
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering                                     IJISAE, 2023, 11(11s), 235–244 |  235 

Improved Power Effective Node Combined Heterogeneous Path 

Protocol for Enhance Network Lifetime Based on Cloud Resource 

Management in WSN 

Vignesh Prasanna Natarajan1, S. N. Chandra Shekhar2, R. Krishna Kumar3, A. Swaminathan4, 

D. Harika5, G. Mahalakshmi6 

 

Submitted: 27/05/2023         Revised: 15/07/2023           Accepted: 28/07/2023 

Abstract: Nowadays, sensor nodes are connected wirelessly to the Wireless Sensor Network (WSN). A WSN contains frequent sensor 

nodes spread throughout surroundings. These nodes are responsible for identifying, approximating, and receiving information. There is a 

unique technology called a "sensor cloud" that combines the sensor capabilities of WSNs with the architecture of Cloud Computing 

(CC). The small sensor nodes can sense, process, and transmit data. However, it is difficult and expensive to extend the lifespan of 

WSNs. Using energy-efficient routing protocols ensures reliable data transmission and prolongs the network's lifespan. However, control 

limitations can have a substantial control on the overall lifetime of the network. Since batteries power nodes in WSNs, they will 

eventually lose all power after a certain period. Therefore, we introduced the Improved Power Effective Node Combined Heterogeneous 

Path (IPENCHP) protocol to solve the above problem. Initially, we use the Enhanced Butterfly Optimal Cluster Algorithm (EBOCA) to 

select an ideal Cluster Head (CH) from a group of nodes. Furthermore, the ONND method can enhance the network's energy efficiency 

of the node. The path between CHs and BSs is found using the Ant Colony Optimum Based Path Distance (ACOPD) algorithm. Finally, 

the IPENCHP protocol can prolong the network lifetime of cloud resource management by assessing the energy communication level 

within a cluster. According to the simulation results, IPENCHP outperforms regarding energy efficiency, packet loss rate, energy 

consumption, performance latency, and Throughput. 

Keywords: Energy-Efficient, WSN, cluster head, EBOCA, ACOPD, ONND, IPENCHP, Network lifetime, and Throughput. 

 

Introduction 

In modern times, a WSN consists of multiple sensors positioned 

in different locations to detect the surrounding environment. 

These sensors communicate with each other wirelessly, allowing 

for flexible networking options. They can be easily relocated and 

connected to wired or wireless internet. WSNs are known for 

their ability to self-organize, provide comprehensive coverage, 

and their low cost. They are used in various fields, including 

military, computer, communication, and aerospace.  

The CC model can fulfil the resource needs of different requests 

by expanding the physical media of devices. Other sensor nodes 

connect with receivers in a typical WSN. These receivers gather 

and process the data before transferring the information to a 

server. Before sending the data, the receivers typically perform 

setup, processing, and description operations [1-2].  

By utilizing CC technology, individuals can rent and use a cloud 

service provider's platform, infrastructure, and software support. 

Sensor cloud incorporates a blend of WSN and CC, enabling 

users to access sensors through it, utilize CC applications, and 

enhance the performance of sensor networks [3]. 

When there are more nodes in WSNs, transmitting such data to 

remote nodes without losing any of it is necessary. However, 

sending such a massive amount of data can overwhelm the 

network's capacity and cause congestion, delays, and packet loss. 

Congestion in WSNs can lead to information loss and consume 

much power [4]. However, integrating different cloud-based 

technologies for battlefield surveillance can be a significant 

challenge. Many wireless devices in WSNs are small, low-power, 

and often placed in challenging locations [5]. 

This part aims to lower energy usage and increase network 

service life. To address these issues, we first use EBOCA to 

choose the most suitable CH among the available nodes. We can 
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use these to determine a node's distance from its neighbours and 

remaining energy. The network's energy efficiency is enhanced 

using the ONND algorithm. Next, the path between the CH and 

the base station can be found by implementing the ACOPD 

algorithm. Finally, the IPENCHP protocol is proposed to reduce 

energy consumption and extend network lifetime for cloud 

resource management. Moreover, the IPENCHP protocol 

provides a reliable and comprehensive space to maintain constant 

energy and distance weights. The simulation results show that 

IPENCHP has high energy efficiency regarding the network life 

cycle, data packet transmission rate, and transmission delay. 

