

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 285

Detection of Re-Entrancy, Timestamp Dependence and Infinite Loop

Attack in Smart Contracts Using Graph Convolution Network

1D. Saveetha, 2G. Maragatham

Submitted: 29/05/2023 Revised: 17/07/2023 Accepted: 29/07/2023

Abstract: Smart Contract Attack Detection Using Graph Convolution Network (GCN) is a research area that focuses on identifying and

preventing malicious activities within smart contracts deployed on blockchain platforms. Smart contracts are self-executing digital agreements

that run on decentralized networks, such as Ethereum. While smart contracts provide transparency and automation, they can also be vulnerable

to various attacks, leading to financial losses or system disruptions. To address this challenge, the concept of Graph Convolution Network is

leveraged. GCN is a deep learning technique that operates on graph-structured data, where nodes represent entities, and edges represent

relationships between them. In the context of smart contracts, a graph can be constructed to capture the dependencies between different

functions, variables, and transactions within the contract. The goal of utilizing GCN in smart contract attack detection is to learn patterns and

detect anomalies in the graph structure. By training the model on a large dataset of known secure and malicious smart contracts, it can learn to

identify suspicious patterns that might indicate an ongoing attack. The GCN model can consider features such as function calls, control flow,

and data dependencies to detect potential vulnerabilities or abnormal behavior. In this paper we are going to address the detection of reentrancy

attack, timestamp dependence attack and infinite loop attack using Graph Convolution Network. Smartbugs wild dataset is used for performing

the attack detection. By using GCN we are able to detect these attacks accurately and our model is compared with the existing models and it

shows that our model is better than the existing models in terms of performance metrics.

Keywords: Smart contract, vulnerability, Graph Convolution Network,re-entrancy,time stamp dependence attack ,infinite loop attack.

1.Introduction

Blockchain technology has gained traction in a variety of

industries due to its potential to revolutionize how data is

stored and transactions are processed. Ethereum is a

blockchain proposed by Vitalik Buterin.Ethereum

blockchain is more versatile, allowing for the creation of

smart contracts and decentralized applications, or dApps.

Ethereum makes use of its own cryptocurrency, Ether, to

pay for transaction fees and gas. Ethereum has attracted

developers from all over the world to build decentralized

applications on the Ethereum blockchain.The popularity of

Ethereum has resulted in the development of many tools

and frameworks to facilitate the development of

decentralized applications. The tools and frameworks

include Truffle, Embark, and Hardhat. Smart contracts are

self-executing contracts which was introduced by Nick

Szabo in the year 1996.It is made up of a series of rules and

conditions that must be satisfied for the contract to be

executed. Decentralized applications, or dApps, are

frequently built using smart contracts. A decentralized

application (dApp) is a program that runs on a decentralized

network. The Ethereum Blockchain is a popular choice for

many decentralized application developers. The use of smart

contracts eliminates the need for a third party to mediate a

contract, such as a bank or a lawyer. This not only reduces

the contract’s cost, but also the time required to complete the

contract. Smart contracts are stored on the blockchain and are

immutable, which means they cannot be modified once

deployed.

The number of smart contracts established over the last few

years has been steadily increasing. These contracts are used

for a variety of functions, from electronic voting to the

storage of medical information and decentralized financial

systems. Though the popularity of smart contracts has

increased, there has been a corresponding increase in the

number of vulnerabilities found in these contracts. These

vulnerabilities have resulted in the loss of millions of dollars

in cryptocurrency assets. Early vulnerability discovery

is critical for mitigating the hazards posed by these vulnerable

smart contracts.

a.Department of Networking and Communications,

SRM Institute of Science and Technology, Kattankulathur 603203, Tamil

Nadu, India

saveethd@srmist.edu.in
2Department of Computational Intelligence, SRM Institute of Science

and Technology, Kattankulathur 603203, Tamil Nadu, India

maragatg@srmist.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 286

Graph Convolution Networks (GCN) is a type of deep

neural networks that can be used to represent the smart

contracts as a graph structure.GCN is designed to process

and analyse data that is structured as graphs. Traditional

neural networks are primarily used for tasks like grid-like

data structures, such as images or sequences, but they may

not effectively capture the relationships and dependencies

present in graph-structured data.

