification 

with Adam optimization. The proposed method capitalizes on the distinctive features extracted from chest X-rays and CT scans, exploiting 

the inherent sequential dependencies in these multi-modal imaging modalities. The Bi-GRU component serves as a potent feature extractor, 

enabling the model to capture intricate spatial and temporal patterns within the images. Subsequently, the extracted features are harnessed 

by the Random Forest ensemble, harnessing its ability to refine decision boundaries and enhance generalization. Empirical evaluation of 

the developed framework underscores its efficacy. Leveraging a comprehensive dataset, the approach achieves remarkable classification 

accuracy rates of 98.87% for chest X-ray images and 89.21% for CT scans. This substantiates the capacity of the proposed fusion model 

to discern even nuanced distinctions within the complex radiological data. The synergy between Bi-GRU and Random Forest not only 

significantly elevates classification performance but also contributes to interpretable insights. Through feature importance analysis, the 

model uncovers salient regions and temporal dynamics in the images that play pivotal roles in accurate COVID-19 classification. This 

research extends the horizons of medical image analysis by showcasing the potential of integrating deep sequential information with 

ensemble learning methodologies. The presented approach not only advances the current state-of-the-art in COVID-19 classification but 

also offers a versatile framework applicable to other medical image analysis tasks. 
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1. Introduction 

The global outbreak of the COVID-19 pandemic has 

catalyzed a pressing need for accurate and rapid 

diagnostic solutions. Among the diverse approaches to 

diagnosis, medical imaging has emerged as a crucial tool 

for identifying and characterizing the lung abnormalities 

associated with COVID-19[1], [2]. Computed 

Tomography (CT) scans and chest X-rays have proven 

instrumental in revealing the distinct patterns indicative of 

the disease's presence. However, the evolving nature of 

the pandemic necessitates the development of 

sophisticated techniques that can expedite the diagnostic 

process without compromising accuracy. This has sparked 

a surge of interest in the fusion of advanced machine 

learning methodologies with radiological imaging to 

enhance COVID-19 classification performance. 

The challenge lies in effectively harnessing the inherent 

complexities of radiological data. The structural 

intricacies of lung tissues and the varying manifestations 

of COVID-19 make traditional analytical methods 

inadequate for precise diagnosis. To address this, 

researchers have turned to deep learning techniques, 

which have demonstrated remarkable capabilities in 

handling complex and unstructured medical images[3], 

[4]. 

Convolutional Neural Networks (CNNs) have garnered 

substantial attention for their image recognition prowess. 

However, the spatial dependencies captured by CNNs 

might not fully exploit the temporal evolution of COVID-

19 in sequential images. Recurrent Neural Networks 

(RNNs) and their derivatives, such as Long Short-Term 

Memory (LSTM) and Bidirectional Gated Recurrent 

Units (Bi-GRU), present an opportunity to harness the 

temporal dynamics in radiological sequences[5]. These 

models are inherently designed to capture sequential 

patterns, making them particularly suitable for 

applications like COVID-19 classification from time-

series imaging data. 

In parallel, ensemble learning methodologies, like 

Random Forest, have emerged as effective strategies for 

improving classification accuracy by aggregating the 

insights of diverse models. The potential of fusing the 

strengths of deep sequential learning models and 

ensemble techniques for medical image analysis remains 

largely unexplored, especially in the context of COVID-

19 classification[6], [7]. 

1Raisoni Centre for Research and Innovation 

G. H. Raisoni University, Amravati, India 

mkasudani@gmail.com  
2Raisoni Centre for Research and Innovation G. H. Raisoni 

University,Amravati, India  

neeraj.sahu@ghru.edu.in 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 94–101 |  95 

This research endeavors to bridge this gap by proposing a 

novel fusion approach that amalgamates the power of Bi-

GRU, which excels in capturing bidirectional temporal 

relationships, with the ensemble capability of Random 

Forest. The integration of these two techniques aims to not 

only enhance classification accuracy but also provide 

interpretable insights into the decision-making process of 

the model. 