 

Fig. 1. Architecture Diagram for Wireless Sensor Network 

Figure 1 shows the fundamental structure of a WSN. Multiple 

procedures are employed to recognize opportunities for resource 

management. The cluster head can assess tactics for enhancing 

energy efficiency, identifying path distance, and optimizing the 

network's lifespan. 

2. Literature Survey 

A novel energy-sharing algorithm can be proposed using the 

Energy-Efficient Regional Resource Routing (ER-SR) protocol. 

Also, based on the network, these can dynamically select the 

higher residual energy nodes as source routing nodes [6]. The 

Enhanced Clustering Hierarchy (ECH) technique is designed to 

advance energy efficiency in WSNs. These techniques also 

include sleep/wake mechanisms for duplicate and adjacent nodes 

[7]. The novel proposed that using a routing protocol called 

Enhanced Balanced Energy-Efficient Network Integrated Super-

Heterogeneous (E-BEENISH) to measure and optimize energy 

consumption in WSNs can provide a viable solution for analyzing 

and optimizing energy consumption in clusters and 

heterogeneous WSNs [8]. An energy-efficient architecture for 

WSNs can be described based on environmental conditions using 

Machine Learning (ML) and metaheuristic techniques. Energy-

saving methods based on topology in WSN require the sensor 

nodes to be attentive [9]. To further progress them, a new process 

of Sensor Node Training for Intellectual Data Transmission using 

Clustering and Reinforcement Learning (SARSA) is defined 

using Clustering SARSA (C-SARSA) and the optimum key of 

the objective function [10]. 

The novel reports that different techniques can be used to 

implement algorithms of ML-based WSNs with strengths, 

weaknesses, and network lifetime parameters. Furthermore, 

synchronization, congestion control, scheduling for mobile 

receivers, and energy harvesting can be efficiently managed [11]. 

A practical example of using a Received Signal Strength (RSS) 

method in a residential location is proposed. This method is cost-

effective regarding operation time, calibration, and energy 

consumption [12]. The novel discussed the use of tiny sensing 

devices in various systems, including household appliances, 

communique devices, medical electronics, and transportation 

organizations. These small and low-power devices use Energy-

Harvesting Spectrum Harvesting (EH-SH) technology [13]. A 

WSN energy by Wireless Power Transfer (WPT) is assisted by 

Multi-Access Edge Computing (MEC) that multiple users can 

access via mobile devices. The BS has various antennas that 

serve the entire sensor network, and the sensor nodes solely rely 

on WPT for power [14]. The novel describes using mobile sinks 

(MS) to collect various data. It proves to be NP-hard because it 

requires more attention to contain data from WSN to the cloud 

within a certain period [15]. 

A new control method, CC-Knowledge Compression-Sensitive 

Routing Intelligent Migration (CSR-IM), has been proposed. This 

method uses pressure-sensitive theory to calculate the movement 

speed and position of the target node [16]. The novel 

recommends using the RLSSA-CDG algorithm for compressive 

data gathering, which utilizes reinforcement learning. The 

algorithm models active node selection as a finite Markov 

decision process [17]. The novel explored different energy-saving 

strategies researched by other groups in WSN and applied them 

to decrease the energy usage of nodes and prolong the lifespan of 

the entire network. [18]. In the novel, a new approach called 

Energy-Aware Graph Clustering and Intelligent Routing 

(EGCIR) aimed to balance energy consumption and load 

balancing by utilizing WSN supervisory systems [19]. 

Reinforcement Learning (RL) algorithms empower network 

nodes to perceive their surroundings and independently choose 

the most effective actions to maintain a stable network operation 

[20]. 

The novel suggested that the Dynamic Energy Efficient Routing 

(DEER) protocol can guarantee communication transfer, 

maximum network lifetime, and message tide [21]. The 

technology uses a hybrid approach to manage resources through 

virtualization. It employs K-means clustering for task mapping 

and dynamic clustering techniques, which are improved with 

micro genetic algorithms [22]. The novel used a Wireless Power 

Transmission-based Energy Re-Distribution (WPTERD) process. 

