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Abstract: Protecting patient data has become a top priority for healthcare providers in the digital age. ECG steganography is a technique 

for concealing electrocardiogram (ECG) signals during Internet transmission along with other medical data. This strategy aims to recover 

all embedded patient data while minimizing degradation of the cover signal caused by embedding. Quantization techniques make it possible 

to include patient information in the ECG signal, and it has been discovered that multiple scaling factors (MSFs) provide a superior trade-

off than uniform single scaling factors. In this paper, we present a novel contribution to the field: a discrete wavelet transforms and singular 

value decomposition-based dynamic Thresholding GA (DTGA)-based ECG steganography scheme. Using the MITIH database, we 

demonstrate the efficacy of this method, and our findings corroborate that DTGA significantly improves data security. 
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1. Introduction. 

Because medical technology has gotten better recently, it is 

now possible to keep an eye on everyone. To do this, the 

collected medical information and patient data are sent to 

the doctor over the Internet. During these kinds of moves, it 

is very important to keep patient information safe [1] [2]. In 

this situation, data-hiding methods like steganography can 

be used to hide the identity of the medical information. The 

goal of privacy through data hiding is paramount in today's 

digital age. With the ever-increasing amount of personal 

information being shared and stored online, it is essential to 

protect sensitive data from malicious actors. Data hiding 

techniques such as encryption and steganography provide a 

means to safeguard information by making it difficult or 

impossible for unauthorized individuals to access or 

decipher. By implementing strong privacy measures, 

individuals and organizations can ensure that their personal 

and confidential data remains secure and protected from 

potential breaches or cyber-attacks.  

The steganography is the data that needs to be kept safe, and 

the information that carries the steganography is called the 

cover signal. The success of steganography rests on keeping 

the signal degradation caused by embedding to a minimum 

and being able to withstand attacks from the outside [3-6]. 

In the medical field, steganography techniques secure 

patient information by concealing it within their medical 

records [7]. Multiple scaling factors (MSFs) refer to a 

technique used in steganography to embed data into a cover 

signal, such as an ECG signal. MSFs are used to adjust the 

magnitude of the data being embedded, allowing for a better 

trade-off between data capacity and signal degradation. 

Using MSFs can improve the quality of the stego-signal and 

reduce the chance of detection, as compared to using 

uniform single scaling factors. MSFs have been found to be 

particularly useful in ECG steganography, where the signal 

is highly sensitive and any degradation can impact diagnosis 

and treatment. In related works [7], researchers have 

explored various optimization techniques for MSFs, 

including genetic algorithms [7] and particle swarm 

optimization [7]. These approaches aim to find the optimal 

set of MSFs that maximize data capacity while minimizing 

signal degradation. 

In this research, the purpose of using a Dynamic 

Thresholding Genetic Algorithm (DTGA) in optimization 

problems is to enhance the optimization process's efficiency 

and effectiveness by adjusting the threshold value used in 

the selection process. This strategy enables the algorithm to 

concentrate on promising solutions while avoiding early 

convergence, resulting in a more adaptive and flexible 

search approach. By integrating dynamic thresholding into 

the genetic algorithm, it is possible to obtain superior 

outcomes in a shorter time frame, making it an excellent 

method for complex optimization problems with extensive 

search spaces. Ultimately, the objective is to identify the 

optimal solution that satisfies all the constraints and 

objectives of the particular problem being addressed. The 

following sections of this work are organized as follows. 

The second section displays the current relevant works. 

Section 3 provides a detailed description of our suggested 

approach using Dynamic Thresholding GA for the 

optimization of MSFs for ECG Steganography. Section 4 

contains the results and discussion of the experiments. In 
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Section 5, the conclusion of the work is presented. 

2. Related Work 

The security of sensitive information has become a 

significant concern in the current digital age. Using 

steganography and watermarking techniques is one method 

to protect this information. To verify ownership, these 

techniques involve concealing data within another file or 

embedding a unique identifier within a file. Steganography 

is the art of concealing information within other data, such 

as images, audio, or text, without arousing suspicion.  