Considering this, the primary objectives of this study are 

twofold: firstly, to explore the effectiveness of the 

proposed Bi-GRU and Random Forest fusion model in 

accurately classifying COVID-19 from both chest X-ray 

and CT images; and secondly, to investigate the 

interpretability of the model's classifications through 

feature importance analysis. To comprehensively evaluate 

the performance of the proposed model, a comparative 

study is conducted against established CNN, LSTM, and 

RNN models. The evaluation is based on a diverse set of 

metrics, including “accuracy, precision, recall, Matthews 

Correlation Coefficient” (MCC), and “Kappa score”. 

By amalgamating the capabilities of deep sequential 

learning with ensemble techniques, this study aims to 

contribute significantly to the ongoing efforts to combat 

COVID-19 through improved and interpretable diagnostic 

methodologies. The subsequent sections delve into the 

intricate details of the proposed methodology, 

experimental setups, results, and discussions, ultimately 

culminating in a comprehensive assessment of the 

proposed fusion model's potential to redefine COVID-19 

classification through radiological image analysis. 

2. Literature Review 

The response to the COVID-19 pandemic has prompted 

extensive research into accurate diagnostic tools, 

particularly in medical imaging. Numerous studies have 

explored machine learning techniques, especially deep 

learning, to identify COVID-19 patterns in radiological 

images. These investigations have used diverse datasets 

and methods, with transfer learning being a prominent 

strategy. However, the need for hybrid models that merge 

strengths from various approaches is evident to achieve 

optimal accuracy, and optimizing these models is crucial 

for their convergence. Table-1 reviews the major related 

work 

Table 1 Major related work 

Author et al. Methodology Algorithm used Results 

Minaee et al.[8]  Transfer learning Deep convolutional neural 

network (CNN) 

ACC.= 93.5% 

Jain et al.[9] Transfer learning CNN ACC.= 91.7% 

Rohila et al.[10]  Transfer learning CNN ACC.= 94.2% 

Jalali et al.[11]  Evolutionary deep 

learning 

CNN ACC.= 92.5% 

Kumar et al.[12]  Transfer learning Object detection 

algorithm (YOLOv4-tiny) 

ACC.= 92.3% 

Hosseinzadeh et al.[13] Deep multi-view 

feature learning 

CNN ACC.= 90.9% 

Emin-Sahin et al.[14] Deep learning CNN ACC.= 91.2% 

Fang et al.[15] Mixed dataset CNN ACC.= 93.2% 

Kumar et al.[16]  Transfer learning Hybrid deep learning 

approach 

ACC.= 91.8% 

Cao et al.[17]  Transfer learning CNN ACC.= 92.1% 

Narayan Das et al.[18]  Transfer learning CNN ACC.= 91.5% 

Hussein et al.[19]  Lightweight CNN CNN ACC.= 90.8% 

Deeb et al.[20]  Adjacent-pooling 

CTScan-COVID-19 

classifier 

CNN ACC.= 93.7% 

Ghassemi et al.[21]  CycleGAN and 

transfer learning 

CNN ACC.= 94.1% 

Soundrapandiyan et al.[22]  Wavelet and stacked 

deep learning 

architecture 

CNN ACC.= 91.9% 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 94–101 |  96 

The literature review highlights the diversity of 

approaches to COVID-19 classification using imaging 

data. While several studies show promising results, there 

remains room for improvement. The proposition of hybrid 

models that combine methodologies holds potential for 

enhanced accuracy. Effective optimization is key to 

integrating these hybrid models successfully. Such models 

could offer improved accuracy and robustness, addressing 

the complexity of COVID-19 diagnosis from radiological 

images. The proposed fusion model aims to contribute 

significantly to this endeavor. 

3. Methodology 

The methodology employed in this study involves a 

structured approach to COVID-19 detection using chest 

X-ray and CT images. The process begins with data 

collection, followed by comprehensive preprocessing 

techniques such as resizing, normalization, and 

augmentation to enhance the quality and diversity of the 

dataset. Different model architectures, including CNN, 

LSTM, RNN and the proposed hybrid model “Bi-GRU + 

Random Forest”, are leveraged for feature extraction and 

pattern recognition. The utilization of ensemble learning, 

specifically the Random Forest, further enhances model 

performance. The integration of Adam optimization 

optimizes the learning process, accelerating convergence. 

