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Abstract: A precise rainfall forecast is essential for successful decision-making and catastrophe prevention in the field of meteorology. 

This article suggests a more effective technique for predicting rainfall that uses a sophisticated recurrent neural network (RNN) and 

weighted linear units (WLUs). The proposed model seeks to increase the precision and efficacy of rainfall forecasts as compared to 

existing approaches. The main architecture of the prediction model is an RNN based on Intensified Long Short-Term Memory 

(Intensified LSTM). The network is trained and assessed using a sizable dataset of rainfall observational data. Indicators of projected 

rainfall, such as intensity and duration, are generated by the trained model. The performance of the suggested model is assessed using a 

number of evaluation criteria, such as Root Mean Square Error (RMSE), accuracy, number of epochs, loss, and learning rate. Extreme 

Learning Machine (ELM), Autoregressive Integrated Moving Average (ARIMA), Holt-Winters, and other innovative RNN and LSTM 

models are compared to more established approaches. The objective is to show the superior prediction skills of the proposed model. The 

addition of WLUs enhances the network's capacity to identify intricate linkages and patterns in rainfall data, leading to more precise 

predictions. The results highlight how the proposed approach may help meteorologists make better decisions and take precautions against 

disasters. 
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1. Introduction 

Rainfall, as a major natural event, has far-reaching 

consequences for ecosystems, the management of water 

resources, agriculture, and the daily lives of those who rely 

on it. It is the principal supply of water for a variety of 

activities, influencing the lives of countless people. 

Because atmospheric systems are complex and dynamic, 

predicting rainfall is a difficult undertaking. Traditional 

statistical models frequently fail to represent the complex 

linkages and nonlinear patterns found in rainfall data. 

RNNs have gained popularity in the field of time series 

forecasting in recent years due to their ability to efficiently 

handle sequential data. RNNs are well-suited for rainfall 

prediction problems because they can capture temporal 

dependencies by exploiting hidden states that store 

information from prior time steps. 

Heavy rainfall ranging from 3000 mm to 1500 mm per year 

assures that farmers in certain regions of India can cultivate 

their crops without fear of water scarcity. In contrast, 

significant rainfall can cause devastating floods in some 

area, inflicting extensive property damage and harming the 

local economy. The healing process for afflicted persons is 

lengthy, and it takes a long time for them to return to their 

normal life and resume their jobs. Floods in various parts of 

India killed roughly 1400 people in 2018, underscoring the 

human tragedy connected with such catastrophes. 

Rainfall forecasting has become a major concern for 

businesses, governments, risk management organizations, 

and the scientific community. Because of its random 

character and the complexities surrounding its occurrence, 

the intricacy of this meteorological event has drawn 

attention. Rainfall can vary in timing and intensity even 

under comparable meteorological conditions, making 

accurate forecast critical for understanding atmospheric 

conditions. Predictive analytics, which makes use of 

previous datasets, has arisen as a novel technique to 

forecasting future events and making predictions. It is 

critical in understanding and predicting the climatic 

conditions that affect many social events such as energy 

production, building and agriculture in the context of 

weather prediction.  
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Traditional weather forecasting methods frequently relied 

on meteorologists' experience and interpretation of weather 

charts. Years of observation and scientific understanding of 

weather patterns informed this method. However, as 

technology advances and large amounts of data become 

available, there has been a trend toward numerical weather 

predictions and algorithms using machine learning for 

weather forecasting. The significance of rainfall prediction 

stems from its ability to foresee and alleviate the negative 

effects of catastrophic events. It becomes possible to take 

preventive measures and efficiently control the hazards 

connected with landslides, floods, and other weather-

related calamities by precisely predicting rainfall patterns. 

This insight has fuelled the development of mathematical 

models for weather prediction and the use of machine 

learning techniques in weather forecasting. Existing 

prediction approaches frequently face various obstacles, 

such as limited memory capacity, vanishing gradients in the 

network, higher prediction errors, and the necessity for 

accurate rainfall predictions. As the prediction network, 

this study provides a unique method based on an Intensified 

LSTM-based RNN. 

