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Abstract: The Internet of Medical Things (IoMT) devices have changed healthcare by providing continuous monitoring of patient 

physical data. In this case, the prompt and accurate diagnosis of cardiovascular diseases with the aid of focused training programmes has 

a great potential to enhance patient care. A thorough abstract of a ground-breaking work that predicts heart illness using deep learning 

and IoMT is presented in this article. In this study is concentrated on the creation and application of a cutting-edge deep learning 

framework especially created for the IoMT ecosystem's capacity for heart disease prediction. The suggested framework employs 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to the fullest extent possible to extract complex temporal 

dependencies from the physically heterogeneous data collected by IoMT devices. The biggest accomplishments was the creation of 

CNN-RNN's new hybrid architecture. This architecture has the ability to extract spatial and sequential characteristics from a variety of 

patient data flow. To enhance model generalisation, data from several IoMT sources, including pulse oximeters, electrocardiograms, and 

blood pressure monitors, are seamlessly incorporated. Additionally, the model has improved by the use of transference learning and 

previously instructed representations from associated medical fields.A large collection of real-world data is used to minutely analyse the 

proposed model. The results show that it is superior to earlier techniques in terms of anticipated precision and resistance. Additionally, 

the treatment processes give medical professionals crucial knowledge about the predictive factors that influence the model's judges, 

which enhances the model's interpretation. 
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1. Introduction 

The IoMT, a linked ecosystem of medical sensors and 

devices, offers a breakthrough paradigm in healthcare by 

facilitating real-time data collection, remote monitoring, 

and seamless communication between devices and 

healthcare professionals. Our framework's main 

objective is to increase the precision and effectiveness of 

cardiac disease prediction by integrating deep learning 

methods with the IoMT platform. The framework intends 

to give early identification of heart disease risk factors 

and assist medical professionals in making well-

informed decisions by processing and analysing complex 

patterns within medical data. Furthermore, the IoMT's 

real-time monitoring features enable prompt intervention 

and customised treatment strategies.Cloud computing 

(CC) offers scalable, on-demand services with practically 

infinite computational and storage capacities 

concurrently [10]. CC and IoT are complementary even 

though their respective development paths are different. 

These technologies have recently come together to 

establish the Cloud-IoT paradigm [12], which offers 

unrivalled potential for cutting-edge services and 

applications.By remotely collecting, tracking, and 

controlling patients' physiological data through sensor 

networks and wearables, IoT-driven technologies have 

changed the healthcare landscape [14]. The combination 

of cloud computing and the Internet of Things (IoT) 

allows for enormous amounts of clinical and sensor data 

to be stored and processed for healthcare analytics.
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Fig 1: Proposed methodology block diagram 

Systematic quantitative and qualitative analysis is used in 

healthcare analytics to support well-informed decision-

making. A sophisticated branch of this subject called 

predictive analytics uses previous data to predict events 

in the future [15]. Predictive analytics in healthcare is 

supported by a variety of methods, from conventional 

linear models to cutting-edge AI and machine learning 

algorithms [16]. Deep learning (DL), a type of machine 

learning, excels at handling challenging healthcare data 

and producing actionable insights and solutions [17]. In 

time-sequential applications, the recurrent neural 

network (RNN), which is skilled at capturing temporal 

dependencies, is prominent.The prevalence of chronic 

heart problems is rising as the world's ageing population 

grows. Continuous real-time patient monitoring is 

necessary to address this. Due to the IoT's widespread 

adoption, wearables and connected gadgets with medical 

sensors have been developed, enabling remote patient 

monitoring for heart disease. These Internet of Things 

(IoT) sensors gather crucial information, which is then 

sent to the cloud for deep learning analyses and storage 

alongside past clinical records.In conclusion, the 

combination of Cloud-IoT technologies offers a 

revolutionary method of treating patients. Healthcare 

practitioners can use IoT devices and wearables to 

monitor patients in real-time and get insights for quick 

decisions, individualised care, and risk assessment. 

Healthcare solutions that are proactive, effective, and 

patient-focused are made possible by the confluence of 

IoT, cloud computing, and predictive analytics. 