Further, these steps are divided into two sub problems, 

WPTERD-Egy and WPTERD-Time. WPTERD-Egy aims to 

optimize energy loss, while WPTERD-Time focuses on 

optimizing time [23]. Two important aspects are discussed and 

emphasized to understand and analyse WSN deployment 

problems. Elements utilize optimization models and Artificial 

Intelligence (AI) to offer potential solutions [24]. It focuses on 

fundamental concepts related to WSNs and describes research on 

metaheuristics and heuristic algorithms used to solve these 

problems [25].  

The novel classifies sophisticated WSNs based on various aspects 

such as sensor type, deployment strategy, sensing model, 

coverage, and energy efficiency [26]. WSNs extensively utilize 

clustering and routing algorithms to upturn the network's lifetime. 

The Butterfly Optimization Algorithm (BOA) has been 

established to select the best cluster head from a group of nodes 

[27]. The novel proposed utilizing Support Vector Regression 

(SVR) and Genetic Algorithms (GA) for estimating resource 

allocation and creating a structure to execute it [28]. The resource 

allocation strategy is designed to dynamically allocate resources 
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based on CC's Adaptive Multi-Objective Teaching Learning 

Optimization (AMO-TLBO) algorithm [29]. The novel approach 

uses virtualization technology to map the hardware resources of 

WSNs to CC resources. Similarly, the proposed method can be 

manipulated for network architecture by implementing resource 

allocation strategies [30]. Securing WSNs can be challenging 

because of the self-organization and randomness of sensor nodes. 

However, WSNs are becoming more popular due to their low 

power consumption, cost savings, and self-organization benefits 

[31]. According to the novel, a new method suggests genetic 

mechanisms can support decreased energy consumption. 

However, the issue of energy consumption is becoming 

increasingly critical for WSNs [32]. The novel reported that the 

back-propagation method can design a 16-bit Ripple Carry Adder 

(RCA) and a 16-bit carry-select adder [33]. The novel suggested 

that implementing the Adaptive Neuro-Fuzzy Inference System 

(AFIS) method can realize a flawed node credentials system 

based on the classifier.  Moreover, ANFIS assists in extracting 

the confidence parameters of the classifier from certified trusted 

and malicious nodes [34]. The novel proposed that the Internet of 

Things (IoT) and Mobile Ad Hoc Network (MANET) will create 

a new MANET-IoT system. The main objective is to lower 

network implementation costs while also improving users' 

mobility [5]. 

2.1 Problem of Statement 

▪ Considering routing in WSN can lead to substantial energy 

expenses throughout the network caused by frequent changes 

in topology based on events. 

▪ However, it reduces network performance regarding network 

lifetime and reliable routing. 

▪ It is challenging and expensive to prolong the lifespan of 

WSNs because sensor nodes rely on low-power series. 

▪ The energy consumption of sensor nodes poses a significant 

challenge that can cause a gradual reduction in the lifetime of 

the entire network. 

▪ WSN’s massive computational requirements and limited 

energy storage are one of the most critical challenges. 

3. Proposed Methodology 

The IPHENHP protocol is discussed in this section as a method 

to conserve energy and prolong network lifespan. EBOCA 

enables us to choose the best cluster head for managing cloud 

resources from a collection of nodes. The leftover energy and 

proximity from the node's neighbours can be ascertained by 

selecting a cluster head. The ONND mechanism is used to 

increase the network's energy effectiveness. The ACOPD method 

should determine the path between the CH and the BS. Finally, 

the IPENCHP protocol offers a trustworthy, comprehensive space 

for maintaining consistent energy and distance weights. By doing 

this, cloud resource management will use fewer resources overall 

and prolong the network life cycle. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Architecture Diagram for Proposed IPENCHP Method 

Figure 2. Illustrated architecture diagram for IPENCHP protocol 

to reduce overall energy consumption and increase the cloud 

resource management network lifetime. These provide a reliable 

and comprehensive space to maintain consistent energy and 

distance weights for cloud resource management. 
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In this segment, the CH selection phase of EBOCA, the butterfly 

network sensors control which sensor groups to select as CHs. 

The size of each butterfly parallels the quantity of CHs in the 

network. EBOCA is an algorithm inspired by nature and falls 

under metaheuristic algorithms. The Butterfly algorithm is a 
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potent metaheuristic that mimics the feeding behaviours of 

butterflies. These insects have numerous olfactory receptors on 

their bodies, which consist of neurons known as chemoreceptors. 

