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Abstract: Increasing the efficacy of rule-mining-based automatic clustering architectures is a prerequisite for many data-driven 

applications. In this paper, we present a novel method, the Incremental Q Learning Model (IQLM), which combines Q learning and the 

Genetic Algorithm for iterative optimizations. Our model addresses the need to improve clustering effectiveness by maximizing inter-class 

variance and minimizing intra-class variance levels. Existing methods frequently struggle to achieve optimal feature selection and 

parameter tuning, which can have a substantial impact on clustering performance under real-time scenarios. Our IQLM incorporates a 

Genetic Algorithm Model that performs feature selection, retaining high variance features from input datasets and samples, in order to 

circumvent these limitations. This method assists in identifying key discriminative characteristics, thereby enhancing the accuracy of 

clustering process. In our method, the Q Learning Model computes an Iterative Q Value that quantifies the ratio of Inter Cluster Centroid 

Variance to Intraclass Sample Variance levels. This Q Value is a dynamic measure of clustering effectiveness. The model optimizes the 

clustering parameters by iteratively adjusting the values of Minimum Support (for FPGrowth, Apriori, and FPMax), Epsilon, and Min 

Samples for DBSCAN. As a result, the Q Values are recalculated, and a reward function based on the estimated improvement is derived 

for different datasets & samples. The efficacy of our proposed model is demonstrated by empirical evaluations conducted on diverse data 

sets. In comparison to existing methods, the IQLM is 45% efficient in terms of precision, accuracy & recall levels. Our proposed IQLM's 

characteristics make it suitable for real-time scenarios. Its ability to dynamically modify clustering parameters and feature selection ensures 

adaptability in fluctuating data environments. The achieved efficiency enhancement improves the scalability and usability of the automatic 

clustering architecture, making it suitable for a wide range of data-driven applications in real-world environments. 

Keywords: Incremental Q Learning Model, Genetic Algorithm, Rule-mining, Automatic Clustering, Efficiency Enhancements 

1. Introduction 

Due to their ability to extract meaningful patterns and 

structures from complex datasets, rule-mining based 

automatic clustering architectures have attracted 

considerable interest in recent years. These architectures are 

crucial in a variety of fields, including data mining, machine 

learning, and pattern recognition. Nevertheless, achieving 

efficient and accurate clustering remains a difficult task, 

necessitating the development of novel techniques to boost 

performance levels like Cluster Analysis with 

Multidimensional Prototypes (CAMP) [1, 2, 3]. 

Inter-class variance and intra-class variance are the 

determinants of a clustering algorithm's effectiveness. Inter-

class variance indicates the degree of separability in a 

dataset by measuring the dissimilarity between clusters. 

Intra-class variance, on the other hand, represents the 

similarity within each cluster and reflects the density of data 

points belonging to the same class. To obtain reliable and 

meaningful clusters, it is essential to maximize inter-class 

variance while minimizing intra-class variance. 

Existing methods for automatic clustering are frequently 

hampered by limitations that reduce their efficacy. The 

selection of relevant features from the input datasets is a 

significant obstacle. Not all features contribute equally to 

the clustering procedure, and selecting irrelevant or 

redundant features can have a negative effect on clustering 

performance. Consequently, an efficient feature selection 

mechanism is required to identify discriminative features 

that capture the underlying data patterns like use of 

Evolving Fuzzy Clustering Approach (EFCA) & Stable-

Membership-Based Auto-Tuning Multi-Peak (SMMP) that 

can be used for real-time scenarios [4, 5, 6]. 

In addition, the performance of clustering algorithms relies 

heavily on the proper tuning of their parameters. 

Determining the optimal values for parameters such as 

Minimum Support, Epsilon, and Min Samples is not a 

simple task, as the optimal values can vary across datasets 

and clustering situations. Ineffective parameter settings can 

result in suboptimal clustering outcomes, thereby 

diminishing overall performance and precision. 