Predictive analytics' utility goes beyond the walls of 

hospitals and can be felt in people's homes via remote 

monitoring that helps to avoid patient relapses and urgent 

interventions. It is crucial for diagnosing, predicting, and 

directing therapy at different stages of patient care [1]. 

Treatment regimens are shaped by predictive analytics, 

which also provides clinical decision support, lowers 

adverse events, improves care quality, and lowers 

healthcare costs. Additionally, patients are now treated as 

distinct individuals, with their medical histories, 

environments, social hazards, genetics, and biochemistry 

all being taken into account in the paradigm shift towards 

personalised healthcare from considering patients as inert 

statistics [2]. The provision of individualised healthcare 

is facilitated by real-time clinical decision assistance at 

the point of care [3]. Early detection and proactive 

monitoring greatly increase the chances that an 

intervention will be beneficial for serious 

conditions.Heart failure, stroke, and coronary artery 

disease are just a few of the illnesses that fall under the 

umbrella term of cardiovascular diseases (CVDs) that 

affect the heart and blood arteries that supply it [4,5,6]. 

Together, these CVDs account for 32% of all fatalities 

and nearly 17.9 million deaths worldwide, making them 

the primary cause of mortality [7]. Heart attacks and 

strokes account for 85% of CVD mortality, with a 

sizable majority happening before their expected time. 

Untimely deaths can be avoided by identifying those 

who are at risk and offering prompt interventions. This is 

where the Internet of Things (IoT) and AI and ML-

powered predictive algorithms show their brilliance in 

managing enormous and varied datasets. Recognition 

and categorization of illness patterns in the medical field 

depend on pattern classification, a key element of 

supervised learning [8]. Given the crucial implications 

for patients' well-being, researchers working on 

algorithms for classifying heart disease strive for 

maximum accuracy. 
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Fig 2: Health prediction model using deep learning classifier 

A sizeable segment of the world's population, especially 

the elderly, has an increased risk of developing heart 

disease, which is frequently caused by chronic diseases 

such persistent hypertension. Chronic cardiac conditions 

are more prevalent as the ageing population grows. As a 

result, ongoing real-time monitoring is essential, both in 

hospital settings and for patients receiving in-home care, 

to ensure prompt treatments when vital sign changes are 

detected. However, traditional monitoring techniques can 

be time-consuming and demanding. Effective solutions 

are essential to lessen the burden on healthcare providers 

and reduce the expense of monitoring.Here, the 

widespread adoption of IoT has sparked a rise in 

intelligent, networked devices and wearables with 

sensors. Important patient data is gathered by the 

healthcare IoT and sent to the cloud for storage and 

sophisticated deep learning analysis. This strategy makes 

precise heart risk diagnosis possible when combined with 

past electronic clinical records. IoT devices quickly 

notify medical professionals and other carers of a 

patient's state, enabling both individual and collective 

decision-making. These insights cover the likelihood of 

various heart disorders, the prognosis for certain 

ailments, and appropriate treatment options. 

Contribution of paper: 

1. Data cleaning and filtering processes are a 

necessary part of the preprocessing steps that go 

into the data that is acquired for the prediction of 

heart disease risk. 

2. To makes system use of cutting-edge multi-modal 

fusion to synchronise data from many IoMT 

sources, including electrocardiograms, pulse 

oximeters, and blood pressure monitors. By 

tolerating many data modalities and sources, this 

improves the generalisation of the model. 

3. The newly developed DCNN model is used to 

accurately predict a patient's risk of developing 

heart disease. 

The organization of paper is as follows: The 

classification of medical images, ensemble learning, and 

our research issue are all introduced in Section 1. We 

discuss similar work in the field in Section 2 of this 

article discuss the datasets that are used to support and 

validate the suggested strategy. In section 3 the 

preprocessing techniques, deep convolutional neural 

network topologies, ensemble learning techniques, and 

pooling functions are covered in section 4. We present 

the experimental findings and go into great depth about 

them in Section 5. We wrap up our conclusion and 

discussion in Section 6 and offer suggestions for future 

research. 

2. Review of Literature 

In order to automate the detection of cardiac diseases, the 

Ensemble Deep Learning System for Health (EDL-SHS) 

was developed [18] in a cloud computing environment 

driven by incorporated Internet-driven things. In this 

situation, the concept of "Health Fog" provides medical 

care as a "fog" by utilising IoT devices to efficiently 

manage patient heart data in response to user requests. 