By employing LSTM networks, the improved LSTM based 

RNN tackles the problem of limited memory capacity. The 

ability of LSTMs can store and use information from prior 

time steps allows for effective modelling of temporal 

interdependence. The suggested model, by adding LSTM 

units, can overcome the constraints of standard prediction 

approaches and identify long-term patterns in rainfall data. 

To overcome the limitations of existing prediction 

algorithms, this research offers an Intensified LSTM-based 

RNN. The model addresses issues such as limited memory 

capacity, vanishing gradients, increased prediction errors, 

and the necessity for precise rainfall forecasts. The 

suggested model intends to increase the efficiency and 

accuracy of rainfall prediction by adding LSTM units, 

multiplying the input sequence, and applying the Adam 

optimizer, thus contributing to the improvement of 

predictive analysis in this domain. 

2. Review of Literature 

The Holt-Winters approach was used in [11] to forecast the 

highest and lowest temperatures time series for the 

Junagadh region. An Excel spreadsheet was used to make 

the forecasts. To forecast the temperature data, the 

methodology used triple exponential smoothing. It should 

be noted, however, that processing huge datasets in an 

Excel spreadsheet can be difficult, and this method is better 

suited for smaller datasets. The additive Holt-Winters 

approach was used in [12] to analyse rainfall series from 

river catchment basins. The model was used to forecast 

rainfall, and both anticipated and actual rainfall data were 

entered into an evaluation model to assess the forecasting 

approach's performance. 

The ARIMA (Autoregressive Integrated Moving Average) 

model, especially notably suitable for non-stationary time 

series applications, is another statistical technique 

commonly employed for prediction algorithms. Several 

papers, including [13-15], have examined and explored the 

ARIMA model in context prediction. In reference [13], the 

emphasis was on obtaining and predicting time series 

values related to rain attenuation. In contrast, reference [14] 

discussed the application of the Box Jenkins series of 

seasonal ARIMA models for seasonal rainfall prediction. 

These papers demonstrate how to utilize ARIMA models to 

model hydrologic data. 

The purpose of the optimal model order is a critical 

difficulty when using ARIMA models. The issue of model 

identification for hydrological time series data was 

specifically addressed in reference [15]. However, which 

limits its capacity to properly capture non-stationary trends. 

As a result, statistical methods, such as ARIMA, are more 

appropriate to linear applications and may have drawbacks 

when dealing with non-linear and non-stationary data. This 

constraint is a disadvantage when employing statistical 

approaches since they may not be appropriate for capturing 

complicated and non-linear relationships in data. Non-

linear and non-stationary applications frequently 

necessitate additional modelling techniques in addition to 

classic statistical methodologies. As a result, while 

statistical approaches like ARIMA have their uses in 

specific circumstances, their utility in non-linear and non-

stationary data analysis may be limited. 

The free dataset from the China Meteorological Agency 

(CMA) was used to predict rainfall in [20]. Nave Bayes, 

Back-propagation Neural Network, and Support Vector 

Machine were among the approaches compared. This 

technique, however, is better suited for linear applications, 

making reliable prediction for non-linear datasets difficult. 

In [24], a forecast model for proactive cloud auto-scaling 

was developed by forecasting resource consumption in 

multivariate time series data using Multivariate Fuzzy-

LSTM (MF-LSTM). This LSTM network, however, did 

not address the vanishing gradient problem. In [25] 

designed LSTM-based Differential RNN (dRNN) to 

capture considerable spatiotemporal dynamics. Derivatives 

of States (DoS) were used in the procedure. This approach, 

however, was not intended for crowd scene analysis and 

did not give an end-to-end solution. Several LSTM 

variants, such as Bidirectional LSTM [26], 

Multidimensional LSTM (MDLSTM) [27], and Grid 

LSTM [28], have been proposed to improve on the original 

LSTM design. While these variations performed better in 

some areas, they did not directly address the issue of 

vanishing gradients. 
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3. Proposed Methodology 

