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Abstract:  Smart Contract Attack Detection Using Graph Convolution Network (GCN) is a research area that focuses on identifying and 

preventing malicious activities within smart contracts deployed on blockchain platforms. Smart contracts are self-executing digital agreements 

that run on decentralized networks, such as Ethereum. While smart contracts provide transparency and automation, they can also be vulnerable 

to various attacks, leading to financial losses or system disruptions. To address this challenge, the concept of Graph Convolution Network is 

leveraged. GCN is a deep learning technique that operates on graph-structured data, where nodes represent entities, and edges represent 

relationships between them. In the context of smart contracts, a graph can be constructed to capture the dependencies between different 

functions, variables, and transactions within the contract. The goal of utilizing GCN in smart contract attack detection is to learn patterns and 

detect anomalies in the graph structure. By training the model on a large dataset of known secure and malicious smart contracts, it can learn to 

identify suspicious patterns that might indicate an ongoing attack. The GCN model can consider features such as function calls, control flow, 

and data dependencies to detect potential vulnerabilities or abnormal behavior. In this paper we are going to address the detection of reentrancy 

attack, timestamp dependence attack and infinite loop attack using Graph Convolution Network. Smartbugs wild dataset is used for performing 

the attack detection. By using GCN we are able to detect these attacks accurately and our model is compared with the existing models and it 

shows that our model is better than the existing models in terms of performance metrics. 
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1.Introduction 

Blockchain technology has gained traction in a variety of 

industries due to its potential to revolutionize how data is 

stored and transactions are processed. Ethereum is a 

blockchain proposed by Vitalik Buterin.Ethereum 

blockchain is more versatile, allowing for the creation of 

smart contracts and decentralized applications, or dApps. 

Ethereum makes use of its own cryptocurrency, Ether, to 

pay for transaction fees and gas. Ethereum has attracted 

developers from all over the world to build decentralized 

applications on the Ethereum blockchain.The popularity of 

Ethereum has resulted in the development of many tools 

and frameworks to facilitate the development of 

decentralized applications. The tools and frameworks 

include Truffle, Embark, and Hardhat. Smart contracts are 

self-executing contracts which was introduced by Nick 

Szabo in the year 1996.It is made up of a series of rules and 

conditions that must be satisfied for the contract to be 

executed. Decentralized applications, or dApps, are 

frequently built using smart contracts. A decentralized 

application (dApp) is a program that runs on a decentralized 

network. The Ethereum Blockchain is a popular choice for 

many decentralized application developers. The use of smart 

contracts eliminates the need for a third party to mediate a 

contract, such as a bank or a lawyer. This not only reduces 

the contract’s cost, but also the time required to complete the 

contract. Smart contracts are stored on the blockchain and are 

immutable, which means they cannot be modified once 

deployed. 

The number of smart contracts established over the last few 

years has been steadily increasing. These contracts are used 

for a variety of functions, from electronic voting to the 

storage of medical information and decentralized financial 

systems. Though the popularity of smart contracts has 

increased, there has been a corresponding increase in the 

number of vulnerabilities found in these contracts. These 

vulnerabilities have resulted in the loss of millions of dollars 

in          cryptocurrency assets. Early vulnerability discovery 

is critical for mitigating the hazards posed by these vulnerable 

smart contracts. 
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Graph Convolution Networks (GCN) is a type of deep 

neural networks that can be used to represent the smart 

contracts as a graph structure.GCN is designed to process 

and analyse data that is structured as graphs. Traditional 

neural networks are primarily used for tasks like grid-like 

data structures, such as images or sequences, but they may 

not effectively capture the relationships and dependencies 

present in graph-structured data. 

GCNs address this limitation by incorporating graph-based 

operations and learning mechanisms. They can operate 

directly on graph data, taking into account the connectivity 

and interactions between nodes and edges. GCNs have 

gained significant attention and popularity in various 

domains where data is naturally represented as graphs, such 

as social networks, recommendation systems, molecular 

chemistry, knowledge graphs, and more. 