These receptors are also utilized to identify and locate a 

compatible mate. Additionally, it utilizes search algorithms to 

categorize butterfly behaviour. The ability of EBOCA to select 

the most suitable CH from all of the network's sensors depends 

on the node degree. Various factors can help improve the 

management of cloud resources, such as node degree, node 

centrality, distance to the nearest node and BS, and the amount of 

energy still available. It is recommended to identify the most 

suitable sensor using EBOCA to evaluate the fitness feature in 

cloud resource management. The ideal CH is determined based 

on the distance between nodes and from the candidate CH to the 

BS to minimize energy consumption. 

Equation 1 calculates the total number of nodes for every stage of 

the butterfly in the network. Let's assume B-Butterfly initialized 

node, q-amount of CH network, I-butterfly position, and T-total 

amount of node. 

bI = (bI,1(T), bI,2(T), … , bI,q(T))                            (1) 

In the global search phase or solution-based approach, Equation 2 

calculates the ideal butterfly movement. a-vector solution, F-

butterfly fragrance, R-random number generate current iteration, 

G-global search phase. 

aI
T+1 = aI

T + (R2 × G∗ − aI
T) × FI                                             (2) 

As a local random walk, a butterfly can be approximated by 

equation 3. Where J and Z-Represent butterfly random numbers, 

aJ
Tand aZ

T-local random walk. 

aI
T+1 = aI

T + (R2 × aJ
T − aZ

T) × FI                    (3)       

Equation (4) generates the scents of the butterflies at every 

location. Let's assume d-sensory modality, i-simulation intensity, 

A-power exponent.  

F = diA                                                                                                         

(4) 

 As shown in Equation 5, calculate the CH node with 

the highest residual energy. Where, eCHI –residual energy cluster 

head. 

F1 = ∑
1

eCHI

q
I=1                                                          (5) 

To determine the exposure distance CH for a fixed sensor, refer 

to Equation 6. Where, dis-distance, w-sensor node. 

F2 = ∑ (∑ dis(wI, CHJ)/iJ
iJ
I=1

)M
J=1                                  (6) 

Equation 7 illustrates the objective function used for measuring 

the distance between the CH and BS. Let's assume BS-Base 

station. 

F3 = ∑ dis
q
I=1 (CHJ, BS)                                                             (7) 

Compute the node size, refer to Equation 8, and choose the CH 

with the lowest number of sensors. 

F4 = ∑ iI
q
I=1                                                                              (8) 

Calculate the node centrality from the adjacent nodes as shown in 

Equation 9. Where, L-node. 

F5 = ∑
√(∑ disT2(I,J)/L(I)J∈l )

Network Dimension

q
I=1                                                      (9) 

Compute the weighted values for the single objective function in 

equation 10. Let's assume δ-delta, δ1 to δ6- weighted value. 

F = δ1F1 + δ2F2 + δ3F3 + δ4F4 + δ5F5+δ6F6 where,∑ δI =
5
I=1

1, δI ∈ (0,1)                     (10) 

 In this category, during the CH selection process, the 

improved status of butterflies was considered to enhance their 

condition. 

 

3.2 Optimal Neural Network Distance (ONND) 

This section offers the ONND method to improve network energy 

efficiency in cloud resource management. To efficiently allocate 

resources to consumers through fast-changing channels, it's 

essential to incorporate performance metrics. ONND energy 

efficiency optimization process involves two stages. The first 

stage, spiral, involves updating and rotating the prey. The second 

stage consists of searching for the target randomly. Based on the 

ONND algorithm, the critical factor for optimal performance is 

the quality of the display. The ONND algorithm may produce 

inconsistent results for whale populations if cloud resource 

management has a functionally optimal solution. To achieve final 

recognition, the error rate value goes through a threshold function 

utilizing the standard error of the mean method. 

As shown in Equation 11, the optimal wireless design problem 

can be calculated using a vector ergodic mean to relax the 

inequality. Where, u-Channel realization, Q (u)-resource 

allocation, 𝕖-Ergodic average vector, a-Performance Matrix. 

a ≤ 𝕖[F(Q(𝑢), u)]                                   (11)  

Equation 12 demonstrates that performance measurement can 

quantify the resource allocation to enhance a specific function. 