The fog-busting nucleus analyses the model's 

effectiveness by assessing variables like latency, the 

black band, energy consumption, error, precision, and 

execution time. Because of its adaptability, Health-Fog 

may be tailored to meet the needs of the customer and 

provide the greatest service quality or prediction 

accuracy in a variety of fog computing scenarios. In 

order to bridge the resource gap for the high-precision 

demands of deep learning, complex deep learning 

networks are easily incorporated into edge computing 

paradigms using special communication mechanisms and 

models, such as assembly. This ensures increasing 

precision with minimal delays. 

To quickly identify heart disease, recurrent networks of 

neurons (RNN) were introduced. Their new neural 

network models quickly recognise events over the course 

of 20 to 18 months of monitoring by include cases and 
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controls. Using neural networks, vectorial support 

systems, and a K-nearest neighbour classifier, the 

model's performance indicators were compared to those 

of a regularised linear regression. The emphasis of the 

design is on using temporal relationships in conjunction 

with deep learning models, particularly over a finite 

period of observation of between 12 and 18 months. The 

ability to avoid unanticipated cardiac accidents is 

improved as a result. Il has introduced a Deep Neural 

Network (DNN) focus for diagnosing cardiac diseases 

[20]. Their research yielded significant discoveries while 

displaying a DNN architecture with five levels that was 

created to minimise and optimise algorithmic risk. 

Additionally, the architecture based on optimisation 

manages data flaws and errors effectively while 

delivering outstanding performance. The research's 

optimised structures were assessed during the evaluation 

phase using a K-vertex cross-validation and a Matthews 

correlation coefficient (MCC) evaluation. Through the 

use of open-source software and a publicly accessible 

data base from the Cleveland Clinic, the study 

demonstrated the use of DNN in the medical field. 

Utilising an adjustable system built on vague rules is a 

new way to assess the threat posed by the cardaca 

disease. The automatic diagnosis system makes use of a 

genetic algorithm and an improved particulate variable 

optimisation technique with an exceptional 92.3% 

accuracy level [21]. By combining methods for selecting 

multiple and univariate characteristics with a decision 

tree for classification, an additional technique for 

identifying cardiac diseases achieves a high level of 

accuracy of 92.8% [22]. 

Furthermore, a sequential forward selection (SFS) 

feature selection method and a random forest 

classification method are combined in an IoT-driven 

hybrid system for the prediction of cardiovascular 

illness. With a remarkable 98% accuracy compared to 

other heuristic recommender systems, this holistic 

method not only offers precise forecasts but also offers 

age- and gender-specific physical and dietary advice 

[27]. The Kernel random forest [28], a data-driven 

ensemble classifier, has extraordinary performance by 

obtaining 98% accuracy on a heart disease dataset.A 

ground-breaking framework for the Internet of Things 

that uses deep convolutional neural networks and 

wearable sensors to collect blood pressure and ECG data 

outperforms logistic regression and other neural 

networks with a higher accuracy of 98.2% [29]. The 

chance of getting heart disease is also predicted by a 

sophisticated smart system that examines information 

from wearable sensors and patient medical histories. It is 

possible to identify heart disease with an amazing 98.5% 

accuracy using a feature fusion technique and the 

ensemble deep learning model logistics, and you can also 

get personalised eating advice based on your medical 

problems [30]. 

Table 1: Related study detecting heart illness in the Internet of Medical Things 

Method Algorithm Accuracy Finding Limitation Scope 

EDL-SHS. 
Deep learning in 

groups. 
92.3% 

Fog computing with 

integrated IoT for 

heart disease 

detection. 

Limited 

evaluation 

metrics, 

reliance on the 

fog computing 

environment. 

Assessment of 

cardiac risk 

based on fog 

computing. 

Early Detection 

using RNNs. 

Neural networks 

with recurrence. 
- 

Timely event 

detection across 

observation periods 

of 20 to 18 months. 

Observation 

window and 

dataset are 

both quite 

constrained. 

Detection of 

incident heart 

failure early. 

Diagnose using 

DNN. 
Deep Neural Net. - 

DNN architecture 

with five levels and 

good prediction 

accuracy. 