In the healthcare sector, steganography has emerged as a 

promising technique to protect sensitive patient information 

from unauthorized access and potential breaches. By 

embedding confidential medical data into seemingly 

harmless cover signals, such as ECG signals or medical 

images, healthcare professionals can ensure that patient 

information remains secure and confidential. Moreover, 

steganography can also be used to transmit medical data 

over insecure networks without compromising patient 

privacy. However, the use of steganography in healthcare 

requires careful consideration of various factors, including 

data capacity, signal degradation, and detection probability. 

In this context, Multiple Scaling Factors (MSFs) have 

emerged as an effective technique to enhance the quality and 

security of stego-signals in healthcare applications.  

In this section we investigate the main ECG steganography 

and steganography techniques that were  developed, as well 

as their benefits, limitations, and potential applications in 

sectors such as healthcare, finance, and national security. In 

addition , we explore the use of MSFs in healthcare 

steganography and highlight the potential benefits and 

challenges associated with this approach. 

2.1 ECG Steganography and steganography techniques 

Steganography and watermarking are both techniques used 

to hide information within other data, but they differ in their 

purpose and application. The goal of steganography is to 

keep the information hidden from unauthorized access and 

potential breaches. Steganography is often used in the 

healthcare sector to protect sensitive patient information. 

Watermarking, on the other hand, is the practice of 

embedding a visible or invisible mark within digital media, 

such as images or videos, to indicate ownership or 

authenticity. The goal of watermarking is to protect 

intellectual property rights and prevent unauthorized use or 

distribution of digital media. Watermarking is commonly 

used in the entertainment industry to protect copyrighted 

material.  

Given that the primary objective of steganography 

techniques is to minimize any noticeable changes to the 

original cover signal, so ensuring that the detectability of the 

hidden information is not compromised, it can be concluded 

that steganography does not pose a threat to detectability. 

Steganography commonly utilizes transform domain 

techniques [8], including Discrete Wavelet Transform 

(DWT), Least Significant Bit (LSB), Discrete Cosine 

Transform (DCT), and several other methods [8]. In the 

context of transform domain steganography, the original 

signal, known as the cover signal, undergoes a 

decomposition process. During this process, the watermark, 

which is a hidden message or data, is embedded within one 

or several sub bands of frequencies. The existing body of 

literature on ECG steganography mostly centers around the 

exploration of several transformation and watermarking 

methodologies [8-9-10]. The implementation of 

electrocardiogram (ECG) steganography is performed in 

reference [8] by the utilization of discrete wavelet transform 

(DWT) and least significant bit (LSB) techniques.     

The evaluation of the efficacy of Discrete Cosine Transform 

(DCT), Discrete Fourier Transform (DFT), and Discrete 

Wavelet Transform (DWT) in the context of 

electrocardiogram (ECG) steganography is conducted in 

reference [9].  The study conducted in reference [9] shown 

that the Discrete Cosine Transform (DCT) and the Discrete 

Wavelet Transform (DWT) provide more favorable 

outcomes compared to the Discrete Fourier Transform 

(DFT). In their study, researchers introduce a method for 

ECG steganography that utilizes the Discrete Wavelet 

Transform (DWT) and Singular Value Decomposition 

(SVD), as described in reference [10]. The SVD 

watermarking approach is employed to embed the patient 

data into a certain frequency sub-band obtained using the 

Discrete Wavelet Transform (DWT). This embedding 

process occurs subsequent to the transformation of the ECG 

signal into a two-dimensional matrix.    

However, the a critique of the limitations and gaps in these 

previous works. For example, the use of DWT and LSB 

algorithms in ECG steganography may not provide an 

optimal trade-off between data capacity and signal 

degradation. Furthermore, the authors have not highlighted 

the potential benefits of using MSFs in ECG steganography, 

which can offer better results in terms of data capacity and 

signal quality. Therefore, a more detailed critique of the 

previous works would have helped to highlight the 

contributions and significance of the novel approach 

proposed in this paper. 

Scaling factors are a key part of SVD-based quantization 

because they keep the cover signal from getting worse [19, 

20]. In the case of a single scaling factor, a low scaling factor 

makes it harder to notice, while a high scaling factor makes 

it harder to fight from the outside. So, the scale factor 

determines the trade-off between being hard to notice and 

being strong. So, the way the information is quantized is a 

very important part of how good it is. The constant growth 

factor, on the other hand, is easier to find out in case of a 
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hack. When working with these kinds of situations, it's best 

to use, but you need to use optimization methods [20–23] to 

find them.   