Where, Q-bounded function. 

Q∗ ∶= maxQ(H),XG0(X)a ≤ 𝕖[F(Q(u), u)] G(a) ≥ 0. a ∈ χ, Q ∈ Q                    

         (12)    

Calculate the performance improvement for the search agent 

behavior represented in Equation 13. Let's assume y-current 

location, b and d-coefficient vector, v-iteration,  

y⃗⃗ (v+1)=y⃗⃗ ∗(v)−b⃗⃗ .d⃗⃗ 

e⃗ =|d⃗⃗ .y⃗⃗ 2(v)−y⃗⃗ (v)|
                                                                         (13)  

The calculation formula for determining the absolute value of the 

coefficient vector is (14). Where b- lowered value from 2 to 0 

iteration, B-minimize the value from 2 to 0. 

 
b⃗⃗ =2.B⃗⃗ .w⃗⃗⃗ +B⃗⃗ 

d⃗⃗ =2.w⃗⃗⃗ 
                                                                                  (14) 

Calculate the distance between the whale locations as shown in 

Equation 15.  

 e⃗ = |y⃗ 2(v) − y⃗ (v)|                                                                  (15) 

Evaluate the identified logarithmic curve and the stochastic curve 

shown in Equation 16. Rand- random number. 

y⃗ (v + 1) = y⃗ rand − b⃗ , e⃗                                                             (16)    

The minimization of the local optimization problem can be 

evaluated through random selection, as demonstrated in Equation 

17. Let's assume𝑦  r and r-randomly select whale from the 

specified population. 

y⃗⃗ (v+1)=y⃗⃗ rand−b⃗⃗ ,e⃗ 

e=|d⃗⃗ .y⃗⃗ rand−y⃗⃗ |
                                                                          (17) 

Equation 18 calculates the average standard error and applies it to 

the threshold function. SEM-Standard Error Mean, σ −sigma, 

μ −Mu. 

SEM(XI) =
σ

L
, σ = √σ2, σ2 = e[(y1 − μ)

2]                            (18) 

In this category, the error rate values were determined using the 

standard error of the mean procedure as a threshold function. 

3.3 Ant Colony Optimum-based Path Distance (ACOPD) 

This section uses the ACOPD algorithm to discover the routing 

between cluster heads and BSs. It considers distance, residual 
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energy, and node extents to select optimum paths. The ACOPD 

algorithm is a metaheuristic that takes inspiration from the 

behaviour of ant optimization. Usually, ants determine food 

sources by taking the rapidest route through their colony. The 

sensor nodes must send the collected data and have a path to 

reach it. Typically, cloud resource management requests are sent 

throughout the network, and a response is received from the BS. 

ACOPD challenges a specific task: a graph that contains nodes 

and numerous connections. Every node retains a particular 

capacity of ants; every relationship is linked to weight. The 

ACOPD can be enhanced by considering elements such as 

remaining energy, distance to BSs, and node order in the cloud 

resource allocation period edge of improbability convergence. 

This section comprehensively explains how the path generation 

process uses ACOPD. 

Based on Equation 19, the ant determines its next move using the 

node transfer rule. Let's assume I and J-node, z-represents group 

of node, τIJ and ηIJ-heuristic value and pheromone intensity, α 

abd β-Parameter. 

QIJ
z (T) = {

[τIJ(T)]
α
[ηIJ]

β

∑ [τIJ(T)]
α
[ηIJ]

β
o∈nz

                                                      (19)   

Equation (20) states that the distance between CHs is evaluated as 

the heuristic information.  

ηIJ =
1

cCH
                                                                                    (20) 

Equation (21) provides the formula for calculating the pheromone 

update rule. Where, q-initialized amount, ΔτIJ
z -quantity of 

pheromone present the link. 

τlJ = (1 − ρ)τIJ
old + ∑ ΔτIJ

zq
z=1                                                    (21)  

Calculate the concentration of pheromone in the patch as shown 

in equation 22. Where, P-Constant value, dz-detected cost path. 