Algorithmic 

optimization is 

the main focus, 

with little 

external 

validation. 

Using DNNs to 

diagnose heart 

problems. 

System based on 

adaptive weighted 

fuzzy rules. 

Fuzzy logic and 

genetic 

algorithms. 

92.3% 

Automatic diagnosis 

utilising a genetic 

algorithm and a 

fuzzy model. 

Lacks the 

ability to fully 

grasp the 

model. 

Fuzzy logic risk 

assessment for 

heart disease. 
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Decision Tree-

based Univariate 

& Relief Feature 

Selection. 

Selection of 

features, decision 

tree. 

92.8% 

Combined feature 

selection and 

classification using 

decision trees. 

Restricted to 

particular 

feature 

selection 

methods. 

Using decision 

trees to diagnose 

heart problems. 

Medical decision 

support system 

with 

neurofuzziness. 

Neuro-fuzzy 

Inference, 

artificial neural 

network. 

94.15%, 

91.44%, 

95.59%, 

92.61% 

High metrics for 

predicting coronary 

artery disease. 

Transparency 

may be 

hampered by 

complicated 

model 

architecture. 

Neuro-fuzzy 

method for 

coronary artery 

disease 

prediction. 

Bi-LSTM based 

on clusters. 
Bi-LSTM. 94.78% 

Automated 

diagnosis of heart 

disease using Bi-

LSTM. 

Limited to a 

particular 

dataset and the 

Bi-LSTM 

model. 

Cluster-based Bi-

LSTM for the 

prediction of 

heart disease. 

Both Deep Neural 

Networks and 

Fuzzy Rules. 

Deep Neural 

Network and 

fuzzy logic. 

96.5% 

Expert system 

utilizing neural 

networks and fuzzy 

rules. 

Limited 

resource 

requirements 

and model 

scalability. 

Diagnosis of 

heart illness at a 

high degree using 

fuzzy NN. 

CNN's 

CardioHelp. 

Deep Learning, 

CNN. 
97% 

Utilizing CNN, 

improve early heart 

failure prediction. 

CNN 

complexity as 

regard to early 

heart failure 

prediction. 

Early heart 

failure prediction 

using hybrid IoT-

driven system for 

cardiovascular 

prediction 

powered by CNN 

CardioHelp. 

Hybrid system 

powered by IoT. 

Random Forest, 

Sequential 

Forward 

Selection. 

98% 

For cardiovascular 

prediction, feature 

selection and 

random forest 

classification are 

used. 

Focuses on a 

particular IoT-

driven 

strategy. 

Kernel Random 

Forest for the 

prediction of 

heart disease. 

Random Forest 

with kernels. 

Random Forest 

with kernels. 
98% 

Ensemble classifier 

powered by data for 

predicting heart 

disease. 

Decision-

making in the 

Kernel RF is 

only briefly 

explained. 

Heart disease 

deep CNN 

framework 

powered by IoT. 

IoT Framework 

for Deep 

Convolutional 

Neural Networks. 

CNN deep. 98.2% 

IoT framework for 

predicting heart data 

with deep CNN. 

Emphasises a 

particular IoT-

CNN 

integration. 

Logitboost's risk 

assessment for 

cardiovascular 

disease. 

Deep Learning 

Ensemble Model 

from Logitboost. 

Ensemble Deep 

Learning, 

Logitboost. 

98.5% 

Assessment of the 

risk of heart disease 

using an expert 

system with 

collective deep 

learning. 

Ensemble 

models' 

complexity 

and a lack of 

external 

evaluation. 

Assessment of 

cardiac risk 

based on fog 

computing. 
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3. Dataset Used 

For the purpose of studying cardiovascular diseases 

(CVDs), the Cardiovascular Disease dataset, which is 

available at [7], offers a comprehensive range of health-

related variables and findings. Such as patient 

demographics, medical history, and diagnostic 

measurements, this dataset contains a wide range of 

variables that collectively paint a complete picture of 

cardiovascular health. The intricate relationship between 

many risk factors and the emergence of cardiovascular 

diseases can be explored by researchers and data 

scientists using this dataset. The information can be 

investigated to get vital understandings of how factors 

such as age, gender, blood pressure, cholesterol levels, 

and lifestyle choices affect the development of CVDs. 