 

2.2 Approaches for MSFs optimization 

The authors present a novel approach for picture 

watermarking in their study referenced as [24]. This 

approach utilizes the Lifted Wavelet Transform (LWT) and 

Singular Value Decomposition (SVD) techniques. The 

determination of the MSFs is accomplished by the 

utilization of the Multi Objective Ant Colony Optimization 

(MOACO) technique, leading to an enhancement in the 

robustness of the watermark while simultaneously 

maintaining its perceptibility. The investigation conducted 

in reference 16 examines the efficacy of Singular Value 

Decomposition (SVD)-based watermarking techniques in 

conjunction with Discrete Cosine Transform (DCT) and 

Discrete Wavelet Transform (DWT) for the purpose of 

copyright protection. The believability of the image is 

enhanced by embedding the watermark inside its core 

components, while the calculation of optimum MSFs is 

achieved by the utilization of the Particle Swarm 

Optimization approach. 

The authors of reference [20] propose the utilization of the 

Discrete Wavelet Transform-Singular Value 

Decomposition (DWT-SVD) technique for picture 

watermarking. This approach incorporates the Firefly 

Algorithm (FA) to optimize the fitness function, which is 

defined as a linear combination of detectability and 

robustness. The results of their study demonstrate that the 

suggested approach for picture watermarking using singular 

value decomposition (SVD) is capable of identifying the 

most effective multi-scale features (MSFs) with 

significantly better performance compared to currently 

available methods. In this study, the authors employed self-

adaptive Differential Evolution (DE) in order to improve the 

effectiveness of picture watermarking in the context of the 

DWT-SVD method [22]. The utilization of a self-adaptive 

differential evolution (DE) technique is employed to 

optimize the scaling parameters in order to achieve optimal 

levels of robustness and invisibility. 

Despite its promising results, some disadvantages are 

associated with related works in ECG steganography. For 

instance, some methods such as Particle Swarm 

Optimization-based ECG Steganography require a large 

number of iterations to achieve optimal results, leading to 

high computational complexity and long processing times. 

Additionally, these approaches may not be suitable for real-

time applications due to their high computational 

requirements. Therefore, there is a need for more efficient 

and effective methods that can address these limitations and 

improve the performance of ECG steganography.  

3. Proposed Approach 

The principle of our proposed approach using DTGA-based 

ECG steganography scheme is to embed secret information 

into the ECG signal while maintaining the quality of the 

original signal. This is achieved through the use of dynamic 

thresholding GA, which optimizes the embedding process 

by adjusting the threshold value based on the fitness 

function. The scheme also employs DWT and SVD to 

enhance the security and robustness of the steganography 

technique.  

This section begins by the ECG database description 

including the preprocessing of ECG signal and patient data, 

the DWT–SVD. Also addressed are the DTGA based MSFs 

selection and scale factors procedures. Fig.1 depicts the 

steps of our proposed DTGA based ECG steganography 

approach.  

 

Fig 1. General process of the proposed approach 

3.1- Steganography algorithm description 

Important characteristics of an ECG signal include the QRS 

complex, P, T, and U waves. The QRS complex represents 

the rapid depolarization of the heart's right and left 

ventricles. P and T waves represent depolarization and 

repolarization of the atria and ventricle, respectively. U 
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wave refers to the repolarization of the interventricular 

septum [27]. These defining markers are integral to defining 

an ECG signal. The proposed ECG steganography 

algorithm uses a 2D ECG matrix as a conceal signal. The 

1D ECG data is preprocessed in order to generate the 2D 

ECG image using Pan Tompkin's QRS detection method 

[27]. Thus, the 1D ECG signal can be reconstructed utilizing 

these reference points.   

DWT is a time-frequency analysis that can be used to 

analyze an image or signal in multiple frequency bands with 

variable resolution. This quality can be used to determine 

the frequency sub-band of a signal with the least 

significance. The distinctive regions of the ECG signal, such 

as the QRS complex, P and T waves, are located in the sub-

bands of low frequency. Consequently, embedding the 

watermark in a sub-band with a high frequency is the 

obvious solution for preserving diagnosability data. The 

advantage of DWT is that the original signal can be 

recovered by applying the inverse DWT transform to 

frequency bands. SVD is a matrix factorization technique 

used frequently in dimension reduction applications, such as 

data compression. It is utilized to conceal information in the 

context of steganography. In 2D ECG steganography [30], 

singular values (SVs) of the cover image are changed to 

singular values (SVs) of the concealed data. However, the 

watermark's size is restricted in this manner. In this study, 

we plan to employ DWT and SVD as follows: 

Step 1:  Using discrete wavelet transform (DWT) with the 

Debauches 4 wavelet, the 128 by 128 pixel 2D ECG cover 

image (Ic) is broken down into four frequency sub-bands 

which are LL, LH, HL and HH (Eq.(1)). 

