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Abstract: In order to provide effective techniques for identifying and segmenting organs in high-resolution histology pictures, 

this research paper introduces a deep learning approach to the HubMAP-Organ Segmentation Competition. The proposed 

solution combines a Convolutional Neural Network with a U-Net architecture to achieve state-of-the-art performance on the 

competition’s validation dataset. Extensive experiments have also been performed to analyze the effect of different 

hyperparameters and preprocessing techniques on the model performance and also the usage of different pre-trained models 

such as AlexNet, ZFNet, and EfficientNet. Our proposed CNN-based hybrid model claims to achieve a mean Dice 

Coefficient/Accuracy of 0.84178 on each image in the test set highlighting the effectiveness of our approach and providing 

insights into organ segmentation in high-resolution histology images, which has important applications in medical diagnosis 

and research. 
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1. Introduction 

Organ Segmentation is a very important task in medical 

image analysis because segmentation done accurately 

can improve the diagnosis and treatment of diseases and 

also help in understanding the body’s complex 

physiology. Deep Learning techniques in recent years 

have shown promising results in the field of medicine. 

The HuBMAP consortium The HubMap Organ 

Segmentation Challenge, hosted by Kaggle, is a 

platform for researchers and data scientists to develop 

new techniques for segmenting human tissue samples 

from medical images. The challenge presents a unique 

opportunity to address one of the most significant 

problems in medical imaging - the accurate 

segmentation of organs and tissues. Medical imaging is 

a critical tool in healthcare, allowing clinicians to 

visualize and diagnose diseases and conditions. 

However, manual segmentation of medical images is a 

time-consuming and error-prone task, requiring highly 

trained professionals. Automated segmentation of 

medical images can reduce the workload on clinicians 

while improving the accuracy and consistency of 

results. In this paper, the researchers present our 

solution to the HubMap Organ Segmentation 

Challenge, which aimed to accurately segment the 

glomeruli in human kidney tissue samples. The 

researchers used a combination of deep learning 

techniques and image processing to develop a 

sufficiently highly accurate segmentation model. The 

solution was based on a state-of-the-art convolutional 

neural network architecture, which was trained on a 

large dataset of labeled kidney tissue images. The 

researchers also conducted extensive experiments to 

evaluate the performance of our model on the test 

dataset provided by the competition. Our results 

demonstrated a high level of accuracy and 

outperformed the baseline models provided by the 

competition organizers.  

 

Major Highlights:  

1. In this study, the researchers investigated the effects 

of different pre-trained models like EfficientNet, 

AlexNet, and ZFNet on the HubMAP - Organ 

Segmentation Dataset as part of the Kaggle 

Competition titled Hacking the Human Body.  

2. The researchers then projected a customized model 

based on the U Net Architecture and CNN, and 

compared this model with the other pre-existing 

models to justify the claims.  

3. The dataset consisting of data from two different 

consortia, the Human Protein Atlas (HPA) and 

Human BioMolecular Atlas Program (HuBMAP), 

was visualized and preprocessed.  

4. The decreasing order of accuracy of the said models 
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was as follows: CNN+U Net > EfficientNet > ZFNet > 

AlexNet > CNN.  

The rest of the paper is organized as follows; Section II 

addresses prior work and current approaches and 

techniques. The researchers then summarize the dataset 

and attribute distribution in Section III. Section IV 

delves into segmentation modeling, predicting the 

comparison of pre-trained models on the dataset, 

visualizing algorithms using neural networks, and 

visualizing the images from the dataset for better 

results. The evaluation metrics and experimental setup 

are all seen in Section V. It further demonstrates how 

the experiment was carried out and the findings 

obtained. Section VI provides code availability and 

Section VII concludes with a summary of existing work 

and several suggestions for potential improvements. 