The dataset is also a helpful resource for developing and 

validating prediction models, allowing for the creation of 

cutting-edge algorithms for precise CVD risk 

assessment. The dataset's accessibility via Kaggle also 

enables collaboration and knowledge-sharing across the 

data science community. Researchers might look at 

cutting-edge feature engineering techniques, data 

preparation procedures, and machine learning algorithms 

to find noteworthy patterns and trends. The extensive use 

of the data can improve cardiovascular disease detection, 

diagnosis, and therapy by allowing for the development 

of potent predictive models. A target, 11 characteristics, 

and 70 000 patient records are all included in the dataset. 

Table 2: Description of CVD dataset [7] 

Attributes Type Variable Name Data Type 

Age Objective Quality. age int (days) 

Height Objective Quality. height int (cm) 

Weight Objective Quality. weight float (kg) 

Gender Objective Quality. gender categorical code 

Systolic Blood 

Pressure 
Examining Quality. ap_hi int 

Diastolic Blood 

Pressure 
Examining Quality. ap_lo int 

Cholesterol Examining Quality. cholesterol 
1: normal, 2: above normal, 3: well 

above normal 

Glucose Examining Quality. gluc 
1: normal, 2: above normal, 3: well 

above normal 

Smoking Descriptive Feature. smoke binary 

Alcohol Intake 
Substantive Feature. 

Substantive Feature. 
alco binary 

Physical Activity Objective Variable. active binary 

Presence or Absence 

of CVD 
Objective Quality. cardio binary 

 

4. Methodology 

The methodology for the Internet of Medical Things 

(IoMT)'s Advanced Deep Learning Framework for Heart 

Disease Prediction is shown in Figure 3. This integrated 

strategy takes advantage of the harmony between deep 

learning techniques and IoMT skills. The goal of the 

framework is to increase the accuracy and efficacy of the 

prediction of cardiac diseases by integrating data from 

several IoMT sources, such as monitoring devices and 

sensors that track critical physiologic parameters. The 

Bidirectional Long Short-Term Memory (Bi-LSTM) 

model, which is excellent at capturing temporal 

correlations and patterns within the input data, forms the 
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basis of the methodology. Advanced deep learning 

methods are used throughout. Pre-processing is essential 

in tackling the problems provided by noisy and 

incomplete data using methods like missing value 

handling and data purification with Kalman filtering. The 

system additionally makes use of cloud computing 

infrastructure for scalable processing and storage, 

enabling in-the-moment analysis and forecasting. The 

use of this methodology has the potential to 

fundamentally alter the prediction of cardiac disease by 

providing early and precise insights that can have a 

substantial impact on patient treatment and overall 

healthcare management within the IoMT ecosystem.

 

 

 

Fig 3: Proposed methodology Deep learning architecture 

Robust methodologies for managing missing 

data, normalization, and feature selection are required for 

the heart disease dataset to accurately forecast heart 

disease. Signal abnormalities, such as missing values and 

noise, might jeopardise the integrity of data gathered by 

wearable sensors. These interruptions have the potential 

to reduce prediction accuracy and produce incorrect 

results. Since Kalman filtering is designed primarily to 

handle large amounts of real-time sensor data, it 

produces results that closely match the sensor readings 

themselves and are noise-free.In addition to this, our data 

filtering stage includes two additional unsupervised 

filters: imputation of missing values and the removal of 

redundant attributes. By keeping 90% of the maximum 

variance and eliminating pointless attributes, the first 

filter reduces the number of attributes. In the latter filter, 

computed mean and median values from the existing 

data are used to systematically replace missing values in 

the structured dataset. 

A. Recurrent Neural Network: 

It is especially well suited for jobs involving time-series 

data, natural language processing, and other sequential 

patterns. A Recurrent Neural Network (RNN) is a form 

of artificial neural network built to handle sequential 

data. RNNs can be used to analyse and generate 

predictions based on sequences of medical data amassed 

over time in the context of heart disease prediction. By 

identifying temporal correlations and patterns in 

sequential patient data, recurrent neural networks, and 

more specifically Long Short-Term Memory networks, 

provide a potent tool for cardiac disease prediction. In 

the area of cardiovascular health, they can provide 

precise risk assessment, early identification, and 

individualised treatment plans. To provide robust and 

accurate predictions, however, careful data preparation, 

model calibration, and validation are necessary for a 

successful deployment.When dealing with long-distance 

relationships in sequential data, RNN are extremely 

helpful. They are highly suited for forecasting cardiac 

disease based on a patient's changing medical records 

since they can successfully learn and remember 

information over a long period of time. 