[LL,LH,HL,HH]=dwt(Ic)                                              (1) 

Step 2: Apply SVD using the Eq. (2) to the 67 by 67 

coefficient matrix Ac representing the high frequency sub-

band HH 

[Uc*Sc*Vc
T] = SVD(Ac)                                                  (2) 

Where SVD function produces a diagonal matrix Sc of the 

same dimension as Ac, with nonnegative diagonal elements 

in decreasing order, and unitary matrices Uc and Vc so that 

Ac = Uc*Sc*Vc
T 

Step3: Apply SVD on the watermark Aw of size 67×67 as 

given in Eq.(3). 

[UwSwVw
T] = SVD(Aw)                                                      (3) 

Step 4: Embed the singular values of the watermark (Sw) 

into the singular values of the cover signal (Sc) using the 

additive quantization approach, as shown in Eq. (4). Here, γ 

is the scaling factor. 

Scw=Sc+γSw                                                                   (4) 

Step 5:, Use the inverse SVD formulated in Eq (2). 

Reconstruct the high frequency sub-band (HH) modified 

coefficient matrix Acw (5). 

Acw=[UcScwVT
c]                                                             (5) 

Step 6: Use inverse discrete wavelet transform (DWT) with 

the HH coefficients adjusted by Acw to generate the 

watermarked ECG image, as shown in Eq (6)  

Icw=idwt(LL,LH,HL,Acw)                                             (6) 

Step7: Apply 2D to 1D ECG signal conversion method to 

obtain the 1D watermarked ECG signal.  

Watermark extraction algorithm 

The embedded watermark can be retrieved using watermark 

extraction method as follows: 

Step 8: Apply DWT to Icw to get [LLcw,  LHcw,  HLcw,  

HHcw], which is quite similar to step1. 

Step 9: Similarly to Step 2, apply SVD to the coefficient 

matrix Acw of the high frequency band HHcw to produce 

the singular values Sc of the watermarked image. 

Step 10: Use the formula given in Eq.(7) to evaluate the 

singular values of the watermark that was recovered from 

Sc (7) 

 S∗
w=(S∗

c−Sc)/γ                                                     (7) 

Step11: With Uw and Vw from Eq.(3), retrieve the 

watermark 𝐴𝑤
∗  using inverse SVD method as given in Eq.(8)  

A∗
w=[UwS∗

wVT
w]                                                   (8) 

3.2 Dynamic Thresholding genetic algorithm (DGTA) 

for MSFs optimization 

In this research work, we propose to use Dynamic 

Thresholding Genetic Algorithm (DGTA) for optimizing 

MSFs, which involves evaluating multiple factors at 

different scales to assess  the system performance and select 

the factors that improve the performance. By dynamically 

adjusting the threshold values during the optimization 

process, DGTA can effectively explore the search space and 

converge towards optimal solutions for MSF optimization.  

3.3.1 DTGA principle 

In DTGA [36], the binary representation of populations is 

adopted for minimization problems. The characteristic of 

the representation is that the bits are utilized to embody the 

state operator as: 

  𝑞𝑗
𝑡 = [𝛽1

𝑡|𝛽2
𝑡|… … … . |𝛽𝑚

𝑡 |]                                    (9) 

𝑞𝑗
𝑡 represents the chromosome of the t-th generation and the 

j-th individual, and m is the gen 𝛽 index number. The 

employing of bit encoding allows one individual to embody 

the states instantaneously, forcing the DTGA be better in 

terms of diversity compared to the CGA algorithm. As 

stated in [31], convergence can also be achieved with the bit 
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statement.  𝛽 attitudes to 0 or l.  

Dynamic thresholding is a technique that can be used to 

enhance the population diversity and exploration space of a 

Classical Genetic Algorithm (CGA).  