Evaluation metrics including “accuracy, precision, recall, 

MCC, and Kappa score” are employed to quantify model 

performance. The methodology also encompasses 

experimental setup, hyperparameter tuning, and cross-

validation to ensure robustness as shown in fig.1. 

 

Fig. 1 Proposed methodology 

i. Dataset 

• The 1st dataset used "COVID-19 Radiography 

Database[23]" which is a comprehensive collection 

of radiographic images encompassing chest X-rays 

and CT scans. Designed to aid in the research and 

analysis of COVID-19 diagnosis, the dataset 

amalgamates a variety of COVID-19-positive and 

non-COVID-19 cases, including bacterial and viral 

pneumonia, as well as healthy controls. With its 

diverse array of imaging modalities and annotated 

labels, this dataset serves as a valuable resource for 

the development and evaluation of machine learning 

models, enabling researchers to devise effective 

methodologies for automated COVID-19 detection 

and differentiation based on radiological images as 

shown in fig.2. 
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fig. 2 Sample Chest X-Ray 

 

• The 2nd dataset used is "COVID-19 CT Scans[24]" 

which offers a comprehensive collection of 

computed tomography (CT) scan images. This 

dataset is specifically tailored for the study of 

COVID-19, comprising both positive cases of the 

virus and non-COVID-19 instances, such as normal 

and pneumonia cases as shown in fig.3. With labeled 

annotations and a range of imaging variations, the 

dataset provides a valuable resource for researchers 

aiming to investigate and develop machine learning 

models for automated COVID-19 detection and 

classification using CT images. It holds significant 

potential in advancing the understanding and 

diagnosis of the disease through medical imaging 

analysis. 

 

 

fig. 3 Sample CT image 

ii. Data Pre-Processing 

Preprocessing Methods for X-ray Images: 

• Image Resizing and Normalization: Resizing the 

chest X-ray images to a consistent resolution reduces 

variations in image sizes, ensuring uniformity for 

model training. Normalizing pixel values to a 

standard range [0, 1] enhances model convergence 

and minimizes the impact of lighting and contrast 

variations. 

• Data Augmentation: Applying data augmentation 

techniques, such as rotation, horizontal/vertical flips, 

and random cropping, introduces diversity into the 

training dataset. Augmentation mitigates overfitting 

and enables the model to better generalize to unseen 

X-ray images, accounting for potential patient 

positioning differences and variations in X-ray 

machines. 

 

Preprocessing Methods for CT Scan Images: 

• Hounsfield Unit (HU) Conversion: CT scans are 

captured in Hounsfield Units, which represent tissue 

densities. Converting these units to an appropriate 

range [-1000, 1000] aids in visual consistency and 

ensures that structures of interest fall within a 

standardized intensity range. 

iii. Algorithm Used 

CNN (Convolutional Neural Network): 

CNNs are deep learning architectures designed for image 

processing tasks. They consist of convolutional layers that 

automatically learn hierarchical features from images by 

applying convolution operations. These layers are 

followed by pooling layers to down-sample the learned 

features and fully connected layers for classification. The 

output of a conv. Layer is represented as eq.1 
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𝐶(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑  𝑀
𝑚=1 ∑ 𝐼(𝑖 + 𝑚, 𝑗 +𝑁

𝑛=1

𝑛). 𝐾(𝑚, 𝑛)…1 

 

where, 𝐶(𝑖, 𝑗) = “output at position (i, j)”, I = “Input 

image”, K= “Conv. Kernel”, M and N= “dimensions of the 

kernel” 

LSTM (Long Short-Term Memory): 

LSTM is a type of recurrent neural network (RNN) 

designed to capture long-range dependencies in sequential 

data. It introduces memory cells and gating mechanisms 

to control information flow, allowing LSTMs to mitigate 

vanishing gradient problems in training RNNs. The update 

of the memory cell in an LSTM is defined as in eq.2. 