GCNs address this limitation by incorporating graph-based

operations and learning mechanisms. They can operate

directly on graph data, taking into account the connectivity

and interactions between nodes and edges. GCNs have

gained significant attention and popularity in various

domains where data is naturally represented as graphs, such

as social networks, recommendation systems, molecular

chemistry, knowledge graphs, and more.

It iteratively updates node representations by aggregating

information from neighbouring nodes in the graph. This

process allows each node to gather and incorporate

information from its local neighbourhood, capturing the

structural patterns and dependencies present in the graph.

The updated node representations are then used for

downstream tasks like node classification, link prediction,

or graph-level predictions. It has wide range of

applications, including node classification, link prediction,

graph classification, recommendation systems, and

knowledge graph reasoning.

There are various types of vulnerabilities in smart contracts

but we are going to address only few attacks like re-

entrancy attack, timestamp dependence attack and infinite

loop attack.

Re-entrancy attack: When a contract calls an external

contract without properly handling the flow of execution

this type of attack arises. An attacker can exploit this by

repeatedly calling back the vulnerable contract before

executing the previous execution, resulting in loss of funds

or causing damage to the system. DAO attack was a famous

re-entrancy attack that resulted in the loss of 60 million

ethers because of this vulnerability.

Fig 1:re-entrancy attack

In Fig 1: Shows the re-entrancy attack where a function is

used to send eth and it then calls a fallback function which

can be used to call a withdraw function.

Timestamp dependence attack: By varying the timestamp or

referring to external timestamps can lead to vulnerabilities

because time could easily be manipulated or changed to

produce incorrect results.

Infinite loop attack: when a program using functions iterate

in a loop with no exit condition or when the exit condition

cannot be reached the system will hang leading to infinite

loop.

2. Related Work

Vulnerabilities in smart contracts arise due to bugs in the

coding, or attackers trying to take control of the contract or

steal the funds contained within. It can lead to potential risks

and issues like security breaches that can allow hackers to

access private keys and steal cryptocurrencies or tamper with

transactions. Network disruptions cause the network to

malfunction or halt, disrupting the normal flow of

transactions and creating a loss of trust in the system.

Vulnerabilities in smart contracts can cause unexpected

behavior and allow attackers to exploit vulnerabilities to

drain funds, or to create a fork in the blockchain.It is crucial

to implement robust security measures and regularly conduct

security audits to identify and fix vulnerabilities.

Due to the blockchain’s immutability, the smart contracts

cannot be modified later after deployment if any issues arise.

This demonstrates how critical it is to identify and mitigate

vulnerabilities prior to deploying a smart contract. In June

2016, one of the earliest widely publicized smart contracts on

the Ethereum blockchain, known as the DAO, was attacked;

approximately $50 million in ETHER was lost as a result.

The attacker took advantage of a recursive call bug to gain

control of the DAO contract and drain its funds. Numerous

studies have been conducted in the past attempting to analyze

the security risks associated with smart contracts however the

majority of the research work doesn’t delve into the technical

details of the most prevalent vulnerabilities. Reentrance

attacks, indirect execution of unknown code via a fallback

function, interface naming issues, and time component

attacks are just a few examples of common smart contract

vulnerabilities.

Smart Contract Vulnerability Detection can be done using

two methods, static analysis and dynamic analysis. Tools are

used to identify the vulnerabilities. In static code analysis the

code is analyzed without executing,e.g. Oyente, Mythril, and

Securify are popular examples. Smart contract analysis can

be beneficial for identifying potential vulnerabilities and for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 287

understanding how the code works.It enables automated

security reviews and runs quickly on large contract files, it

is also believed to be a cost-effective method of

discovering vulnerabilities.There are usually three stages in

static analysis 1. Building an intermediate representation 2.

Enrichment of Intermediate Representation using

algorithms such as symbolic execution and abstract

interpretation 3. Vulnerability detection. In dynamic

analysis we execute the code for identifying the

vulnerabilities. e.g.Manticore. There are many issues that

may not be identified by static analysis, because static

analysis cannot identify every possible execution path of

the code. However, dynamic analysis is a more expensive

approach to security testing than static analysis.