This technique works by setting a threshold for each 

individual in the population, which is then adjusted 

dynamically based on the performance of the individual. If 

an individual performs better than the threshold, then its 

threshold is increased, allowing it to explore more of the 

search space. Conversely, if an individual performs worse 

than its threshold, then its threshold is decreased, limiting 

its exploration capabilities. By adjusting thresholds 

dynamically in this way, it is possible to continue allowing 

individuals to explore various parts of the search space 

while maintaining a diverse population. The following steps 

represents the mechanism of dynamic thresholding in 

genetic algorithm: 

1. The dynamic thresholding technique assigns a threshold 

value to each individual in the population, denoted as 

T(i), where i represents the index of the individual. 

2. The threshold value T(i) is determined by analyzing the 

performance of the individuals in the population by 

measuring the fitness value for each individual, typically 

based on their fitness or correlation coefficient values. 

3. If the population is observed to be evolving rapidly, as 

determined by a correlation coefficient, the threshold 

value T(i) is increased by increasing the ones genes in 

population by one to adapt to the changing dynamics of 

the population. 

4. Conversely, if the population is stagnating or the fitness 

value does not change, the threshold value T(i) is 

decreased by decreasing the ones genes in population by 

one to encourage exploration and avoid premature 

convergence. 

5. Solutions from the population are selected for further 

evaluation and modification based on their fitness or 

correlation coefficient values relative to the threshold 

value T(i). Individuals whose performance exceeds or 

meets the threshold T(i) are considered as potential 

solutions for further processing. 

6. The selected solutions are subject to modification through 

crossover and mutation genetic operators, to introduce 

diversity and explore different regions of the search 

space. 

7. The algorithm terminates when the genetic algorithm 

completes its execution or when a termination criterion 

is met. The high-quality solutions obtained during the 

dynamic thresholding process are returned as the final 

output of the algorithm. 

 This can lead to improved performance and better solutions 

being found by the genetic algorithm [36-37]. Algorithm 1 

represents the pseudo code of DTGA 

Algorithm 1: DTGA  

Inputs: Dataset T,  Number of generations t, Number 

of individuals j,  Initial Populations Pops, and 

Dynamic thresholding DT 

1. While t is less than MAX_GENS, do the following: 

2. Increment t by 1 

3. Encode Pops using bit_Encoding 

4. Evaluate the fitness values of Pops using 

Fitness_Evaluation 

5. Select the best individuals from Pops based on 

their fitness values using Selection_Best 

6.Update Pops using 

Dynamic_Thresholding_Function(pop) 

7. If Termination_Condition is False, then do the 

following: 

    a. For each i from 0 to j-1, do the following: 

        i. Perform crossover on Pop to generate a new 

individual New_Pops(i) 

        ii. Perform mutation on New_Pops(i) 

    b. End for loop 

    c. Set Pops to New_Pops 

8. End if statement 

9. If Termination_Condition is True, then do the 

following: 

    a. Return Pops 

10. End if statement 

11. End while loop 

12. Best individual is the one in Pops with the 

highest fitness value. 

Dynamic_Thresholding_Function(Pop) 

2.     threshold = computeThreshold(Pop) 

3.     while geneticAlgorithmIsRunning(): 

4.         if populationIsEvolvingRapidly(): 

5.             threshold = increaseThreshold(threshold) 

6.         else if populationIsStagnating(): 

7.             threshold = decreaseThreshold(threshold) 

8.         selectedSolutions = selectSolutions(pop, 

threshold) 
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9.         evaluateSolutions(selectedSolutions) 

10.        modifySolutions(selectedSolutions) 

11.    return highQualitySolutions 

3.3.2 MSFs optimization using DTGA 

In this research work, DTGA is used for multi-scale factor 

optimization in healthcare data steganography by 

dynamically adjusting the thresholds of the genetic 

algorithm to identify the optimal combination of factors that 

can enhance data security. This paper explores the potential 

benefits of using DTGA for multi-scale factor optimization 

in healthcare data steganography and its significance in 

protecting sensitive healthcare information. The MSFs must 

be acknowledged in a way that achieves a balance between 

anonymity and tenacity. The following steps represents the 

MSFs optimization using DTGA 

Initially, a threshold random value between 1 and 20 is 

assigned to each individual. After that, this threshold value 

is determined by measuring the fitness value for each 

individual. The fitness function is depicted by the objective 

function in Eq. (10) 