To address these issues, we propose the Incremental Q 

Learning Model (IQLM), which combines the power of Q 

learning with the Genetic Algorithm for iterative 

optimizations. Our model aims to improve the performance 

of rule-mining-based automatic clustering architectures by 

adjusting the parameters and selecting discriminative 

features in an iterative manner. 
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In our approach, the Genetic Algorithm Model performs 

feature selection by retaining high variance features from 

input datasets and samples. By prioritizing informative 

characteristics, the model improves clustering precision and 

reduces the impact of irrelevant or redundant attributes. 

This feature selection procedure guarantees that the 

subsequent clustering algorithm operates on the most 

pertinent and discriminating feature set. 

The Q Learning Model calculates an Iterative Q Value that 

quantifies the relationship between Inter Cluster Centroid 

Variance and Intra-Class Sample Variance. This Q Value 

serves as a dynamic indicator of clustering effectiveness and 

directs the iterative optimization process. By iteratively 

adjusting the values of Minimum Support, Epsilon, and Min 

Samples based on the Q Value, the model improves the 

overall performance of the clustering parameters. 

In this paper, we provide empirical support for the use of 

our proposed model and its constituent parts. To evaluate 

the efficacy and effectiveness of the IQLM, we conduct 

extensive experiments on numerous datasets. The results 

demonstrate significant improvements in clustering 

performance as compared to existing methods, with a 

notable 45% increase in efficiency. Our model's iterative 

optimizations enable adaptive parameter tuning, leading to 

improved clustering precision. 

Furthermore, the proposed IQLM's characteristics make it 

highly applicable to real-world scenarios. Its ability to 

dynamically adjust clustering parameters and perform 

feature selection ensures adaptability in environments with 

fluctuating data. The automatic clustering architecture's 

scalability and usability are significantly improved, making 

it suitable for a wide range of data-driven applications in 

real-world settings. 

In conclusion, this paper introduces the Incremental Q 

Learning Model as a novel method for enhancing the 

performance of rule-mining-based automatic clustering 

architectures. Our model addresses the challenges of feature 

selection and parameter tuning by combining Q learning 

and the Genetic Algorithm. The empirical justifications and 

experimental findings validate the efficacy of our proposed 

model, demonstrating its potential to improve clustering 

precision and efficiency in a variety of real-world scenarios. 

2. Literature Review 

Existing models used to enhance the effectiveness of the 

automatic clustering process have made substantial 

contributions to the field. Several strategies have been 

proposed to address the difficulties of feature selection and 

parameter tuning in rule-mining-based automatic clustering 

architectures [7, 8, 9]. 

In the literature, the use of Genetic Algorithms (GAs) for 

feature selection is a common method. Genetic algorithms 

(GAs) are optimization algorithms inspired by natural 

selection and genetics. These algorithms generate a 

population of possible feature subsets and evolve them 

iteratively to identify the most informative and 

discriminative features. By evaluating the fitness of each 

feature subset based on clustering performance metrics, 

genetic algorithms (GAs) efficiently identify relevant 

features, thereby reducing the dimensionality of the dataset 

and enhancing the performance of subsequent clustering 

algorithms [9, 10, 11]. 

Q learning, an algorithm for reinforcement learning, is 

another widely used technique for parameter tuning. Q 

learning is the process of learning an optimal policy by 

iteratively updating a Q-value table based on the rewards 

received from various actions. Q learning can be used to 

adjust clustering parameters such as Minimum Support, 

Epsilon, and Min Samples in the context of automatic 

clustering process. By dynamically adjusting these 

parameters based on the Q-values, the clustering algorithm 

is able to optimize its performance and improve the 

clustering process's efficacy levels [13, 14, 15]. 

Several studies have also investigated the combination of 

various optimization techniques, such as Genetic 

Algorithms and Particle Swarm Optimization (PSO), to 

improve clustering efficiency. PSO is an algorithm for 

population-based optimization inspired by the social 

behavior of flocks of birds. Utilizing the strengths of both 

algorithms, researchers have improved feature selection and 

parameter tuning by combining PSO and GA process [16, 

17, 18]. This hybrid strategy facilitates the exploration and 

exploitation of the search space, resulting in improved 

clustering outcomes [19, 20]. 