Because RNNs contain an element of memory that allows 

them to maintain large backlogs of datasets, they are 

particularly well suited for rainfall prediction. Traditional 

RNNs, on the other hand, suffer from the vanishing 

gradient problem, which might restrict their accuracy in 

long-term predictions. The suggested Intensified LSTM 

model addresses this issue by combining the capabilities of 

RNNs with Long Short-Term Memory (LSTM). The 

improved LSTM's increased memory capacity allows for 

the storage and use of a significant amount of previously 

collected data. This strategy succeeds in resolving the 

gradient disparity issue, which results in a more accurate 

precipitation prediction. The machine learning algorithms, 

such as neural networks, are best suited for non-linear 

applications, such as the prediction of precipitation, 

whereas statistical techniques are best suited for linear 

applications. The neural networks known as Feed Forward 

(FFNN) are ineffective at forecasting precipitation because 

they do not take into account the state of the data prior to 

the current time. However, recurrent neural networks 

(RNN) are designed to capture temporal dependencies and 

store data from earlier temporal steps. 

1. Recurrent Neural Networks 

Predicting enlargement actions since classifications of 

variable-length vectors with a temporal component is 

critical in the setting of machine learning. Recurrent Neural 

Networks (RNNs) excel in capturing dependencies between 

prior terms in a series, making them ideal for forecasting 

weather patterns. A large number of data sets can be used 

to create prediction models with the help of RNN. A RNN's 

primary mode of operation consists of making predictions 

at each stage. A RNN generates a departure or prediction at 

a predetermined time t using the entry vector at that point 

in time and the hidden state from the previous step. 

Kt =  G(Xh [Kt − 1, Xt ] +  bh ) 

Ot =  f(Wo ∗  Kt +  bo) 

Kt is the hidden state at time t in the RNN model, while Ot 

is the anticipated emission. Weights Xh and Wo are 

attributed to abandoned and television couches. 

Additionally, bh and bo are the respective biases of the 

hidden capa and the exit capa. While the function of 

activation g is responsible for turning on the hidden sofa, 

the function of transmission f is in charge of making 

predictions.  

Back-propagation in a neural network typically calculates 

the change in weight (w) based on the error (E) associated 

with the weight (K) assigned in the previous state. The 

formula for the computation is as follows: 

∆ =  
∂E

∂K
 

Back-Propagation over Time (BPTT) is a popular training 

method for Recurrent Neural Networks (RNNs). It entails 

modifying the network's weights to reduce error by back-

propagating through a specific number of states, indicated 

as "n." The purpose is to compute the weight change by 

adding the errors of the back-propagated states and 

updating the weights accordingly. 

∆ = ∑
∂Ei

∂Ki

𝑛

𝑗=1

  

Training classical RNNs with BPTT can be difficult owing 

to concerns such as exploding and vanishing gradients. 

When the gradients are back-propagated through time, they 

either grow exponentially or diminish exponentially. As a 

result, failures from later time steps have difficulties 

reaching and affecting older time steps, resulting in 

inefficient network parameter adjustments.  

The Long Short-Term Memory (LSTM) unit was created to 

address these issues. At each stage of network training, the 

LSTM unit drastically decreases loss. This is accomplished 

by incorporating a memory cell that enables the network to 

retain and update information over longer sequences, 

essentially overcoming the vanishing gradient problem. 

The LSTM architecture incorporates specialized gates that 

control the flow of information (input, forget, and output). 

The network can better gather and use relevant information 

from previous time steps by including LSTM units into the 

RNN architecture. The ability of the LSTM unit to retain 

and convey information over longer periods allows for 

more precise updates of network parameters, which 

improves the overall training process and improves the 

model's prediction performance. 

2. Long Short Term Memory (LSTM): 

The Excel LSTM type recurrent neural networks (RNN) 

[18]. It is frequently used for tasks like time series analysis, 

recognition of speech, and natural language processing 

because it is capable of recording long-term dependencies. 