It iteratively updates node representations by aggregating 

information from neighbouring nodes in the graph. This 

process allows each node to gather and incorporate 

information from its local neighbourhood, capturing the 

structural patterns and dependencies present in the graph. 

The updated node representations are then used for 

downstream tasks like node classification, link prediction, 

or graph-level predictions. It has wide range of 

applications, including node classification, link prediction, 

graph classification, recommendation systems, and 

knowledge graph reasoning. 

There are various types of vulnerabilities in smart contracts 

but we are going to address only few attacks like re-

entrancy attack, timestamp dependence attack and infinite 

loop attack. 

Re-entrancy attack: When a contract calls an external 

contract without properly handling the flow of execution 

this type of attack arises. An attacker can exploit this by 

repeatedly calling back the vulnerable contract before 

executing the previous execution, resulting in loss of funds 

or causing damage to the system. DAO attack was a famous 

re-entrancy attack that resulted in the loss of 60 million 

ethers because of this vulnerability. 

 

Fig 1:re-entrancy attack 

In Fig 1: Shows the re-entrancy attack where a function is 

used to send eth and it then calls a fallback function which 

can be used to call a withdraw function. 

Timestamp dependence attack: By varying the timestamp or 

referring to external timestamps can lead to vulnerabilities 

because time could easily be manipulated or changed to 

produce incorrect results. 

Infinite loop attack: when a program using functions iterate 

in a loop with no exit condition or when the exit condition 

cannot be reached the system will hang leading to infinite 

loop. 

2. Related Work 

Vulnerabilities in smart contracts arise due to bugs in the 

coding, or attackers trying to take control of the contract or 

steal the funds contained within. It can lead to potential risks 

and issues like security breaches that can allow hackers to 

access private keys and steal cryptocurrencies or tamper with 

transactions. Network disruptions cause the network to 

malfunction or halt, disrupting the normal flow of 

transactions and creating a loss of trust in the system. 

Vulnerabilities in smart contracts can cause unexpected 

behavior and allow attackers to exploit vulnerabilities to 

drain funds, or to create a  fork in the blockchain.It is crucial 

to implement robust security measures and regularly conduct 

security audits to identify and fix vulnerabilities. 

Due to the blockchain’s immutability, the smart contracts 

cannot be modified later after deployment if any issues arise. 

This demonstrates how critical it is to identify and mitigate 

vulnerabilities prior to deploying a smart contract. In June 

2016, one of the earliest widely publicized smart contracts on 

the Ethereum blockchain, known as the DAO, was attacked; 

approximately $50 million in ETHER was lost as a result. 

The attacker took advantage of a recursive call bug to gain 

control of the DAO contract and drain its funds. Numerous 

studies have been conducted in the past attempting to analyze 

the security risks associated with smart contracts however the 

majority of the research work doesn’t delve into the technical 

details of the most prevalent vulnerabilities. Reentrance 

attacks, indirect execution of unknown code via a fallback 

function, interface naming issues, and time component 

attacks are just a few examples of common smart contract 

vulnerabilities. 

Smart Contract Vulnerability Detection can be done using 

two methods, static analysis and dynamic analysis. Tools are 

used to identify the vulnerabilities. In static code analysis the 

code is analyzed without executing,e.g. Oyente, Mythril, and 

Securify are popular examples. Smart contract analysis can 

be beneficial for identifying potential vulnerabilities and for 
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understanding how the code works.It enables automated 

security reviews and runs quickly on large contract files, it 

is also believed to be a cost-effective method of 

discovering vulnerabilities.There are usually three stages in 

static analysis 1. Building an intermediate representation 2. 