Priyanka Bose et al developed SAILFISH, a prototype to

detect two state-inconsistency flaws, viz., re-entrancy and

transaction order dependence in Ethereum smart contracts

[1].Noama Fatima Samreen and Manar H. Alalf combined

the static with dynamic analyser to detect re-entrancy

vulnerabilities [2]. Lejun Zhang et al proposed a novel

hybrid deep learning model named CBGRU that combines

different word embedding (Word2Vec, FastText) with

different deep learning methods (LSTM, GRU, BiLSTM,

CNN, BiGRU).They have used a dataset named

SmartBugs-Wild.Their model has achieved an accuracy of

93.30%,Precision of 96.30% Recall of 85.95% and F1

score of 90.92 for re-entrancy attack.Jianbo Gao et al have

developed a fuzzing-based analyser to detect re-entrancy

bugs automatically in Ethereum smart

contracts[4].Yinxing Xue et al have developed

Clairvoyance to detect re-entrancy vulnerabilities in real

world with significant higher accuracy by using a cross-

function cross-contract static analysis.Yuchiro Chinen et

al have found Re-entrancy Analyser which is a static

analysis tool that uses both symbolic execution and

equivalence checking by a satisfiability modulo theory

solver[12].Daojun Han at al have described a model where

the features are obtained from the AST and control flow

graph of smart contract through TextCNN and GNN. The

syntactic and semantic features are fused, and the fused

features are used to detect vulnerabilities. They have used

Eth2Vec dataset and they have got an average precision of

96% and recall of 90% [13].Jing Huang et al have used a

two layer model for multitask learning. A CNN model is

used to construct a classification model for learning and

extracting features. It identifies 3 types of vulnerabilities

while obtaining a precision of 70.31%, recall of 77.83%,

and F1 score of 73.87% [14].

3. Proposed System

In our proposed system we have designed a system to detect

the various attacks like re-entrancy attack, timestamp

dependence attack, infinite loop attack in smart contracts

using GCN.Smartbugs-wild is the dataset we have used for

the experimental purpose.The diagrammatic representation

of GCN is shown below in Fig 2. A smart contract is taken

from the dataset and it is converted to a transaction graph.

The contract is converted to graph structure with all the

nodes, edge and function calls. The graph is then normalized

so that all the values are similar and then passed through the

GCN network .The GCN model classifies the type of attack.

Hyper parameter tuning is done in order to achieve better

results. The final output of the model will predict whether the

attack is present or not.

Fig 2: diagrammatic representation of GCN to detect the

attacks.

Algorithm -Code to Graph

Input: Code

Output: Graph

__

Step 1- Map user-defined names to symbolic names (var1,

var2, var3, var n)

Step 2- List the function types and its limit (Fun1, fun2,

fun3, .fun n), Boolean expression, an assignment expression

Step 3- Split all the functions of the contract

Step 4- Generate a fallback node (nodes, edges)

Step 5- Generate the graph

Step 6- Store the functions

Step 7- Traverse the graph

Step 8- Get payable function (pf1,pf2,….pf n) also get non

payable functions(npf1,npf2,….npf n)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 288

Dataset Description

In table 1, The dataset used for our research is the

Smartbugs Wild dataset, which serves as a benchmark

dataset for our research. This dataset comprises a

substantial collection of smart contracts, with a total count

exceeding 47,398 contracts.

Table 1: Dataset description

SmartBugs-Wild Dataset

47,398 smart contracts extracted from the

Ethereum network.

35,151 contracts have vulnerability and 12,247

contracts are without vulnerability

4. Experimental Results

The experiment was carried out on a Lenovo ThinkPad

system which is of the given specification Intel(R)

Core(TM) i5-8365U CPU @ 1.60GHz 1.90 GHz, 8.00

GB,X64 based processor. Python-Keras was used to build

the model. Hyper parameter tuning is done to achieve the

expected results.20% of the smart contracts is used for

training while the remaining is utilized for testing.After

running the model it is able to identify re-entrancy attack,

time dependence attack and infinite loop attack with better

accuracy, precision, recall and F1 score. Our results are

compared with other models and found out that our model

works better than other models in identifying the

vulnerabilities. The specific configurations and settings

used throughout the experiment are specified by the

simulation parameters in Table 2.These parameters cover

the number of hidden layers in the GCN model, the

activation functions employed, the learning rate, the

optimizer, and the loss function. The experiment creates the

architecture and training parameters for the GCN model by

defining these parameters, allowing simulation and

evaluation of the model's performance on the provided task

or dataset.