𝑓(𝑀𝑆𝐹𝑠) = 𝐶𝑜𝑟𝑟(𝐼𝐶 , 𝐼𝑤) + 𝐶𝑜𝑟𝑟(𝐴𝑤, 𝐴𝑤𝑟)         (10) 

Where 𝐼𝐶  represents a cover ECG signal, and 𝐼𝑤represents a 

watermarked ECG signal. 𝐴𝑤is the initial watermark, while 

𝐴𝑤𝑟is the watermark extracted when receiving data. The 

correlation (𝐶𝑜𝑟𝑟) value is unitless and fluctuates between 

[0, 1]. 𝐶𝑜𝑟𝑟 is estimated as shown in Eq (11). 

𝐶𝑜𝑟𝑟(𝑑, 𝑑∗) =
∑ (𝑑𝑖−𝑑̅)(𝑑𝑖

∗−𝑑̅)𝑁
𝑖=1

√∑ (𝑑𝑖−𝑑̅)𝑁
𝑖=1 √∑ (𝑑𝑖

∗−𝑑̅)𝑁
𝑖=1

                 (11) 

where 𝑑𝑖 and 𝑑𝑖
∗ are the original and altered data, 

respectively. Where 𝑑̅ is the average of the original data. 

Higher image correlation indicates greater imperceptibility. 

A greater correlation between the watermark and the 

original indicates greater resilience. Consequently, the goal 

of this optimization problem is to maximize the fitness 

value 𝑓(𝑀𝑆𝐹𝑠). 

4. Simulation Results and Analysis 

The performance evaluation of ECG steganography is 

crucial to assess the effectiveness and robustness of the 

proposed techniques. In this work, we present an overview 

of various evaluation metrics used to measure the 

performance of ECG steganography techniques. These 

metrics include imperceptibility, capacity, robustness, and 

security. We also discuss their significance in evaluating the 

performance of ECG steganography techniques and provide 

insights into their limitations and challenges.  

4.1 Evaluation metrics  

The suggested ECG steganography approach's efficiency 

can be measured using measures such as Peak Signal-to-

Noise Ratio (PSNR), Peak-to-Residual Ratio(PRD), 

Kullback-Leibler  (KL)  divergence, and Bit Error Rate 

(BER).      

    PSNR in particular [32], offers the measure of 

steganography imperceptibility provided in Eq (12).   The 

distance between the cover (𝑑𝑖) and watermarked (𝑑𝑖
∗) ECG 

signals is provided by PRD in Eq (13) [33].   The distance 

between the histograms of Original and watermarked 

signals is given by KL divergence D in Eq. (14) . 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10 [
max (𝑑𝑖)

√
1

𝑁
 ∑ (𝑑𝑖−𝑑𝑖

∗)2𝑁
𝑛=1

] 𝑑𝑏                           (12) 

𝑃𝑅𝐷 = √[
∑ (𝑑𝑖−𝑑𝑖

∗)2𝑁
𝑖=1

∑ (𝑑𝑖)2𝑁
𝑖=1

] ∗ 100                                            (13) 

𝐷(𝑝𝑐 , 𝑝𝑤) =  ∫ 𝑝𝑐(𝑑𝑖) log
𝑝𝑤(𝑑𝑖)

𝑝𝑐(𝑑𝑖)
𝑑𝑖                                    (14) 

N is the signal length,  𝑝𝑐  and 𝑝𝑤  are the Probability Density 

Functions (PDF) of the cover and watermarked ECG 

signals, respectively. Lastly, the error in extracted 

watermark bits caused by the steganography process can be 

assessed using the BER formula given in (Eq) (15) [35].  

𝐵𝐸𝑅 = [
∑ 𝑤𝑟𝑒𝑡

∑ 𝑤𝑜𝑟𝑔
] ∗ 100                                                       (15) 

 𝑤𝑟𝑒𝑡 represents the amount of watermark bits retrieved 

without mistake, whereas 𝑤𝑜𝑟𝑔  represents the total number 

of original watermark bits 

4.2 Simulation setup and Results 

A set of experiments is conducted to assess the effectiveness 

of the proposed approach, and its performance is compared 

to that of Ant Colony [27] to determine the best multi scale 

factors. In this study, the CGA and DTGA algorithms are 

utilized to validate our proposition. The feasibility of the 

suggested approach is evaluated by utilizing MITIH 

database [38]. DTGA differs from most other research 

methodologies in that it generates model populations by 

evolving random starting model using a genetic algorithm.  