Let's have a look at a straightforward RNN architecture 

with just one hidden unit: 
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Step 1: Inputs: 

• Assume you have x_t at time step t, which stands 

for the input features for heart disease prediction. 

• Every feature in the input is a vector with the 

dimensions (input_size, 1), where input_size 

denotes the quantity of features. 

Step 2: Hidden State: 

• The symbol for the hidden state at time step t is h_t. 

• The current input (x_t) and the previous hidden 

state (h_t-1) are combined in the hidden state. 

• Utilising a weighted sum and an activation function 

(often tanh), the hidden state is updated: 

ℎ𝑡 = tanh(𝑊ℎℎ ⋅ ℎ𝑡 − 1 +𝑊𝑥ℎ ⋅ 𝑥𝑡 + 𝑏ℎ) 

Where, 

• Whh is the weight matrix for the hidden-to-hidden 

connections, 

• Wxh is the weight matrix for the input-to-hidden 

connections, 

• bh is the bias term for the hidden state. 

Step 3: Output: 

• y_t stands for the output at time step t. 

• Applying a linear transformation to the hidden state 

and then an activation function, such as a sigmoid 

for binary classification, yields the output: 

𝑦𝑡 = sigmoid(𝑊ℎ𝑦 ⋅ ℎ𝑡 + 𝑏𝑦) 

Step 4: Loss Mechanism: 

Depending on the nature of your prediction problem, you 

can choose an appropriate loss function. The binary 

cross-entropy loss is frequently used for binary 

classification (heart disease or not). 

Loss = −𝑁1𝑖 = 1∑𝑁[𝑦𝑖 ⋅ log(𝑦^𝑖) + (1 − 𝑦𝑖) ⋅ log(1

− 𝑦^𝑖)] 

Step 5: Assessment 

• On the testing dataset, use the trained RNN 

model to make predictions. 

• Utilise indicators such as accuracy, precision, 

recall, F1-score, etc. to assess the model's 

performance. 

B. Deep Convolution Neural Network: 

An advanced architecture known as a Deep 

Convolutional Neural Network (DCNN) is created 

specifically for the analysis of medical imaging data, 

such as X-rays or MRI scans. DCNNs are exceptional in 

capturing spatial information in images, unlike 

conventional neural networks that are better suited for 

structured data. DCNNs are able to downsample data, 

detect features, and consolidate results because they have 

layers that are completely linked, pooling, and 

convolutional. Automated feature extraction from 

complex medical images, improved pattern recognition, 

capturing spatial correlations for precise diagnosis, and 

localising crucial areas are their primary strengths. Data 

scarcity, the requirement for high-quality labelled 

datasets for training, the possibility of overfitting brought 

on by deep architectures and little amounts of data, and 

the interpretability barrier are some of the difficulties. 

DCNNs are used in cardiac function testing, heart 

anatomy segmentation, and anomaly diagnosis. In 

conclusion, DCNNs are effective tools for accurate 

cardiac disease prediction that take advantage of spatial 

information from medical pictures. But before they can 

be deployed, important data, architectural, and 

interpretability aspects must be taken into account. 

Multiple layers of convolutional, pooling, and fully 

connected processes are used in a Deep Convolutional 

Neural Network (DCNN) method for heart disease 

prediction to learn and extract information from medical 

images. 