 

2. Related Work 

Recently, machine learning (ML), a popular topic in 

image processing, has drawn a lot of interest from the 

medical community. The term "deep learning" (DL) for 

ANN refers specifically to ANN with multiple hidden 

layers and emerged from improvements in ANN 

structures and algorithms since 2006. The difference 

between ANN and DL is not precisely defined since 

there is disagreement about the number of layers that 

qualify as deep [1]. Multi-organ segmentation is the 

process of assigning each voxel of the medical images 

to one of the several labels that represent the objects of 

interest. Segmentation is one of the DL-based 

applications in the medical sector that is most often 

studied. As a result, there are numerous techniques and 

network topologies to choose from. The network 

architecture, training method (supervised, semi-

supervised, unsupervised, transfer learning), input size 

(patch-based, full volume-based, 2D, 3D), and other 

attributes of DL-based multi-organ segmentation 

algorithms can be grouped into many categories.  

Researchers have tried to apply DL-based approaches 

to medical imaging to build on the success of DL in 

computer vision. In medical imaging, DL-based 

techniques have been thoroughly investigated for 

segmentation [2-9]. A significant advancement in 

radiation treatment procedures, DL-based multi-organ 

segmentation approaches speed up the segmentation 

process, improve contour uniformity, and encourage 

adherence to demarcation rules [2-3]. A simple way for 

automated segmentation that is accessible in many 

commercial solutions is the atlas-based method. This 

technique registers atlas templates with pre-contoured 

structures to the segmentation pictures, transmitting the 

pre-contoured structures to the new images. The 

precision of picture registration has a significant 

impact on the segmentation accuracy of this method. 

Accurate registration is not always ensured due to 

patient differences in organ morphology and picture 

artifacts. Using multi-atlas-based techniques with a 

vast and varied range of atlas datasets can help to 

solve this problem. However, it is challenging to 

incorporate all potential situations in the templates 

due to the unpredictable nature of tumor morphology. 

Deformable picture registration is also 

computationally expensive, and using a lot of atlas 

templates can drive up that cost significantly [10-12]. 

In medical images, anomalies, such as aberrant tissue 

types and atypical organ forms, are frequently 

present, making it difficult to derive ground truth 

labels for many organs for supervised learning. In 

automatic radiotherapy, organ segmentation in such 

an aberrant dataset is important. To identify organs in 

magnetic resonance imaging (MRI), Shin et al. used 

an SAE approach [13]. Numerous deep convolutional 

neural network models, including AlexNet [14], 

ZFNet [15], VGG [16], GoogleNet [17], Residual 

Net [18], DenseNet [19], FCN [20], and U-Net [21], 

have been suggested since 2012.In addition to 

providing a novel viewpoint on image fusion, these 

models provide state-of-the-art performance for 

image classification, segmentation, object 

recognition, and tracking tasks. The primary four 

factors influencing their success are as follows: First 

off, advances in neural networks are primarily 

responsible for deep learning's astounding success 

over conventional machine learning models. Deep 

learning learns high-level features incrementally 

from data, doing away with the requirement for hard 

feature extraction and domain knowledge. 

Additionally, it offers a comprehensive solution to 

the issue. Second, because of the advancement of 

GPUs and GPU-computing libraries, the model may 

be trained 10 to 30 times faster on GPUs than on 

CPUs. Additionally, effective GPU implementations 

are provided via open-source software packages. 

There are also some more reviews of deep learning-

based medical picture analysis. They do not, 

however, concentrate on the fusion approach. For 

instance, Litjens et al.'s summary of the key deep 

learning ideas in medical image processing can be 

found at [22]. Using deep CNN, Bernal et al. [23] 

provided an overview of brain MRI analysis. In this 

study, the researchers concentrate on multi-modal 

medical image fusion techniques for medical picture 

segmentation. 
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3. Dataset Description 

The dataset which the researchers have used for their 

work contains 706 files and has a size of around 9.39 

GB of types such as TIFF, JSON, and CSV. This 

challenge's objective was to recognise each functional 

tissue unit (FTU) on biopsy slides taken from different 

organs. The underlying data consists of images from 

many sources that were created using various methods 

and resolutions, illustrating the common difficulties 

associated with working with medical data. 