Table 2: Simulation setup for GCN

Parameter Value

GCN layers 2

Learning rate 0.01

Epoch 100

Optimization algorithm Adam

L2 regularization 10

Batch size 5

Feature channels 100

Drop out rate 0.5

Re-entrancy attack

The model accuracy for re-entrancy attack is shown in Fig

3.The model stabilizes over time, initially training and testing

process had a range of fluctuations but with the increase in

the number of iterations they fitted well in the later stage.

Better the fitting of the accuracy curve during training and

testing the stronger the generalization ability of the model.

Fig 3:re-entrancy attack model accurcay

The model loss for re-entrancy is shown in Fig 4.The loss

decreases gradually over time.The loss value curve had

certain fluctuations in the initial stage but with the increase in

the number of iterations the model fitted well for training and

tesing. So the stronger is the generalization ability of the

model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 289

Fig 4:re-entrancy attack model loss

Re-entrancy attack comparison with other models

The outcomes is shown in Fig 5,where the performance

metrics like precision,recall,F1 score and accuracy are

used. The graph shows that GCN model outperforms the

existing model CB-GRU. The accuracy of the GCN model

was 97%, which is 4.27% more accurate than the accuracy

of the CB-GRU. The GCN model might be able to

effectively categorize and detect the desired targets or

behaviour’s as a result of the increase in accuracy. The

comparison shows how the suggested GCN model

outperforms the current CB-GRU model in terms of its

capacity to deliver more accurate and trustworthy

outcomes for the given task.

Fig 5:Re-entrancy comparison with other models

Timestamp Dependence attack

This type of attack is caused by the diffeence in timestamp

of the blocks in the blockchain. In Fig 6,we can find the

model accuracy increases as the no of epochs(iterations)

increases.

Fig 6: timestamp attack model accuracy

As training progresses, the model appears to get better at

correctly predicting the timestamp attacks. This increase in

accuracy demonstrates that the model is successfully

capturing the patterns and traits connected to the timestamps

in the provided dataset.Similar trends in the testing and

training data indicate that the model can generalize and

perform well outside of the training set. The fact that

timestamp accuracy is constantly higher during the testing

phase supports the model's capacity to generate precise

predictions about data that has not yet been viewed.The

model's general capacity to comprehend and make

appropriate use of temporal information is demonstrated by

the overall trend of rising accuracy for timestamps in both

training and testing data. It illustrates the model's

development in learning and using the timestamp information

to provide precise predictions or classifications over the

course of training.

In Fig 7,we can find the model loss decreases as the iteration

increases. The graph shows how the loss has been steadily

declining over time. Initial training and testing results

showed a strong match, demonstrating that the model was

successfully reducing error. The loss curve saw a range of

changes as a result of the fit degree decreasing with the

number of repetitions. This shows that the parameters of the

model were being adjusted to better match the timestamp

data. The changes in the loss curve show that corrections are

being made to lower the mistakes and boost the model's

efficiency.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 290

Fig 7: Timestamp dependence model loss

Timestamp dependence comparison with other models:

Fig 8: Timestamp dependence comparison with other

models.

As shown in Fig 8, we can find our model is having better

performance metrics than the other model CB-GRU. The

Timestamp dependence dataset comparison with other

models, the GCN model has better performance metrics

than the other model for timestamp dependence. It has

achieved 95% accuracy, which is 2.13 % more than the

existing model CB-GRU.

Infinite Loop

In Fig 9, the graph shows a gradual improvement in

accuracy over time, demonstrating the model's enhanced

capacity to recognize endless loops. The growing accuracy

indicates that as training proceeds, the model gets better at

identifying the presence of endless loops in the input

dataset. This increase in accuracy shows that the model is

better able to represent the patterns and traits connected to

infinite loops, resulting in more accurate predictions.

Fig 9: Infinite loop model accuracy

In Fig 10, we can find very high fluctuations in initial stage

but as the epoch increases the model is trying to fit in near

future. The graph shows how the loss has been steadily

declining over time. The loss function initially did not fit well

during the initial stages of training and testing, showing that

the model's predictions differed from the actual data.