The proposed approach is made available as a MATLAB 

library for use in custom applications. The experiments were 

conducted on a computer with an Intel(R) Zeon(R) CPU 

E5430@ 2.66GHz (2 processors), 16GB RAM, and 

Microsoft Windows 10-64 bit. The results of the simulation 

clearly demonstrate the effectiveness of the proposed 

method in identifying the most optimal MSFs. Table 1 

represents the used parameters belongs to the simulation 

setup. 

Table 1. Genetic Algorithm Parameters 

Parameter Default Values 
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Population size [5,10,15,…..65] 

Generation Number [5 or 10] 

Crossover Ratio 0.5 

Mutation Ratio 0.5 

Threshold 18 

 

Table 2 effectively illustrates the differences between the 

outcomes of CGA, DTGA, and the Classical Ant Colony 

Optimization (CACO) approach [32], all tested on the same 

dataset with a watermark size of 3KB. The results indicate 

that both CGA and DTGA outperform CACO, with DTGA 

showing superior performance and numerous advantages 

over CGA. This investigation makes use of normal ECG 

signals from the MITBIH normal sinus rhythm database 

[28] [29].   The frequency of sampling is 128 Hz, and the 

gain is 200.  

Table 2. Performance Comparison between DTGA, CGA 

& CACO based ECG steganography. 

Method Watermar

k size 

PSN

R 

(db) 

PRD KL 

distanc

e 

BE

R 

(%) 

DTGA 

3 Kb 

60.41

7 

0.20

3 

0.213 0 

CGA 59.74

1 

0.19

9 

0.194 0 

CACO[3

2] 

34.46 0.06 2.04 0 

 

Table 2 compares the efficacy of three distinct ECG 

steganography techniques: DTGA, CGA, and CACO. The 

table contains the watermark size, PSNR, PRD, KL 

distance, and BER metric values for each method. In terms 

of PSNR and PRD, the results indicate that DTGA 

outperforms both CGA and CACO. CGA yielded a PSNR 

of 59.7417 dB and a PRD of 0.199733, whereas DTGA 

yielded a PSNR of 60.4017 dB and a PRD of 0.203032. 

CACO obtained a significantly lower PSNR of 34.46 dB 

and a higher PRD of 0.06. The results indicate that DTGA 

is a more efficient method for ECG steganography than 

CGA and CACO. Table 2 clearly demonstrates that the 

proposed DTGA and CGA algorithms outperformed the 

CACO algorithm. One possible explanation for these results 

is that DTGA and CGA are better suited for solving MSFs 

extraction problems. DTGA generates a diverse range of 

solutions with unlimited search ability based on different 

GA parameters such as selection, crossover, and mutation. 

This diversity is often associated with an objective function 

that can produce optimal populations (MSFs). On the other 

hand, CACO optimization quality is often limited by factors 

such as architecture complexity, generalization ability, 

noise-tolerant ability, and limited search-ability. [32]. Fig. 2 

shows 2 samples of 1D cover and watermarked ECG signal 

extracted from the proposed application. 

The effectiveness of watermarking is demonstrated in 

Figure 2, where multiple 1D cover and watermarked ECG 

signals are presented. Despite minimal signal deterioration, 

the signals are indistinguishable, except for the ECG signal 

that contains the watermark with the highest capacity, 

highlighting the effectiveness of watermarking. 

Table 3 presents the experimental results of DTGA 

(Differential Evolutionary Algorithm) and CGA 

(Conventional Genetic Algorithm) based ECG 

(Electrocardiogram) steganography on a testing subset 

comprising 20% of the ECG Data Set. The experiments 

were conducted with a mutation ratio of 0.5, crossover ratio 

of 0.5, threshold of 18, and sampling frequency of 200. The 

table includes the performance metrics PSNR (Peak Signal-

to-Noise Ratio), PRD (Percentage Residual Difference), and 

KL_D (Kullback-Leibler Divergence) for both DTGA and 

CGA. The results are organized by generation numbers 

(GN) and population size (PS). It can be observed that the 

PSNR values range from 55.83 to 60.41 for DTGA and from 

31.3592 to 59.7417 for CGA. The PRD values vary from 

0.203032 to 0.329907 for DTGA and from 0.199733 to 

0.589471 for CGA. Additionally, the KL_D values range 

from 0.19456 to 0.76945 for CGA and from 0.19944 to 

0.3954 for DTGA. These results provide insights into the 

performance of both algorithms in terms of their ability to 

embed and extract hidden information within ECG signals. 