The Human Biomolecular Atlas Programme 

(HuBMAP) and the Human Protein Atlas (HPA), two 

separate consortia, provided the data for this 

competition. The training dataset is composed of public 

HPA data, the public test set is composed of private 

HPA data and HuBMAP data, and the private test set is 

composed solely of HuBMAP data. One of the main 

issues in this work will be getting models to work 

correctly when exposed to data that was produced using 

a different protocol. 

 

1. [train/test].csv - Train/test set metadata. The test 

set's initial few rows are the only ones that can be 

downloaded. 

● Organ - It is the organ from which the biopsy sample 

was collected,  

 
Fig 1: Organ Distribution 

●  Id - It is the picture ID. 

● data source - It indicates whether HuBMAP or HPA 

provided the image. 

● img_height - The image's height, expressed in pixels. 

● img_width - The image's width, expressed in pixels. 

● pixel_size - It is the height/width of a single pixel from 

this picture in micrometers. All HPA images have 

pixels that are 0.4 m in size. The kidney, large intestine, 

lung, spleen, and prostate all have pixel sizes of 0.5 m, 

0.2290 m, 0.7562 m, and 6.263 m for HuBMAP 

pictures. 

 

 
Fig.2: Displaying features - data_source, pixel_size, 

tissue_thickness 

● tissue_thickness - The micrometer-measured 

thickness of the biopsy sample. The thickness of each 

HPA image is 4 m. The tissue slice thicknesses for 

the HuBMAP samples are 10 m for the kidney, 8 m 

for the large intestine, 4 m for the spleen, 5 m for the 

lung, and 5 m for the prostate  

● rle - the desired column. a copy of the annotations 

with run-length encoding. only available during the 

training set. 

● patient's age - It is expressed in years. only available 

during the training set. 

 
Fig 3: Age Distribution 

● sex - The patient's sex. only available during the 

training set. 

 

2. sample_submission.csv  -  It has two columns:  

● rle - a run-length encoded mask of the image's FTUs. 

● id -  the image ID. 

 

3. [train/test]_images/ - The photos are in this. 

Expect the hidden test set to contain about 550 

photos. Each HPA image has a tissue area that is 

approximately 2500 x 2500 pixels large and 3000 x 

3000 pixels in size. The HuBMAP images have pixel 

sizes ranging from 4500x4500 to 160x160. 

Antibodies were used to stain HPA samples, which 

were then counterstained with hematoxylin and 

visualized using 3,3'-diaminobenzidine (DAB). 

Periodic acid-Schiff (PAS)/hematoxylin and eosin 

(H&E) stains were used to create HuBMAP pictures. 

There is at least one FTU in every image utilized. All 

tissue samples utilized in this competition came from 
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healthy donors whose tissue pathologists determined to 

be of low pathological interest. 

 

4. train_annotations/ - The annotations provided in 

the form of points that outline the limits of the FTUs' 

polygon masks are known as "train_annotations." 

 

5. HPA Data - The HPA data consists of 

immunohistochemical images of tissue microarray 

cores that have been counterstained with hematoxylin 

(H)16,26 and visualized with 3,3'-diaminobenzidine 

(DAB) after being stained with antibodies. These cores 

have a diameter of 1 mm and a thickness of 4 m. The 

researchers obtained over 7TB of open data from the 

HPA, including 23,610 photographs of the large 

intestine and 27,906 images of 1 mm diameter tissue 

microarray (TMA) cores from the kidney, lung, and 

prostate. The HRA was created to capture human 

adults, thus the researchers removed any images of 

patients under the age of 18. After calculating sex, age, 

and tissue region percentages for each image, the 500 

public photographs that maximize sex and age variety 

per organ, contain at least 1 FTU, and have a tissue 

region percentage above were selected. a threshold 

value (where the threshold value for the lung is 5% and 

the threshold values for the kidney, spleen, large 

intestine, and prostate are 15%).  