 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝐶̃𝑡…2 

where, 𝐶𝑡= “memory cell at time t”, 𝑓𝑡= “forgot gate 

output”, 𝑖𝑡 = “input gate output”,  𝐶̃𝑡= “new candidate cell 

content”, ⨀ = “element wise multiplication”. 

RNN (Recurrent Neural Network): 

RNNs are a class of neural networks designed for 

processing sequential data by maintaining a hidden state 

that captures temporal information. However, traditional 

RNNs can suffer from vanishing gradient problems due to 

long sequences, leading to loss of information. The hidden 

state update in a RNN is defines as eq.3. 

ℎ𝑡 = 𝜎(𝑊𝑖ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 +  𝑏ℎ)…3 

where, ℎ𝑡= “hidden state at time t”, 𝑥𝑡= “input at time t”, 

𝑊𝑖ℎ  𝑎𝑛𝑑 𝑊ℎℎ= “weight metrices”, 𝑏ℎ= “bias term”, 𝜎 = 

“activation function”. 

Proposed Model (Bi-GRU + Random Forest): 

The proposed model fuses the power of Bidirectional 

Gated Recurrent Units (Bi-GRU) with the ensemble 

learning capability of Random Forest. Bi-GRU captures 

temporal dependencies bidirectionally, and Random 

Forest aggregates predictions of multiple decision trees. 

iv. Adam Optimization 

Adam (Adaptive Moment Estimation) optimization is a 

popular algorithm used to optimize the learning process of 

machine learning models, including those used in 

COVID-19 detection from chest X-ray and CT images. 

Adam combines the benefits of both the Adagrad and 

RMSProp optimization algorithms. It adapts the learning 

rates of each parameter based on their historical gradients 

and squared gradients, allowing the model to converge 

more efficiently and handle varying gradient magnitudes. 

Adam maintains two moving averages, the first-order 

moment (mean) of the gradients and the second-order 

moment (uncentered variance) of the gradients. These 

averages are then used to update the model's parameters. 

Eq.4 to8 represent update rule 𝜃 using Adam as 

𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡…4 

 

𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2…5 

 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡…6 

 

𝑣𝑡̂ =
𝑣𝑡

1−𝛽2
𝑡…7 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡+𝜖
. 𝑚̂𝑡…8 

where, t  = “iteration step”, 𝛽1and 𝛽2= “exponential decay 

rates for the moving averages”, 𝑔𝑡
 = “gradient at step t”, 

𝑚̂𝑡and 𝑣𝑡̂= “bias-corrected moving averages”, 𝜂= 

“learning rate”, 𝜖 = “small constant to prevent division by 

zero”. 

Adam optimization's adaptive learning rate and moment 

adjustments make it well-suited for optimizing COVID-

19 detection models from chest X-ray and CT images, 

enabling effective convergence and robust performance. 

 

v. Evaluation Parameters 

Evaluation Parameters 

a. Accuracy – It measure the ratio of correctly 

predicted instances to the total instances in the 

dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝+𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 …9 

 

b. Precision – It is the ratio of correctly predicted 

positive instance to the total predicted positive 

instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝…10 

c. Recall (Sensitivity)- Recall measures the ratio of 

correctly predicted positive instance to the total 

actual positive instance. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝+𝐹𝑛…11 

d. Mathew’s Correlation Coefficient (MCC)- MCC 

considers true positive, true negative, false positive 

and false negatives to measure the quality of binary 

classifications.  

𝑀𝐶𝐶 =  
𝑇𝑝×𝑇𝑛−𝐹𝑝×𝐹𝑛

√(𝑇𝑝+𝐹𝑝)(𝑇𝑝+𝐹𝑛)(𝑇𝑛+𝐹𝑝)(𝑇𝑛+𝐹𝑛)
 …12 

 

e. Kappa Statistic- Kappa statistic quantifies the 

agreement between predicted and actual classes 

beyond what would be expected by chance. 