The LSTM server is capable of processing the stream of 

entries. A vector is used to represent each component of a 

series. 

What information from the prior cell state should be erased 

is decided by the forget gate. Its inputs are the current input 

and the prior concealed state, and its output falls between 

[0, 1]. The forget gate's equation is as follows: 

 

Where, h_t-1 is the prior hidden state, x_t is the current 

input, W_f and b_f are the forget gate's weights and biases, 

and f_t is the forget gate's output. 

What fresh information should be kept in buffer that to be 

decided by input function gate. It also accepts the current 
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input as well as the prior concealed state as inputs. The 

input gate's equation is as follows: 

 

Where, W_i and b_i are the input gate's weights and biases, 

and i_t is the output of the input gate. 

Cell State Update: The prior cell state is combined with the 

new input data to update the cell state. The cell state update 

equation is as follows: 

 

where W_C and b_C are the biases and weights for 

updating the cell state, and C_t represents the updated cell 

state. 

Output Gate: Using the updated cell state, the output gate 

chooses the LSTM cell's output. It accepts the current input 

as well as the prior hidden state as inputs. The output gate's 

equation is: 

 

where W_o and b_o are the output gate's weights and 

biases, and o_t is the output gate output. 

Applying the output gate to the updated cell state results in 

the computation of the hidden state. The hidden state's 

equation is as follows: 

 

The vanishing gradient problem can be reduced and long-

term dependencies in sequential data can be captured using 

LSTM networks.  

The following are the activation functions for the various 

components of an LSTM (Long Short-Term Memory) 

network: 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 (𝐼𝑡): 

𝐼𝑡 =  𝜎(𝑊𝑖𝑥𝑡 +  𝑈𝑖ℎ(𝑡 − 1)  +  𝑏𝑖) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 (𝑂𝑡): 

𝑂𝑡 =  𝜎(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ(𝑡 − 1) +  𝑏𝑜) 

𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒 (𝐹𝑡): 

𝐹𝑡 =  𝜎(𝑊𝑓𝑡𝑥𝑡 +  𝑈𝑓ℎ(𝑡 − 1)  +  𝑏𝑓) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐶0𝑡): 

𝐶0𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 +  𝑈𝑐ℎ(𝑡 − 1)  +  𝑏𝑐) 

𝐶𝑒𝑙𝑙 𝑆𝑡𝑎𝑡𝑒 (𝐶𝑡): 

𝐶𝑡 =  𝐹𝑡 ⊙  𝐶𝑡 − 1 +  𝐼𝑡 ⊙  𝐶0𝑡 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 (ℎ𝑡): 

ℎ𝑡 =  𝑂𝑡 ⊙  𝑡𝑎𝑛ℎ(𝐶𝑡) 

LSTMs can retain significant information for extended 

periods of time by updating and preserving the cell state, 

which makes them useful for tasks like sequence 

categorization and machine translation. 

3. Improved Long Short Term Memory (ILSTM): 

A novel technique termed Sigmoid Weighted Linear Units 

(SWLUs) was presented to overcome the problems and 

difficulties connected with the activation functions utilized 

in the LSTM architecture [31]. SWLUs were developed to 

address the vanishing gradient problem that occurs during 

back-propagation in regular LSTM networks. SWLUs work 

by multiplying input values by a weighting factor before 

passing them through the sigmoid activation function. This 

adjustment aids in the regulation and management of 

gradients during back-propagation, ensuring that they 

remain within specific levels.  

This method resulted in the development of the improved 

LSTM model. To further solve the vanishing gradient 

problem, it makes use of SWLUs within the LSTM 

architecture. The SWLU change the activation functions 

with increased entry numbers, enabling a more fluid 

gradient debit and increasing the gradient size during 

propagation. This improvement helps to lessen the issue of 

erratic gradients, which can interfere with the effective 

learning and prediction capabilities of standard LSTM 

networks. The enhanced LSTM model boosts the network's 

capacity to collect and transmit gradients, resulting in better 

training and more accurate predictions. SWLUs are 

incorporated into the LSTM design in the upgraded LSTM 

model. This approach enhances overall performance while 

assisting in the resolution of issues related to the functional 

activations used in LSTM networks. 