 

The final dataset contains 432 open HPA pictures 

spread out among the five organs. The researchers also 

obtained from the HPA roughly 44GB of private 

(unpublished) data that included 253 large intestine 

photos, 295 kidney images, 291 lung images, 265 

prostate images, and 290 spleen images. This dataset 

underwent the same processing as the publicly 

available HPA data. The final private dataset consisted 

of 81 photos in total. Except for 19 photographs that are 

between 2,308 by 2,308 and 3,070 by 3,070 pixels, all 

images, both public and private, are 3,000 px by 3,000 

px in size. 

 

5. HuBMAP Data - Multiple teams within or 

connected to HuBMAP contributed 257 unpublished 

periodic acid-Schiff (PAS)27 or hematoxylin and eosin 

(H&E)28 stain WSIs of healthy human tissue. 1mm 

tiles were extracted from these WSIs to match the size 

of the HPA TMA core images. The minimal donor 

information for all WSIs used in this competition was 

organ name, sex, and age. 448 image tiles total, 

distributed throughout the five organs, formed part of 

the final dataset, which came from five different teams. 

Except for the spleen, which allowed younger donors 

from 0 to 18, all organ donors were older than 18. The 

kidney had pixels that were 0.5 m in size, the large 

intestine was 0.229 m, the lung was 0.756 m, the 

spleen was 0.494 m, and the prostate was 6.263 m. 

Pictures in the HuBMAP data include tissue slice 

thicknesses ranging from 4 to 10 m, with the kidney, 

large intestine, spleen, lung, and prostate having a 

thickness of 10 m, 8 m, 4 m, and 5 m, respectively.  

 

 

4. Data Preprocessing and Results 

A. Discussion / Visualization  – 

The three winning teams in the "Hacking the Human 

Body'' competition built model ensembles that 

included some or all vision transformer models, 

demonstrating the importance of these devices in 

biological image processing. This shows the rapid 

emergence of transformer models in the field and 

contrasts sharply with the last HuBMAP 

competition11 (which ended in May 2021), where all 

winning teams only employed convolutional models. 

It takes a lot of effort and money to find ground truth 

labels for supervised learning tasks, especially in the 

biomedical fields. The participants used a range of 

techniques, such as the inclusion of extra unlabeled 

data and the generation of pseudo-labels for training 

repeatedly to improve performance using a semi-

supervised approach, to get around this problem. 

Together with skillful data augmentation and 

normalization techniques, this turned out to be the 

key. 

 

Even though this competition offers several creative 

and effective solutions, these models have several 

drawbacks for actual production use cases:  

 

1) Model overfitting is a possibility because the 

models were trained on a small dataset. 

2) The vision transformer models are much more 

sensitive to data changes and hyperparameter tuning 

than the convolutional models, as teams discovered 

through numerous iterations of experiments. 

3) Model ensembles are computationally expensive 

and might not be practical or efficient for many 

production settings. 

 

By training and testing the models on more data in 

the future and condensing the enormous ensembles 

into a single model, the researchers hope to overcome 

the limitations outlined above. The HuBMAP data 

gateway will be used to handle massive volumes of 

tissue data and extract biological knowledge in 

support of the development and use of the winning 

models' software.  
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Fig. 4: Sample images of functional tissue units (FTU) 

 

As depicted in the above Figure 4, the researchers have 

visualized the functional tissue unit images from the 

dataset in 4 ways: Raw Image, Negative Image, Mask 

& Image, and Masked images respectively. Only 2 rows 

from the dataset have been displayed here by the 

researchers, although the dataset may yield as many 

rows as there are images.  

 

As depicted in Figure 5 given below, the researchers 

have created a function to display images from the 

training dataset which are masked from patches. The 

researchers have made use of visualization tools such 

as Numpy, and Matplotlib to build the function and its 

deployment. In the below sample images, the 

researchers have demonstrated and compared images of 

different organs in normal, masked, and combined 

forms for better visualization and study purpose. 