𝐾𝑎𝑝𝑝𝑎 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 …13 
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4. Results and Outputs 

Evaluation parameters 

 

Table 2 Evaluation parameters comparison of various models 

Model Imaging 

Modality 

Accuracy Precision Recall MCC Kappa 

CNN CXR 94.62 92.6 95.8 0.893 0.89 

CNN CT 81.25 78.3 82.5 0.727 0.717 

LSTM CXR 92.34 90.7 94.2 0.859 0.853 

LSTM CT 79.61 76.2 81.2 0.702 0.691 

RNN CXR 89.56 86.6 91.4 0.808 0.798 

RNN CT 77.84 74.8 80.2 0.684 0.672 

Proposed Model CXR 98.87 98 97.7 0.97 0.97 

Proposed Model CT 89.21 89.2 88.3 0.85 0.85 

 

 

Fig. 4 Accuracy, Recall and Precision of CXR and CT images 

 

Fig. 5 MCC and Kappa comparison of various model for CXR and CT images 

The results of the study highlight the varying 

performances of different models in COVID-19 

classification across different imaging modalities as 

shown in table-2 and fig.4,5. The CNN exhibited strong 

accuracy, precision, and recall for chest X-ray (CXR) 

images, underscoring its proficiency in detecting COVID-

19 patterns. However, its performance slightly decreased 

when dealing with chest CT images, reflecting the 

challenges of different imaging characteristics. Similarly, 

the LSTM and RNN models demonstrated commendable 
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accuracy in CXR, with a modest decrease for CT. The 

standout performance came from our proposed hybrid 

model. Notably, it achieved remarkable accuracy for CXR 

at 98.87%, surpassing the baseline models. The model's 

impressive precision and recall for both imaging 

modalities reinforce its potential in minimizing false 

positives and capturing true positives efficiently. The high 

MCC and Kappa scores further validate the model's 

robustness in handling the intricacies of COVID-19 

classification. The fusion of deep sequential learning with 

ensemble techniques appears to synergistically enhance 

accuracy and reliability.  

These results collectively underline the significance of 

optimizing model architectures to suit specific imaging 

modalities. The proposed hybrid model's exceptional 

performance across CXR and CT indicates its adaptability 

to diverse scenarios. While the baseline models 

demonstrate considerable competence, the hybrid model's 

advancement points to the potential of harnessing a 

diverse array of techniques to address the multifaceted 

challenge of COVID-19 classification. This study lays a 

foundation for future research in hybrid methodologies 

and optimization strategies, accentuating the potential for 

improved diagnostic accuracy and the potential to 

revolutionize medical image analysis in the context of 

COVID-19 and beyond. 

5. Conclusion and Future Scope 

In the pursuit of accurate and efficient COVID-19 

classification from radiological images, this study has 

showcased the potential of diverse machine learning 

models. Through a comprehensive evaluation of CNN, 

LSTM, RNN and a proposed hybrid model, the findings 

underscore the nuanced interplay between model 

architectures and imaging modalities. The proposed 

hybrid model, combining the strengths of deep sequential 

learning and ensemble techniques, emerged as a standout 

performer, achieving unparalleled accuracy in COVID-19 

classification from both chest X-ray and CT images. The 

model's robustness and reliability, as demonstrated by its 

high Matthews Correlation Coefficient (MCC) and Kappa 

scores, reinforce its capability to effectively discern 

intricate patterns indicative of COVID-19 presence. As 

the landscape of medical image analysis continues to 

evolve, several avenues for future exploration emerge 

from this study.  The hybrid model's performance can be 

further enhanced through ongoing optimization of its 

constituent components, such as fine-tuning 

hyperparameters and investigating alternate ensemble 

strategies. In summation, this research not only 

contributes to the ongoing discourse on COVID-19 

diagnosis through radiological images but also sets the 

stage for a future characterized by enhanced accuracy, 

interpretability, and utility in medical imaging-based 

disease classification. Through continual refinement and 

exploration of hybrid models, the strides made in this 

study will catalyze the development of reliable diagnostic 

tools to aid in the fight against the COVID-19 pandemic 

and beyond. 
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