Table 4 presents the comparative results between the best 

outcomes obtained by using two different algorithms, 

namely CGA and DTGA. The results show that CGA 

outperformed DTGA in terms of population size, with a 

population size of 55 compared to DTGA's 10. However, 

both algorithms had the same number of generation 

numbers, with 10 generations each. CGA also had a slightly 

better best fitness value of 0.028 compared to DTGA's 

0.022, but DTGA had a higher PSNR value of 60.417 

compared to CGA's 59.7417. The total populations used in 

CGA and DTGA were 550 and 100 respectively. Finally, 

the time taken to complete the optimization process was 

significantly shorter for DTGA, with a time of 41.3 seconds 

compared to CGA's 228 seconds. Overall, the results 

indicate that both algorithms have their strengths and 

weaknesses, and the choice of algorithm depends on the 

specific optimization goals and constraints.  
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Fig. 2. Samples of 1D cover and watermarked ECG signal. 

Table 3. Performance of DTGA & CGA based ECG 

steganography on Testing 20% from ECG Data Set when 

Mutation Ratio=0.5, Crossover Ratio =0.5, Threshold =18, 

and Sampling Frequency=200. GN stands for generation 

numbers and PS stands for population size 

 
DTGA based ECG 

steganography 

CGA based ECG 

steganography 

G

N 
PS 

PSN

R 
PRD 

KL_

D 
PSNR PRD KL_D 

5 25 55.83 0.32

9 

0.290 52.48

4 

0.58

9 

0.244 

5 50 59.60 0.22

6 

0.297

5 

31.35

9 

0.23

2 

0.769 

5 55 59.95 0.27

9 

0.289 54.94

3 

0.35

0 

0.245 

5 65 59.67 0.28

1 

0.267 57.08

7 

0.25

5 

0.203 

10 5 57.75 0.23

4 

0.256 56.32

5 

0.30

6 

0.395 

10 10 60.41 0.20

3 

0.213 50.49

3 

0.55

0 

0.265 

10 15 58.52 0.27

1 

0.199 53.88

9 

0.39

8 

0.320 

10 35 58.71 0.32

3 

0.346 58.19

1 

0.23

7 

0.302 

10 50 56.91 0.26

3 

0.365 56.44

0 

0.28

6 

0.229 

10 55 60.20 0.28

1 

0.287 59.74

1 

0.19

9 

0.194 

Table 4. Comparative results between best results between 

CGA & DTGA 

 CGA DTGA 

Population size 55 10 

Generation Numbers 10 10 

PSNR 59.7417 60.417 

Total Populations 550 100 

Time Seconds 228 41.3 

 

5 Conclusion 

This research aimed to improve the security of patient data 

during Internet transmission by introducing new techniques 

based on Electrocardiogram (ECG) signals using CGA and 

DTGA. Unlike conventional training methods, the 

effectiveness of DTGA in optimizing MSFs is founded on 

the utilization of dynamic thresholding to capitalize on the 

randomness of binary chromosomes represented by bits. 

According to the experimental findings, the DTGA-

optimized model provides a more precise optimization than 

the CGA-optimized model, which is optimized according to 

a specific specification. Because the model configuration is 

not predetermined in DTGA, the solution space is larger. 

The model configuration is instead determined by the 

evolutionary mechanism with probabilities derived from the 

bit overlay using dynamic thresholding. DTGA outperforms 

CGA, as the MSFs extraction procedure in DTGA required 

approximately 81% less time than in CGA. By combining 

the CGA and dynamic thresholding methods, we enhanced 

the ECG steganography procedure's accuracy. According to 

the results, our proposed methodologies outperform the 

CACO method. Future research could investigate the 

application of these methods to the transmission of ECG 

data in real-time and their resistance to various assaults. 
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