 

 

 

Fig.5: Samples of Patched Image vs Masked Image 

vs Combined Image of 5 different organs 

 

B. Algorithms used –  

The convolutional neural network known as U-Net 

was created for the segmentation of biological 

images. The network's architecture was expanded 

and changed from a fully convolutional network's 

original design to operate with fewer training photos 

and provide more accurate segmentation. 

 

1. The U-Net architecture was used to train the final 

segmentation model to recognise the various tissue 

pictures. The positions of the various tissue pictures, 

such as the lung, spleen, large intestine, prostate, and 

kidney, were predicted using the trained 

segmentation model.  

2. Fully Convolutional Networks used in previous 

versions of the model, are an architecture used mainly 

for semantic segmentation that gives us segmented 

images concerning the size of the image at the output. 

 

C. Pre-Trained Models used  – 

1. AlexNet:  AlexNet's convolutional neural network 

(CNN) has eight layers, including a classification-

specific softmax layer, two fully connected layers, 

and five convolutional layers. AlexNet has shown to 

be effective for image segmentation tasks when used 

in conjunction with other techniques, such as fully 

convolutional networks (FCNs) or encoder-decoder 

architectures. 

2. ZFNet: Five convolutional layers make up its 

structure, which is then followed by three fully 
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connected layers and a softmax layer at the end. The 

subsequent three convolutional layers have filters that 

are 3x3, whereas the first two have filters that are 7x7. 

The network also employs a max-pooling layer and a 

dropout layer. Originally designed for image 

classification tasks, it has been shown to perform well 

on several computer vision tasks, including object 

detection and segmentation.  

3. EfficientNet: The foundation of EfficientNet models is 

a scaling technique that uses a predetermined set of 

preset scaling coefficients to scale the network's 

breadth, depth, and resolution equally. This allows for 

a balance between model size and accuracy, as the 

scaling coefficients control the tradeoff between these 

two factors. On a dataset of breast tissue images, prior 

research has demonstrated that an EfficientNet-based 

model outperformed a number of other well-known 

segmentation methods to attain state-of-the-art 

performance. 

 

The tradeoff between model complexity and 

performance should be taken into account while 

comparing different models. In comparison to 

EfficientNet, AlexNet and ZFNet are noted for having 

deeper designs. This makes them more computationally 

expensive. EfficientNet is more resource- and memory-

efficient because of its scaling approach, which enables 

it to attain competitive accuracy with a smaller model 

size. 

 

The final decision on which model to use is determined 

by the details of the current picture classification task. 

AlexNet and ZFNet can both be good choices for 

situations where computing resources are not a major 

limitation, especially if fine-grained features are 

important. EfficientNet, on the other hand, offers a 

desirable option without compromising performance if 

resource utilization and efficiency are key 

considerations. 

 

It is important to keep in mind that the performance 

comparison may change based on the dataset, job 

difficulty, and other elements. Therefore, it is advised 

to test and validate the model on the particular picture 

classification job before evaluating and choosing the 

best appropriate model. 

 

5. Evaluations & Discussions 

The mean Dice coefficient is used to judge the final 

submissions in CSV formats. A predicted 

segmentation's pixel-by-pixel agreement with the 

associated ground truth may be compared using the 

Dice coefficient. The formula is given by: 

(2 ∗  |𝐴 ∩  𝐵| ) / (|𝐴|  + |𝐵|) 

 here A represents the predicted set of pixels and B 

represents the actual ground truth. In the case where 

A & B are both empty, the Dice coefficient is 1. The 

average of the Dice coefficients for each picture in 

the test set is the leaderboard score. 

 

Table 1: Comparative Performance Assessment 

 

Models Precision Accuracy F1 Score 

CNN+ U Net 0.852 0.84178 0.8392 

EfficientNet 0.807 0.80735 0.7986 

ZFNet 0.783 0.77819 0.7643 

AlexNet 0.772 0.76504 0.7529 

CNN 0.711 0.71778 0.7088 

 

As Table 1 presents, the researchers found out that U 

Net Architecture proved to be the most efficient on 

the dataset. Other pre-trained models such as 

EfficientNet, ZFNet, and AlexNet in respective order 

show significantly lesser accuracy on this dataset 

consisting of tissue images with an accuracy of 

0.84178 using U Net and an accuracy of 0.71778 

using a conventional Convolutional Neural Network.  