The operation of the upgraded LSTM model depends on a 

number of essential elements: 

• The input gate employs an activation function that is 

sigmoid multiplied by the input. It controls how much 

of the input is permitted to pass through and hence 

governs the movement of evidence into the cell state. 

• Forget Gate (F): A function of sigmoid activation is 

also used in the forget gate. It specifies how much 

information from the preceding time step should be 

ignored or discarded from the cell state. 

• The applicant vector (C') employs a tanh motivation 

function multiplied by the input. It computes a new 

candidate value that may be added to the cell state. 

• Output Gate (O): The output gate is connected with a 

softmax activation function. The amount of the cell 

state that should be output as the hidden state is 

specified. The relevance of the current cell state to the 

final output is determined by this gate. 

• Hidden state, denoted by the letter "h," is the output of 

the LSTM unit. It contains information about the 
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LSTM's present state and is used to produce 

predictions or to pass to following time steps. 

• Memory state (C): The memory's state, denoted by the 

letter "C," is in charge of storing and keeping long-

term information across numerous time steps. It is 

updated by taking the input barrier, forget gate, and 

candidacy vector into account, allowing the LSTM to 

capture and store pertinent information. 

A range of values between 0 and infinity is produced by 

changing the input gate in the Improved LSTM model. 

With this adjustment, the vanishing gradient issue is 

successfully avoided, which can happen when the input 

vector's range of values is constrained. This innovation 

makes it possible for the network to effectively capture and 

transmit gradients throughout the network, increasing 

training and prediction capabilities. 

LT =  Xa(t) ∗  sigmoid(Ki [Y(t), (Ct − 1) ]  +  bi)  

The value obtained from the input gate is multiplied by the 

current input in the improved LSTM model according to 

the equation above. The result of this multiplication is the 

candidate vector, which may be zero or infinity. The model 

can effectively capture additional tiny changes in the time 

series data by enabling the candidate vector to take values 

in this broader range. This improvement allows the learning 

process to more effectively update the information stored in 

the cell state vector, resulting in enhanced accuracy and 

performance in capturing and modelling the data's 

dynamics. 

C 0 t =  X(t)  ∗ tanh(Wc [ht − 1, X(t)]  +  bc) 

The mathematical formulas for the output gate and hidden 

state in the Intensified LSTM can be expressed as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 (𝑂): 

𝑂 =  𝜎(𝑊𝑜 ∗  𝑥𝑡 +  𝑈𝑜 ∗  ℎ𝑡 − 1 +  𝑏𝑜) 

In these equations, represents the activation function of the 

sigmoid, * denotes element-wise multiplication, 

⊙  denotes the Hadamard thing, W and U are weight 

matrices, xt is the input the vector at time step t, ht-1 is the 

previous time step's hidden state, and bo is the output gate's 

bias term. 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 (ℎ𝑡): 

ℎ𝑡 =  𝑂 ⊙  𝑡𝑎𝑛ℎ(𝐶𝑡) 

An optimizer is used in the upgraded LSTM model to boost 

prediction accuracy even further. The Adam optimizer is 

specifically utilized in the back-propagation learning 

process. Based on the training data, this optimizer 

continuously updates and optimizes the weights, allowing 

the model to learn and enhance its predictive skills. The 

proposed improved LSTM model outperforms other 

prediction models in several performance measures thanks 

to the use of the Adam optimizer. This shows that the 

combination of enhanced LSTM, RNN architecture, and 

weighted linear units is extremely efficient at predicting 

rainfall. 