ΔτIJ
z = {

P

dz
0

                                                                                  (22) 

 To determine the path cost, adjust the scale of 

pheromone values in Equation 23. Let's assume φ1to φ3-

weighted value. 

dz = φ1eR + φ2cCH,BS + φ3Lc                                                (23)   

 In this category, when choosing the shortest Path with 

the most minor energy consumption between CH and BS, it's 

essential to consider the node's size. Therefore, choosing a next-

hop CH node with fewer cluster members is recommended. 

3.4 Improved Power Effective Node Combined 

Heterogeneous Path (IPENCHP) 

This section uses the IPENCHP protocol to minimize energy 

consumption and extend network lifetime for cloud resource 

management. This protocol assumes that the WSNs within a CH 

are selected based on the node's power level. The heterogeneous 

WSN differs from the traditional homogeneous WSN because it 

comprises various types of nodes. The diversity of it makes it 

better suited for practical usage. WSNs use cloud-based resource 

management to generate different power levels that select 

channels to increase the lifetime of network energy. In addition, 

we can enhance performance and maximize energy efficiency 

over the network's lifetime by estimating the power levels and 

transmitting different probabilities at each power level. 

Calculate the initial power of the advanced node at average power 

using Equation 24. Let's assume eorg-Initial energy, eAc-

advanced node, and ϑ −energy factor. 

eAc = eorg. (1 + ϑ)                                                                   (24) 

Compute the total energy of the new manifold as shown in 

Equation 25.  

e = l. (1 − q)eorg + lqeorg(1 + ϑ) = l. eorg(1 + ϑq)             (25) 

To calculate the random number node threshold as shown in 

equation 26. Let's assume t-threshold, R-number of nodes, w-

normal node set,1 QI
⁄ − round of normal node, [1, 0]-random 

interval.  

tL =

{
 

 
QI

1−QI(R.mod
1

QI
)

0                       wI∈w            

                                                        (26) 

To compute the average power of three nodes, refer to equations 

27 to 29. Let's assume the R-current number of nodes, 

enormal
ave , eadvance

ave , and esuper
ave -average energy. 

enormal
ave =

1

nnormal
∑ e(LI)
Lnormal
I=1 (R)                                           (27) 

eadvance
ave =

1

nadvance
∑ e(advI)
Ladvance
I=1 (R)                                   (28) 

 esuper
ave =

1

nsuper
∑ e(supI)
Lsuper
I=1

(R)                                            (29)  

Compute the probability of four-state nodes as shown in equation 

30.  

QI =

{
 
 
 
 
 

 
 
 
 
 

QIeI

(1+q(ϑ+q0(−ϑ+B+q1((−B+d)))))eavewI is normal node

QI.(1+ϑ)eI

(1+q(ϑ+q0(−α+B+𝑞1((−B+d)))))eavewI is advanced node

QI.(1+b)eI

(1+q(ϑ+q0(−ϑ+B+q1((−B+d)))))eavewI is super node

QI.(1+c)eI

(1+q(ϑ+q0(−ϑ+B+q1((−B+d)))))eavewI is ultra−node node

  (30) 

Evaluate the threshold for the four-layer heterogeneous WSN as 

shown in Equation 31. Let's assume wI-decision by the node, 

t(wI)-random number of less than threshold, 1-random number 

t(wI) = {
QI

1−QI .(R.mod
1

QI
)

if  wI{w,w
′,w′′,w′′′}

else
                                   (31)       

Equation 32 calculates a reasonable weight for both by assigning 

the weight value. Where γ and θ-analystic hierarchy process, s-

weight value. 

s = γ.
c̅

ctoSINK
+ θ.

eRsidual

e0
                                                           (32) 

In Equation 33, the weight vector of the assessment unit is 

calculated. Let's assume the Q̅ −judgement matrix,  

Q̅ =

{
 
 

 
 
s1

s1
 
s1

s2
… .

s1

sN
s2

s1

s2

s2
… .

s2

sN
sN

s1

sN

s2
… .

sn

sn}
 
 

 
 

                                                                     (33) 

Compute the eigenvalues and eigenvectors as shown in equation 

34. Let's assume s-corresponding normalized feature vector,  

t = λ
maxs

′ = XIJ(M ×M)                                                 (34) 

Calculate the largest eigenvalue of the judgment matrix and its 

associated eigenvector, as shown in Equation 35. 