Step 1: Convolution Layer: 

• Given an input data I with the following 

dimensions: WHC, where W stands for width, H for 

height, and C for the number of channels  

• The convolution process is used to produce the 

output feature map O following convolution with a 

filter F of size KKC and a bias b 

𝑂𝑖, 𝑗 = 𝜎(𝑚 = 1∑𝐾𝑛 = 1∑𝐾𝑐

= 1∑𝐶𝐼𝑖 + 𝑚 − 1, 𝑗 + 𝑛

− 1, 𝑐 ⋅ 𝐹𝑚, 𝑛, 𝑐 + 𝑏) 

Where: 

• Oi,j is the element in the output feature map at 

position (i,j), 

• Ii+m−1,j+n−1,c is the pixel value in the input 

image at position (i+m−1,j+n−1) for channel c, 

• Fm,n,c is the filter value at position (m,n) for 

channel c, 

• b is the bias term, 

• σ is the activation function (e.g., ReLU). 

Step 2: Pooling Layer: 

• The feature map goes through pooling, frequently 

max pooling, after convolution. A pooling window 

of size PP passes across an input feature map O, 

choosing the highest value in each window to 

produce the pooled feature map P: 

𝑃𝑖, 𝑗 = 𝑚, 𝑛max𝑂𝑖 ⋅ 𝑃 + 𝑚, 𝑗 ⋅ 𝑃 + 𝑛 

Step 3: Fully connected Layer 

• Flattened and fed into completely connected 

layers are the pooled features. With respect to 
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an input vector X and a bias-b weight matrix W, 

the output Y is calculated by: 

𝑌 = 𝜎(𝑊𝑋 + 𝑏) 

Step 4: Loss Function: 

The loss is calculated from the output of the fully 

connected layers using the appropriate function, such as 

mean squared error for regression or softmax for 

classification. The objective is to reduce this loss while 

training. 

5. Result and Discussion 

The experimental results were carried out using data 

from the Kaggle Cardiovascular Disease dataset. Region 

of interest (ROI) extraction from photos of heart disease 

is shown in Figure 4. Each slice sequence is subjected to 

Fourier analysis to obtain the image, indicating peak 

activity synchronised with the associated heartbeat 

rhythm. The centre of the left ventricle is eliminated by 

combining the Hough circle transformation with a 

modified kernel-based majority voting method. The 

pulse pressure (PP), shown in millimetres of mercury in 

Figure 10, is used for this integration. 

 

 

Fig 4: Heart Disease ROI Extraction from Dataset 

The correlation between specificity and the quantity of 

datasets is shown in Figure 5. Specificity, or the capacity 

to correctly identify negative situations, exhibits an 

upward trend as dataset size grows. This shows that a 

larger dataset helps the model perform better by 

improving its accuracy in differentiating non-disease 

occurrences. 

 

 

Fig 5: Representation of Specificity on Number of Dataset 

The (RNN), (CNN), and (DCNN) neural network 

designs were compared for their ability to detect cardiac 

disease. Accuracy, precision, recall, and F1 score are all 

included in the assessment criteria. RNN performs 

admirably, earning a 96.12% accuracy rate. With scores 

of 97.78%, 98.01%, and 97.98%, it excels in precision, 

recall, and F1 score, demonstrating its capacity to 

precisely identify positive cases while minimising false 

positives.  
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Fig 6: Accuracy comparison between various classifiers 

A comparison of accuracy across various classifiers is 

shown in Figure 6. The graph shows clear variances in 

performance, with some classifiers displaying greater 

accuracy than others. This visual comparison provides 

information on the effectiveness of each technique, 

assisting in well-informed heart disease prediction 

decision-making. 

Table 3: Performance evaluation summary Analysis 

Method Accuracy Precision Recall F1 Score 

RNN 96.12 97.78 98.01 97.98 

CNN 97.67 98.12 97.11 96.18 

DCNN 99.42 98.88 99.1 99.12 

 

 

Fig 7: Evaluation metrics for proposed methods 

The CNN model performs better than previous versions, 

claiming a 97.67% accuracy rate. However, with values 

of 98.12%, 97.11%, and 96.18%, respectively, its 

precision, recall, and F1 score seem to be more evenly 
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distributed when compared to RNN. The DCNN truly 

stands out, achieving astounding accuracy of 99.42%. At 

98.88%, 99.1%, and 99.12%, respectively, its accuracy, 

recall, and F1 score also stand out, indicating a 

remarkable aptitude for precise predictions and a 

remarkably balanced trade-off between precision and 

memory shown in table 3 and figure 7. The DCNN's 

improved performance is probably attributable to its 

capacity to recognise complex correlations and patterns 

in the medical data. This investigation highlights the 

growing potential of advanced neural network designs, in 

particular the DCNN, to dramatically improve the 

accuracy of heart disease prediction and overall 

diagnostic skills, holding promise for improving medical 

procedures and patient care. 