However, as the number of iterations increased, the fit degree

improved, resulting in a decrease in the loss function. This

suggests that the model was able to learn from the data and

adjust its parameters to minimize the error in predicting

infinite loops.

Fig 10: Infinite loop model loss

Despite the overall decreasing trend, there is a certain range

of fluctuations in the loss curve. These fluctuations indicate

adjustments and fine-tuning made by the model to further

reduce the errors and improve its performance

Infinite loop comparison with other models

Fig 11, depicts the model is having better performance

metrics than the other model CB-GRU. The GCN model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 291

performed admirably, obtaining an astounding accuracy of

96%. This accuracy rate is 3.24% higher than that of the

current CB-GRU model. These findings demonstrate how

well the GCN model handles the intricate connections and

patterns found in the endless loop dataset.

Fig 11: infinite loop comparison with other models.

Comparison of Performance Metrics:

As depicted in table 3, by using GCN attacks like re-

entrancy, timestamp and infinite loop in the code are

detected.GCN model is able to achieve higher accuracy,

precision, recall and F1 score than the existing model CB-

GRU.Compared to CB-GRU, the model has 4% increase in

accuracy, 13% increase in recall, 1% increase in precision,

and 6% increase in F1 score for re-entrancy attack.

Comparing GCN model with CB-GRU with respect to

timestamp dependence attack the model has 2% increase in

accuracy, 1% increase in recall, 1% increase in precision,

and 0.32% increase in F1 score .Compared to CB-GRU,

GCN model is having 3% increase in accuracy, 0.74%

increase in recall, 9% increase in precision, and 2%

increase in F1 score for infinite loop attack.

Table 3: Comparison of Performance Metrics

 Re-entrancy Timestamp

dependence

Infinite loop

M

eth

od

s

A

c

c

u

r

a

c

y

(

R

e

c

al

l

(

%

)

Pr

eci

sio

n

(%

)

F

1

(

%

)

A

cc

ur

ac

y

(

%

)

R

e

c

al

l

(

%

)

P

r

e

c

is

i

o

n

(

F

1

(

%

)

A

c

c

u

r

a

c

y

(

R

e

c

a

ll

(

%

)

Pr

ec

is

io

n

(

%

)

F

1

(

%

)

%

)

%

)

%

)

C

B-

G

R

U[

3]

9

3

.

3

0

8

5.

9

5

96

.3

0

9

0

.

9

2

9

3.

0

2

9

7.

4

5

8

9

.

4

7

9

3

.

2

9

9

3

.

1

6

9

8

.

2

9

8

9.

1

5

9

3

.

5

0

G

C

N

9

7

.

5

7

9

8.

6

1

97

.3

4

9

6

.

9

5

9

5.

1

5

9

8.

5

2

9

0

.

7

2

9

3

.

6

1

9

6

.

4

0

9

9

.

0

3

9

7.

5

7

9

5

.

6

8

5. Conclusion and Future Work

Based on the results we are able to demonstrate that GCN

model is able to achieve more accuracy than the existing

models and it is best to predict the vulnerabilities like re-

entrancy, timestamp dependence and infinite loop attack that

are present in the smart contract. This work can be enhanced

by applying to other graph neural network and its sub-types.

A global model can be developed to detect all types of

vulnerabilities existing in blockchain. NIST framework can

be used to test the model.

References:

[1] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng,

Christopher Kruegel, and Giovanni Vigna University of

California, Santa Barbara,IEEE,2022.

[2] Noama Fatima Samreen, Manar H. Alalfi ,A Survey of

Security Vulnerabilities in Ethereum Smart Contracts,

arXiv,2021.

[3] Lejun Zhang,Weijie Chen,Weizheng Wang ,Zilong Jin,

Chunhui Zhao, Zhennao Cai and Huiling

Chen,”CBGRU: A Detection Method of Smart Contract

Vulnerability Based on a Hybrid Model“, Sensors , Vol

22, 3577,2022.

[4] Jianbo Gao, Han Liu, Yue Li, Chao Liu,

Zhiqiang Yang, Qingshan Li, Zhi Guan, Zhong Chen,”

Towards automated testing of blockchain-based

decentralized applications,” ICPC '19: Proceedings of

the 27th International Conference on Program

Comprehension,May 2019.