XIJ
normalize =

XIJ

∑ XIJ
M
I=1

                                                                  (35) 

Equations 36 and 37 show that computes a matrix normalized by 

columns collapsed by rows and vectors. 

s̅ = (s̅1, s̅2, s̅3… s̅n)                                                                   (36) 

sI =
s̅I

∑ S̅I
M
I=1

                                                                                 (37) 

Compute the largest eigenvalue as shown in equation 38. 

λmax = ∑
(Qs)I

MsI

M
I=1                                                                       (38) 
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The Consistency Index (CI) can be calculated according to 

equation 39.     

CI =
λmax−M

M−1
                                                                               (39) 

Equation 40 computes the random positive and negative matrices. 

RI- Random Index, the λ̅̅ ̅̅ ̅̅
max −average value of the most 

significant root. 

RI =
λ̅max−M

M−1
                                                                              (40) 

Calculate the agreement ratio in Equation 41 to determine the 

range of inconsistency. 

CR =
CI

RI
                                                                                     (41) 

Evaluate the weighting coefficients as shown in Equation 42. 

sI =
∑ XIJ
M
J=1

∑ XIJ
M
IJ=1

                                                                               (42) 

Equations 43 and 44 compute the average distance between 

various sink nodes. Where, c̅-average distance, ctoBs-sink 

node.wN(I) −Normal node, wN(I + 1)- position of sink node. 

c̅ =
1

N
∑ ctoBs
N
I=1                                                                         (43) 

ctoBs =

√(wN(I). XcT −wN(I + 1)XcT)
2, (wN(I). YcT −wN(I + 1)YcT)

2           (44)          

(44) 

Calculate the energy consumed by CH expressed as ECH as 

shown in equation 45. Let's assume eelec −transmitter electronic 

Energy eDA-Data aggregation energy. φ-Phi. 

eCH = O. eelec (
N

Z
+ 1) + O. eDA

N

Z
+ O. eelec + O.φFwctoCH

2   (45) 

This model computes elevated energy levels and establishes 

distinct energies for each group to enhance effectiveness and 

prolong the network's energy-saving capacity. 

4. Result and Discussion 

In this segment, the uses of the IENCHR protocol that has been 

proposed will be discussed. The resource allocation platform's 

WSN, which is cloud-based, improves the network's durability. 

We present numerical results to compare the proposed algorithm 

with existing schemes in IPENCHP. Also, after analysing the 

energy consumption of cluster communication, we offer to use 

the IPENCHP protocol to reduce energy consumption and restore 

network lifetime. Various parameters, including performance, 

energy efficiency, packet delivery speed, and packet loss 

efficiency, and network lifetime, can determine the accuracy of 

cloud-based resource management. 

Table 1. Simulation Parameter 

Parameter Value 

Language  NS2 

Energy 0.5J 

Initial Energy  1J 

No of Nodes 400 

No of Packet 4000bit 

Threshold Distance 75m 

Transmission Radius of nodes 20m 

Network coverage area 200X200 

Transmitter electronic Energy 40 nJ/bit 

Data aggregation energy 5nJ/bit/signal 

 

According to Table 1, the simulation parameter models being 

discussed can be achieved in NS2 experimental findings. The 

presents a comparative WSN-based cloud resource allocation 

analysis using energy efficiency and data optimization. Through 

this analysis, the suggested method was able to optimize both 

energy efficiency and data optimization. 

 

 

Fig. 3. Analysis in Throughput 

 In Figure 3, it is demonstrated that WSN utilizes cloud-

based resource allocation to decrease energy usage and prolong 

the network's lifespan. Throughput analysis is implemented to 

enhance accuracy. IPENCHP protocol's precision is 69% greater 

than the RSS, ECH, and WPT approaches discussed in the 

literature analysis. The IPENCHP algorithm for cloud resource 

management considers the distance between nodes. It can provide 

various weighting factors by integrating the continuity energy of 

nodes for BS and CH conversion and evaluating the importance 

of distance and power on structural performance. 