Enrichment of Intermediate Representation using 

algorithms such as symbolic execution and abstract 

interpretation 3. Vulnerability detection. In dynamic 

analysis we execute the code for identifying the 

vulnerabilities. e.g.Manticore. There are many issues that 

may not be identified by static analysis, because static 

analysis cannot identify every possible execution path of 

the code. However, dynamic analysis is a more expensive 

approach to security testing than static analysis. 

Priyanka Bose et al developed SAILFISH, a prototype to 

detect two state-inconsistency flaws, viz., re-entrancy and 

transaction order dependence in Ethereum smart contracts 

[1].Noama Fatima Samreen and Manar H. Alalf combined 

the static with dynamic analyser to detect re-entrancy 

vulnerabilities [2]. Lejun Zhang et al proposed a novel 

hybrid deep learning model named CBGRU that combines 

different word embedding (Word2Vec, FastText) with 

different deep learning methods (LSTM, GRU, BiLSTM, 

CNN, BiGRU).They have used a dataset named 

SmartBugs-Wild.Their model has achieved an  accuracy of 

93.30%,Precision of 96.30% Recall of 85.95% and F1 

score of 90.92 for re-entrancy attack.Jianbo Gao et al have 

developed a fuzzing-based analyser to detect re-entrancy 

bugs automatically in Ethereum smart 

contracts[4].Yinxing Xue et al have developed 

Clairvoyance to detect re-entrancy vulnerabilities in real 

world with significant higher accuracy by  using a cross-

function  cross-contract static analysis.Yuchiro Chinen et 

al have found Re-entrancy Analyser which is a static 

analysis tool that uses both symbolic execution and 

equivalence checking by a satisfiability modulo theory 

solver[12].Daojun Han at al have described a model where 

the features are obtained from the AST and control flow 

graph of smart contract through TextCNN and GNN. The 

syntactic and semantic features are fused, and the fused 

features are used to detect vulnerabilities. They have used 

Eth2Vec dataset and they have got an average precision of 

96% and recall of 90% [13].Jing Huang et al have used a 

two layer model for multitask learning. A CNN model is 

used to construct a classification model for learning and 

extracting features. It identifies 3 types of vulnerabilities 

while obtaining a precision of 70.31%, recall of 77.83%, 

and F1 score of 73.87% [14]. 

 

3. Proposed System 

In our proposed system we have designed a system to detect 

the various attacks like re-entrancy attack, timestamp 

dependence attack, infinite loop attack in smart contracts 

using GCN.Smartbugs-wild is the dataset we have used for 

the experimental purpose.The diagrammatic representation 

of GCN is shown below in Fig 2. A smart contract is taken 

from the dataset and it is converted to a transaction graph. 

The contract is converted to graph structure with all the 

nodes, edge and function calls. The graph is then normalized 

so that all the values are similar and then passed through the 

GCN network .The GCN model classifies the type of attack. 

Hyper parameter tuning is done in order to achieve better 

results. The final output of the model will predict whether the 

attack is present or not. 

 

Fig 2: diagrammatic representation of GCN to detect the 

attacks. 

Algorithm -Code to Graph 

Input: Code  

Output: Graph 

________________________________________________

_____________________ 

Step 1- Map user-defined names to symbolic names (var1, 

var2, var3, var n) 

Step 2- List the function types and its limit (Fun1, fun2, 

fun3, .fun n), Boolean expression, an assignment expression 

Step 3- Split all the functions of the contract 

Step 4- Generate a fallback node (nodes, edges) 

Step 5- Generate the graph 

Step 6- Store the functions  

Step 7- Traverse the graph 

Step 8- Get payable function (pf1,pf2,….pf n) also get non 

payable functions(npf1,npf2,….npf n) 
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Dataset Description 

In table 1, The dataset used for our research is the 

Smartbugs Wild dataset, which serves as a benchmark 

dataset for our research. This dataset comprises a 

substantial collection of smart contracts, with a total count 

exceeding 47,398 contracts. 

Table 1: Dataset description 

SmartBugs-Wild Dataset 

47,398 smart contracts extracted from the 

Ethereum network. 