[5] Qian, Peng, Zhenguang Liu, Qinming He, Butian

Huang, Duanzheng Tian, and Xun Wang. "Smart

Contract Vulnerability Detection Technique: A

Survey." arXiv preprint arXiv:2209.05872 (2022).

https://arxiv.org/search/cs?searchtype=author&query=Samreen%2C+N+F
https://arxiv.org/search/cs?searchtype=author&query=Alalfi%2C+M+H
https://arxiv.org/abs/2105.06974
https://arxiv.org/abs/2105.06974
https://arxiv.org/abs/2105.06974
https://dl.acm.org/profile/99659433465
https://dl.acm.org/profile/81486647906
https://dl.acm.org/profile/81450593160
https://dl.acm.org/doi/proceedings/10.5555/3339076
https://dl.acm.org/doi/proceedings/10.5555/3339076
https://dl.acm.org/doi/proceedings/10.5555/3339076

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 | 292

[6] Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai,

Z.; Chen, H. A Novel Smart Contract Vulnerability

Detection Method Based on Information Graph and

Ensemble Learning,Sensors 2022.

[7] H. Wu et al., "Peculiar: Smart Contract Vulnerability

Detection Based on Crucial Data Flow Graph and

Pre-training Techniques," 2021 IEEE 32nd

International Symposium on Software Reliability

Engineering (ISSRE), 2021, pp. 378-389, doi:

10.1109/ISSRE52982.2021.00047.

[8] Jiaming Ye, Mingliang Ma, Yun Lin, Lei Ma,

Yinxing Xue, Jianjun Zhao,Vulpedia: Detecting

vulnerable ethereum smart contracts via abstracted

vulnerability signatures,Journal of Systems and

Software, Volume 192, 2022.

[9] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu,

Xiang Wang, and Qinming He.,” Smart contract

vulnerability detection using graph neural networks”

Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence (IJCAI'20).

Article 454, 3283–3290,2021.

[10] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of

attacks on ethereum smart contracts (sok). In

Principles of Security and Trust”, pages 164–186.

Springer, 2017.

[11] Jennifer.j.Xu “,Are blockchains immune to all

malicious attacks?”,2016 Xu Financial Inclusion.

[12] S.Nakamoto,”Bitcoin: A peer-to-peer electronic cash

system”,2008.

[13] Yuichiro Chinen, Naoto Yanai, Jason Paul

Cruz, Shingo Okamura,” Hunting for Re-Entrancy

Attacks in Ethereum Smart Contracts via Static

Analysis”, IEEE Blockchain 2020.

[14] Daojun Han, Qiuyue Li,Lei Zhang and Tao Xu ,”A

Smart Contract Vulnerability Detection Model Based

on Syntactic and Semantic Fusion Learning”,

Wireless Communications and Mobile Computing,

Vol 2023, Article ID 9212269,2023.

[15] Jing Huang, Kuo Zhou, Ao Xiong, Dongmeng Li,”

Smart Contract Vulnerability Detection Model Based

on Multi-Task Learning“, Sensors, Vol 22, 1829,

2022

[16] Kumar, S. A. S., Naveen, R., Dhabliya, D., Shankar,

B. M., & Rajesh, B. N. (2020). Electronic currency

note sterilizer machine. Paper presented at the

Materials Today: Proceedings,37(Part 2) 1442-1444.

doi:10.1016/j.matpr.2020.07.064 Retrieved from

www.scopus.com

[17] Wanjiku, M., Ben-David, Y., Costa, R., Joo-young, L.,

& Yamamoto, T. Automated Speech Recognition using

Deep Learning Techniques. Kuwait Journal of Machine

Learning, 1(3). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/

135

[18] Elena Petrova, Predictive Analytics for Customer Churn

in Telecommunications , Machine Learning

Applications Conference Proceedings, Vol 1 2021.

https://arxiv.org/search/cs?searchtype=author&query=Chinen%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Yanai%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Cruz%2C+J+P
https://arxiv.org/search/cs?searchtype=author&query=Cruz%2C+J+P
https://arxiv.org/search/cs?searchtype=author&query=Okamura%2C+S