 

Fig. 4. Analysis of Performance Latency 

Figure 4 displays the techniques utilized to measure resource 

management performance through performance latency. In 

comparing the IPENCHP protocol with three other methods, it 

was found that its accuracy in determining performance delay 

improved by 50%. Additionally, after analyzing various forms 
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such as ECH, RSS, and WPT, it was discovered that their 

accuracy also improved. The allocation of cloud-based resources 

management in WSN is beneficial as it reduces energy 

consumption and extends the network's lifetime. 

 

 

Fig. 5. Analysis of Packet Delivery Ratio 

Figure 5 shows that WSN employs cloud-based resource 

allocation to reduce energy usage and enhance the network's 

lifespan. The packet delivery rate serves as a metric for 

evaluating resource management efficiency. After analyzing the 

accuracy of packet delivery rates in the literature using RSS, 

ECH, and WPT methods, it is evident that their accuracy has 

improved. However, their accuracy is still 56% lower than the 

suggested IPENCHP protocol. 

 

Fig. 6. Analysis of Energy Consumption 

Using cloud-based resource allocation in WSN, as depicted in 

Figure 6, helps minimize energy usage and prolong the network's 

lifespan. Various methods are employed to measure resource 

management efficiency through energy consumption. After 

analyzing different methods like WPT, RSS, and ECH, it's been 

found that using energy consumption leads to increased accuracy. 

Also, the exactness of energy consumption is reduced to 52% 

when comparing the proposed IPENCHP protocol with the other 

three methods. 

 

 

Fig. 7. Analysis of Packet Loss Performance 

Figure 7 displays the different techniques utilized to gauge the 

value of resource management in terms of packet loss 

performance. Cloud-based resource allocation in WSN minimizes 

energy consumption and increases network longevity. Upon 

evaluating various methods such as RSS, ECH, and WPT, it was 

determined that their precision improved. Additionally, it was 

discovered that the IPENCHP protocol exhibited a lower packet 

loss rate of only 43% compared to the other three techniques. 

 

Fig. 8. Analysis of Energy Efficiency 

Figure 8 illustrates several techniques for measuring cloud 

resource management performance regarding energy efficiency. 

Further, these cloud-based resource allocation in WSN helps 

reduce energy consumption and extend network lifespan. Thus, 

the accuracy of energy efficiency when testing the proposed 

IPENCHP protocol increased their estimate to 83%. 
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Fig. 9. Analysis in Network Lifetime 

Several techniques are used to measure cloud resource 

management performance based on network lifetime analysis, as 

illustrated in Figure 9. Through these, cloud-based resource 

allocation in WSN helps reduce energy consumption and increase 

network lifetime. Compared to methods found in literature, such 

as RSS, ECH, and WPT, the accuracy of network lifetime 

analysis is 63% decreased. However, when testing the proposed 

IPENCHP protocol for network lifetime analysis accuracy, their 

accuracy increased to 89%. Instead of considering only the 

distance of sink nodes or the continuous power of nodes for BS 

and CH selection, the proposed IPENCHP protocol helps to 

evaluate the importance of space and control for classification 

performance, and multiple weighting features can be generated. 

5. Conclusion 

This paper presents the IPENCHP protocol to enhance the 

network's performance by optimizing its lifetime and number of 

stable regions through a novel threshold algorithm. The strength 

of the network can be firm by computing the percentage of the 

enduring energy to the total ordinary power. To determine the 

proximity of a node to the BS, it's essential to equalize the 

distance between the CH and the BS. EBOCA assists in choosing 

the best CH for the network among the nodes in cloud resource 

management. It also computes the remaining energy of each node 

and measures the distance to neighbouring nodes. The energy 

usage of the network is then enhanced using the ONND 

algorithm. The cluster head and the BS are connected by a path 

generated by the ACOPD algorithm. It can improve the network's 

lifetime through cloud resource management using the provided 

IPENCHP protocol. In addition, the IPENCHP protocol provides 

a reliable and complete solution for managing constant power 

levels and weights in cloud resource management. Energy 

efficiency can be determined based on network lifetime, packet 

transmission rate, energy efficiency, energy consumption, and 

transmission delay to determine this accuracy. The accuracy of 

the proposed IPENCHP protocol is increased to 89% based on 

network lifetime analysis. Furthermore, a theoretical analysis 

using several techniques can increase the energy lifetime of the 

network. This analysis takes into account all network loads 

caused by routing protocols. 
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