35,151 contracts have vulnerability and 12,247 

contracts are without vulnerability 

 

4. Experimental Results 

The experiment was carried out on a Lenovo ThinkPad 

system which is of the given specification Intel(R) 

Core(TM) i5-8365U CPU @ 1.60GHz   1.90 GHz, 8.00 

GB,X64 based processor. Python-Keras was used to build 

the model. Hyper parameter tuning is done to achieve the 

expected results.20% of the smart contracts is used for 

training while the remaining is utilized for testing.After 

running the model it is able to identify re-entrancy attack, 

time dependence attack and infinite loop attack with better 

accuracy, precision, recall and F1 score. Our results are 

compared with other models and found out that our model 

works better than other models in identifying the 

vulnerabilities. The specific configurations and settings 

used throughout the experiment are specified by the 

simulation parameters in Table 2.These parameters cover 

the number of hidden layers in the GCN model, the 

activation functions employed, the learning rate, the 

optimizer, and the loss function. The experiment creates the 

architecture and training parameters for the GCN model by 

defining these parameters, allowing simulation and 

evaluation of the model's performance on the provided task 

or dataset. 

Table 2: Simulation setup for GCN 

Parameter Value 

GCN layers 2 

Learning rate 0.01 

Epoch 100 

Optimization algorithm Adam 

L2 regularization 10 

Batch size 5 

Feature channels 100 

Drop out rate 0.5 

 

Re-entrancy attack 

The model accuracy for re-entrancy attack is shown in Fig 

3.The model stabilizes over time, initially training and testing 

process had a range of fluctuations but with the increase in 

the number of iterations they fitted well in the later stage. 

Better the fitting of the accuracy curve during training and 

testing the stronger the generalization ability of the model. 

 

Fig 3:re-entrancy attack model accurcay 

The model loss for re-entrancy is shown in Fig 4.The loss 

decreases gradually over time.The loss value curve had 

certain fluctuations in the initial stage but with the increase in 

the number of iterations the model fitted well for training and 

tesing. So the stronger is the generalization ability of the 

model.  
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Fig 4:re-entrancy attack model loss 

Re-entrancy attack comparison with other models 

The outcomes is shown in Fig 5,where the performance 

metrics like precision,recall,F1 score and accuracy are 

used. The graph shows that GCN model outperforms the 

existing model CB-GRU. The accuracy of the GCN model 

was 97%, which is 4.27% more accurate than the accuracy 

of the CB-GRU. The GCN model might be able to 

effectively categorize and detect the desired targets or 

behaviour’s as a result of the increase in accuracy. The 

comparison shows how the suggested GCN model 

outperforms the current CB-GRU model in terms of its 

capacity to deliver more accurate and trustworthy 

outcomes for the given task.  

 

Fig 5:Re-entrancy comparison with other models 

Timestamp Dependence attack 

This type of attack is caused by the diffeence in timestamp 

of the blocks in the blockchain. In Fig 6,we can find the 

model accuracy increases as the no of epochs(iterations) 

increases. 

 

Fig 6: timestamp attack model accuracy 

As training progresses, the model appears to get better at 

correctly predicting the timestamp attacks. This increase in 

accuracy demonstrates that the model is successfully 

capturing the patterns and traits connected to the timestamps 

in the provided dataset.Similar trends in the testing and 

training data indicate that the model can generalize and 

perform well outside of the training set. The fact that 

timestamp accuracy is constantly higher during the testing 

phase supports the model's capacity to generate precise 

predictions about data that has not yet been viewed.The 

model's general capacity to comprehend and make 

appropriate use of temporal information is demonstrated by 

the overall trend of rising accuracy for timestamps in both 

training and testing data. It illustrates the model's 

development in learning and using the timestamp information 

to provide precise predictions or classifications over the 

course of training. 