 

The researchers conducted an extensive evaluation of 

different pre-trained models on the dataset of tissue 

images. The results indicated that the U-Net 

architecture exhibited the highest level of efficiency 

compared to other models, namely EfficientNet, 

ZFNet, and AlexNet.  

 

Specifically, the U-Net architecture achieved an 

accuracy of 0.84178 on the dataset, outperforming 

the other models by a significant margin. This finding 

suggests that the U-Net architecture is particularly 

well-suited for the task of tissue image classification 

in the context of this study. 

 

In contrast, when utilizing a conventional 

Convolutional Neural Network (CNN), the 

researchers observed a lower accuracy of 0.71778 on 

the same dataset. This further emphasizes the 

superior performance of the U-Net architecture in this 

specific domain.  
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The superior accuracy achieved by the U-Net 

architecture can have significant implications for 

applications in various fields. It demonstrates the 

effectiveness of U-Net in accurately classifying tissue 

images, which can be crucial in medical diagnostics, 

pathology, and other related areas. The ability to 

distinguish different tissue types with high accuracy 

can aid medical professionals in identifying 

abnormalities, making informed decisions, and 

providing better patient care.  

 

However, it is important to note that the comparison of 

different models and their performance on the dataset is 

specific to this study. The findings may not be directly 

generalizable to other datasets or image classification 

tasks. Further research is necessary to validate and 

extend these findings to different contexts and datasets.  

 

Overall, the evaluation results clearly indicate that the 

U-Net architecture outperformed other pre-trained 

models, including EfficientNet, ZFNet, and AlexNet, in 

terms of accuracy on the tissue image dataset. This 

finding underscores the potential of U-Net as a 

powerful tool for accurate tissue image classification 

and opens up opportunities for further exploration and 

development of this architecture in the field of medical 

image analysis. 

 

6. Conclusion 

The researchers offer a thorough analysis of recently 

released multi-organ segmentation techniques based on 

deep learning. The use of a fully convolutional network 

to conduct end-to-end multi-organ segmentation is 

clearly on the rise. This is so that end-to-end 

segmentation, which vastly speeds up segmentation, 

may benefit from the DL network's quick inference. 

Additionally becoming more common are methods for 

segmenting targets based on their areas before 

executing region-based Fully Convolutional Network 

(FCN) segmentation for each target.  

 

The one-step multi-organ segmentation network may 

likewise provide strong segmentation results without 

needing to initially localize the target, therefore the 

region-based FCN has not yet seen widespread use. 

More datasets must be used to demonstrate the 

requirement of the initial organ localization phase in 

region-based FCN. 

 

Another recent development is the use of synthetic 

images to enhance tissue contrast and boost 

segmentation realism. Synthetic image-aided 

segmentation's picture synthesis stage is not simple, 

however, which prevents widespread usage. 

 

Beyond the lack of well-aligned paired pictures for 

synthesis network training, it is yet unknown how 

much value synthesis photos may provide to the 

segmentation job. Predicting appropriate organ 

borders in areas with limited picture contrast and few 

intensity gradients is a difficulty for segmentation. To 

regularize the segmentation findings, more organ 

shape restrictions are required. 

 

Therefore, the researchers expect to see a steady 

growth of shape-constrained multi-organ 

segmentation. The results show the effectiveness of 

our approach and offer insights into organ 

segmentation in high-resolution histology images, 

which have significant applications in medical 

diagnosis and research. The results show that our 

approach achieves a score of 0.84178 using U Net 

Architecture which was calculated with 

approximately 45% of the test data thereby securing 

a rank in the top 28% among 1175 participants across 

the globe. 

 

7. Data Availability 

The public may access all of the competition's data, 

training models, preprocessing and analysis code, 

and trained models on GitHub at 

https://github.com/n1ghtf4l1/automatic-dissection. 
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