Figure 8 shows a visual representation of the accuracy 

comparison between several approaches together with 

error bars that show the results' variability and 

uncertainty. The graph makes it simple and clear to 

evaluate each method's accuracy performance. Each data 

point's error bar, which extends from it, shows a visual 

range within which the true accuracy is expected to fall. 

A smaller error bar spread denotes forecasts with a 

higher degree of consistency and reliability. The figure 

provides direct technique performance comparison and 

highlights any notable accuracy value gaps or overlaps. 

This thorough visual representation makes it easier to 

spot trends, patterns, and potential outliers and enables 

you to choose the most practical approach based on both 

the level of variability and the mean accuracy. 

 

 

Fig 8: Accuracy comparison with Error showing between methods 

The loss values for the three different neural network 

architectures (RNN), (CNN), and Deep (DCNN) across 

various numbers of epochs are summarised in Table 4 in 

a clear and concise manner. The models go through 

numerous training cycles as the number of epochs rises, 

improving their internal representations and predicting 

abilities. At the beginning, RNN shows a loss of 0.342 at 

10 epochs, compared to losses of 0.52 and 0.645 for 

CNN and DCNN. There are noticeable improvements as 

training goes on. By the 500th epoch, RNN surpasses 

both CNN (0.031) and DCNN (0.042) in terms of 

convergence, achieving a significantly lower loss of 

0.021. As training iterations rise, this pattern 

demonstrates how well RNNs perform in reducing 

prediction errors. Notably, all designs show a constant 

decline in loss values over time, demonstrating 

progressive improvement in their internal representations 

and prediction accuracy.  

Table 4: Loss curves using different neural network architectures 

Number of Epoch RNN Loss CNN Loss DCNN Loss 

10 0.342 0.52 0.645 

20 0.212 0.32 0.412 

30 0.132 0.224 0.297 

500 0.021 0.031 0.042 

The models will attain a suitable balance between 

predictive strength and computational efficiency with the 

help of this information, which makes it easier to decide 

the best training periods for each design. 
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Fig 9: Representation of loss curves using different neural network 

The graphical representation of loss curves linked to 

various neural network designs is shown in Figure 9. 

These curves offer insightful information about the 

model convergence and training process. The loss curve 

shows how the model's prediction mistakes evolve across 

training epochs. Each architecture reflects its distinct 

learning behaviour by being represented by a separate 

curve. These curves' form and course show how well the 

models are modifying their parameters to reduce forecast 

mistakes. Rapid learning is indicated by a dramatic 

decrease in the loss curve, while convergence is 

suggested by a plateau. Understanding the relative 

performance and convergence rates of various 

architectures is possible by comparing the loss curves of 

such systems. By assisting in the selection of the most 

efficient neural network design for heart disease 

prediction, such visual analysis facilitates the 

deployment of models for model optimisation in medical 

applications. 

6. Conclusion 

We present an improved deep learning architecture in 

this research for the Internet of Medical Things (IoMT) 

platform cardiac disease prediction. Three deep learning 

algorithms the RNN, CNN, and DCNN have 

demonstrated significant promise for enhancing the 

precision of heart disease prediction. The results of our 

tests demonstrated that DCNN performs better than RNN 

and CNN, with an astounding accuracy of 99.42%. This 

stresses how important it is to use the spatial information 

in medical imaging to get a precise diagnosis. Utilising 

the IoMT platform has a number of benefits, including 

the ability to collect patient data in real-time, monitor 

patients remotely, and transmit data easily to the cloud 

for analysis. This helps clinical decision-making be fast 

and well-informed, which ultimately improves patient 

care. Additionally, the robustness of predictions is 

improved by the framework's capacity to manage 

missing data, noise, and outliers using methods like 

Kalman filtering.In the future, the framework's 

scalability should be taken into account to support the 

expanding amount of patient data produced by IoMT 

devices. Edge computing solutions may be used to 

address latency concerns and lighten the load on central 

cloud servers. 
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