4. Result and Discussion 

Tensorflow's backend and the Python keras library were 

both used to enhance the LSTM model for rainfall 

prediction. The number of lost Capas, the rate of learning, 

the number of points in each Capa, and the rate of loss were 

all calculated using hyperparameter searching. The optimal 

model and its associated hyperparameters were discovered 

using a search strategy that included more than 300 models 

with various combinations of hyperparameters. The rainfall 

forecast dataset included historical rainfall data for the 

Hyderabad region from 1980 to 2019. This dataset was 

divided into two parts: a training set (34 years from 1980 to 

2019) and a testing set (2019). The model's experimental 

variables included the maximum and minimum 

temperature, maximum relative humidity, minimum 

absolute humidity, and wind. 

During the formation phase, the system was fed 

experimental variables and the corresponding precipitation 

data, allowing it to comprehend and predict the variable of 

precipitation results. The simulation's results were 

produced using Jetbrains' Pycharm. Numerous predictive 

models, including as Holt-Winters, ARIMA, ELM, RNN 

with ReLU, RNN with SiLU, and LSTM with sigmoidal 

and hyperbolic activation functions, were examined in 

relation to the improved LSTM suggested version. Every 

model had its own performance metrics that took into 

account the RMSE, losses, precision, and learning rates. 

The superiority of RNN enhanced prediction models based 

on LSTM is shown in Table 1. 

Table 1: Comparison of Accuracy of different method for 

rainfall prediction 

Method Accuracy in % 

ELM 69.37 

Hot-Winter 78.45 

ARIMA 81.55 

RNN with ReLU 86.11 

RNN with Silu 86.32 

LSTM 87.54 

Improved LSTM 89.36 
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Fig 1: Comparison of Accuracy of different method for 

rainfall prediction 

 

Using the rainfall dataset, the accuracy of several 

prediction algorithms was assessed. The ELM (Extreme 

Learning Machine) obtained an accuracy of 69.37%, 

according to the results. With an accuracy of 78.45%, the 

Holt-Winters technique did somewhat better. The ARIMA 

(Autoregressive Integrated Moving Average) model 

improved even further, reaching 81.55% accuracy. Moving 

on to the RNN (Recurrent Neural Network) models, the 

one with ReLU activation obtained 86.11% accuracy, while 

the one with Silu activation achieved 86.32%. The LSTM 

(Long Short-Term Memory) model outperformed the other 

techniques, with an accuracy of 87.54%. The proposed 

Improved LSTM model, on the other hand, had the 

maximum accuracy of 89.36%. These findings suggest that 

the Improved LSTM outperforms the other models in 

predicting rainfall. 

Table 2: Summary of different method accuracy 

comparison 

Metho

d 

Numb

er of 

Epoch

s 

Accura

cy (%) 

RMS

E 

Loss

es 

Learni

ng Rate 

(ms) 

ELM - 69.37 3.08 - - 

Hot-

Winter 
- 78.45 2.84 - - 

ARIM

A 
- 81.55 5.68 - - 

RNN 

with 

ReLU 

50 86.11 0.76 
0.582

4 
0.9 

RNN 

with 

Silu 

50 86.32 0.76 
0.576

9 
0.75 

LSTM 50 87.54 0.35 
0.127

4 
0.5 

Improv

ed 

LSTM 

50 89.36 0.33 
0.005

4 
0.025 

 

 

 

Fig 2: Comparison of prediction model with Neural 

Network 

Several criteria were used to assess the efficacy of various 

prediction algorithms, including accuracy, root mean 

square error (RMSE), losses, and learning rate. Without 

defining the number of epochs, the ELM (Extreme 

Learning Machine) obtained an accuracy of 69.37%. The 

Holt-Winters approach improved accuracy to 78.45%, but 

it did not provide information on the number of epochs or 

losses. The ARIMA (Autoregressive Integrated Moving 

Average) model fared even better, with an accuracy of 

81.55%, but did not offer epoch or loss information. 