In Fig 7,we can find the model loss decreases as the iteration 

increases. The graph shows how the loss has been steadily 

declining over time. Initial training and testing results 

showed a strong match, demonstrating that the model was 

successfully reducing error. The loss curve saw a range of 

changes as a result of the fit degree decreasing with the 

number of repetitions. This shows that the parameters of the 

model were being adjusted to better match the timestamp 

data. The changes in the loss curve show that corrections are 

being made to lower the mistakes and boost the model's 

efficiency. 
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Fig 7: Timestamp dependence model loss 

Timestamp dependence comparison with other models: 

 

Fig 8: Timestamp dependence comparison with other 

models. 

As shown in Fig 8, we can find our model is having better 

performance metrics than the other model CB-GRU. The 

Timestamp dependence dataset comparison with other 

models, the GCN model has better performance metrics 

than the other model for timestamp dependence. It has 

achieved 95% accuracy, which is 2.13 % more than the 

existing model CB-GRU. 

Infinite Loop 

In Fig 9, the graph shows a gradual improvement in 

accuracy over time, demonstrating the model's enhanced 

capacity to recognize endless loops. The growing accuracy 

indicates that as training proceeds, the model gets better at 

identifying the presence of endless loops in the input 

dataset. This increase in accuracy shows that the model is 

better able to represent the patterns and traits connected to 

infinite loops, resulting in more accurate predictions. 

 

 

Fig 9: Infinite loop model accuracy 

In Fig 10, we can find very high fluctuations in initial stage 

but as the epoch increases the model is trying to fit in near 

future. The graph shows how the loss has been steadily 

declining over time. The loss function initially did not fit well 

during the initial stages of training and testing, showing that 

the model's predictions differed from the actual data. 

However, as the number of iterations increased, the fit degree 

improved, resulting in a decrease in the loss function. This 

suggests that the model was able to learn from the data and 

adjust its parameters to minimize the error in predicting 

infinite loops. 

 

Fig 10: Infinite loop model loss 

Despite the overall decreasing trend, there is a certain range 

of fluctuations in the loss curve. These fluctuations indicate 

adjustments and fine-tuning made by the model to further 

reduce the errors and improve its performance 

Infinite loop comparison with other models 

Fig 11, depicts the model is having better performance 

metrics than the other model CB-GRU. The GCN model 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 285–292 |  291 

performed admirably, obtaining an astounding accuracy of 

96%. This accuracy rate is 3.24% higher than that of the 

current CB-GRU model. These findings demonstrate how 

well the GCN model handles the intricate connections and 

patterns found in the endless loop dataset. 

 

Fig 11: infinite loop comparison with other models. 

Comparison of Performance Metrics: 

As depicted in table 3, by using GCN attacks like re-

entrancy, timestamp and infinite loop in the code are 

detected.GCN model is able to achieve higher accuracy, 

precision, recall and F1 score than the existing model CB-

GRU.Compared to CB-GRU, the model has 4% increase in 

accuracy, 13% increase in recall, 1% increase in precision, 

and 6% increase in F1 score for re-entrancy attack. 

Comparing GCN model with CB-GRU with respect to 

timestamp dependence attack the model has 2% increase in 

accuracy, 1% increase in recall, 1% increase in precision, 

and 0.32% increase in F1 score .Compared to CB-GRU, 

GCN model is having 3% increase in accuracy, 0.74% 

increase in recall, 9% increase in precision, and 2% 

increase in F1 score for infinite loop attack. 

Table 3: Comparison of Performance Metrics 
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5. Conclusion and Future Work 

Based on the results we are able to demonstrate that GCN 

model is able to achieve more accuracy than the existing 

models and it is best to predict the vulnerabilities like re-

entrancy, timestamp dependence and infinite loop attack that 

are present in the smart contract. This work can be enhanced 

by applying to other graph neural network and its sub-types. 

A global model can be developed to detect all types of 

vulnerabilities existing in blockchain. NIST framework can 

be used to test the model. 
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