Moving on, both the RNN with activation of ReLU and the 

RNN with Silu activation had their RNN (Recurrent Neural 

Network) model trained for 50 epochs. The RNN with 

ReLU obtained an accuracy of 86.11%, an RMSE of 0.76, 

and losses of 0.5824 at a learning rate of 0.9 (ms). The 

RNN with Silu performed somewhat better with a learning 

rate of 0.75 (ms), achieving accuracy of 86.32%, RMSE of 

0.76, and losses of 0.5769. Similarly trained across 50 

epochs, the LSTM (Long Short-Term Memory) model 

outperformed the others with an accuracy of 87.54%. It had 

losses of 0.1274 and a lower RMSE of 0.35 with a learning 

rate of 0.5 (ms). The proposed Improved LSTM 

outperformed all previous methods. 

 

Fig 3: Different RMSE prediction model comparison 

In terms of accuracy, RMSE, and losses, these data show 

that the Improved LSTM model beat the other techniques. 

The number of training epochs was consistent among the 

RNN models, although the learning rates differed. Overall, 

the Improved LSTM model had the highest accuracy and 

lowest mistakes, suggesting its efficiency and efficacy in 

rainfall prediction. 
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When the RMSE of the different methods is compared, the 

statistical methods (Holt-Winters and ARIMA) compete 

with the LSTM-based model. The Holt-Winters approach 

controls the data pattern with smoothing parameters, 

whereas ARIMA converts non-stationary data to stationary 

data before making predictions. The ELM approach, on the 

other hand, has a high RMSE due to the lack of weight 

adjusting. RNN models with ReLU and Silu activation 

functions perform equally, however the introduction of 

LSTM units in the RNN dramatically reduces error when 

compared to RNN without LSTM. Figure 3 depicts the 

RMSE comparison of all approaches utilized in this 

research. 

 

Fig 4: Prediction of rainfall as Actual and Predicted 

Figure 4 depicts the actual and forecast rainfall levels 

plotted during a 97-day period from July to September 

2014. The model was trained utilizing 34 years of past data 

as input, which was made possible by the RNN network's 

utilization of LSTM units. Except for a few peaks, the plot 

of projected rainfall values roughly matches the actual 

values. This variance could be caused by outliers in the 

dataset, which can cause considerable differences in 

successive readings. The prediction approaches seek to 

either eliminate or include these outliers by examining 

whether comparable patterns appear throughout the training 

phase. When the RMSE and real versus anticipated rainfall 

values are compared, the LSTM-based model performs 

well, closely reflecting the actual rainfall pattern. The 

inclusion of LSTM units in RNN enables for the processing 

of huge datasets as well as better capturing of temporal 

dependencies, resulting in better predictions. 

5. Conclusion 

In this paper we suggested an improved rainfall prediction 

model in this study by adding weighted linear units in an 

advanced recurrent neural network (RNN). The Intensified 

LSTM model solves the shortcomings of standard 

prediction approaches such as statistical algorithms and 

basic RNNs. The Intensified LSTM model outperforms 

other rainfall prediction models by exploiting the 

capabilities of LSTM units and the improvements brought 

by weighted linear units. We assessed the accuracy and 

efficiency of the Intensified LSTM model using extensive 

testing and comparative analysis. The outcomes 

demonstrated its superiority over other prediction 

approaches such as ELM, Holt-Winters, ARIMA, and 

simple RNNs. The Intensified LSTM outperformed all 

other models in this investigation with an excellent 

accuracy of 89.36%. We also discovered that including 

weighted linear units aids in overcoming the obstacles of 

vanishing gradient and improves the learning process. The 

Intensified LSTM effectively mitigates the vanishing 

gradient problem by adding the sigmoid and tanh functions 

multiplied by the input in the input gate and candidate 

vector, respectively, allowing the model to capture and 

utilize more nuanced patterns and relationships in the data. 

The suggested improved LSTM model, powered by 

weighted linear units, provides an enhanced method for 

predicting rainfall. Its capacity to handle long-term 

dependencies, solve the vanishing gradient problem, and 

give greater accuracy demonstrates its promise for use in a 

variety of disciplines, including weather forecasting, 

agriculture, and disaster management. The improved 

LSTM model represents a considerable leap in rainfall 

prediction and shows great promise for future research and 

implementation. 
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