In addition, certain models have implemented metaheuristic 

algorithms, such as Ant Colony Optimization (ACO), to 

enhance clustering efficiency levels [21, 22, 23]. ACO 

algorithms have been utilized effectively to solve 

combinatorial optimization problems by simulating the 

foraging behavior of ants. ACO-based models focus on 

optimizing clustering parameters and selecting relevant 

features by exploiting the pheromone trails associated with 

each feature or parameter in the context of automatic 

clustering process [24, 25]. 

Existing models have contributed to the improvement of 

automatic clustering's efficiency, but they still have certain 

limitations. Some models only consider feature selection or 

parameter tuning, ignoring the significance of the other 

factor. In addition, the absence of an iterative approach in 

many models limits their adaptability to shifting data 

environments. In addition, the performance of these models 

is extremely dependent on the quality and 

representativeness of the training and evaluation datasets & 

samples. 
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In light of these constraints, our proposed model, the 

Incremental Q Learning Model (IQLM), provides a 

comprehensive solution by combining Q learning with the 

Genetic Algorithm for iterative optimizations. By 

addressing feature selection and parameter tuning 

concurrently through an iterative process, our model aims 

to overcome the limitations of existing approaches and 

significantly improve the efficiency and accuracy of the 

automatic clustering process. 

3. Proposed Design of an Incremental Q Learning 

Model for Improving Efficiency of Rule-Mining 

based Automatic Clustering Architectures 

Based on the review of existing models used for improving 

the efficiency of automatic clustering, it can be observed 

that these models either have higher complexity for larger 

datasets, or have lower efficiency when applied for real-

time scenarios. To overcome these issues, this section 

discusses design of an Incremental Q Learning Model for 

improving efficiency of rule-mining based automatic 

clustering architectures.  

 

Fig 1. Design of the proposed cluster optimization process 

As per figure 1, the proposed model initializes minimum 

support values for FPGrowth, Apriori, & FPMax, along 

with minimum samples and error tolerance for DBSCAN 

process. FPGrowth, FPMax, and Apriori are well-known 

rule mining models employed in data mining and 

association rule learning. The objective of these models is 

to identify frequent item groups and extract meaningful 

relationships between items in large datasets. They are 

particularly useful for market basket analysis, the purpose 

of which is to identify patterns of recurring items in 

customer transactions. 

The Apriori algorithm is a traditional approach that operates 

in a level-wise fashion. It begins by identifying frequent 

individual items in the dataset and then adds more items to 

the itemsets to generate larger candidate itemsets. The 

algorithm eliminates candidate itemsets that do not meet the 

minimum support threshold, a user-defined parameter 

representing the minimum frequency required for an item to 

be considered frequent. Apriori makes use of the Apriori 

property, which states that any subset of a frequent item set 

must also be frequent. By repeatedly applying this property, 

the algorithm efficiently explores the search space and 

discovers all frequent item sets. 

FPGrowth, on the other hand, is a more effective algorithm 

for mining frequent patterns. It employs a divide-and-

conquer technique to construct a compact data structure 

known as the FP-tree. The FP-tree represents the dataset in 

a condensed form, preserving the item frequencies and their 

associations. FPGrowth builds conditional FP-trees 

recursively by partitioning the dataset based on a frequent 

item and constructing a compact prefix tree structure. It then 

extracts frequent patterns directly from the FP-tree, 

eliminating the need for costly itemset generation and 

candidate pruning steps employed by Apriori. FPGrowth 

significantly reduces computational overhead and is 

especially useful when working with large datasets & 

samples. 

FPMax is an extension of FPGrowth that focuses on mining 

the most frequently occurring item sets. Maximum frequent 

item sets are those that cannot be contained within any other 

frequent item set. While FPGrowth identifies all frequent 

itemsets, FPMax specifically extracts only the maximal 

ones, resulting in a more concise representation of the data's 

high-level associations. FPMax accomplishes this by 

employing an additional pruning step during the mining 

procedure in order to identify and retain only the most 

frequent item sets. 

DBSCAN is a widely used algorithm for clustering data 

points based on their density relationships within a dataset. 

DBSCAN, in contrast to conventional clustering algorithms 

that rely on predefined cluster shapes, identifies clusters of 

varying sizes and shapes. The algorithm requires two 
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essential parameters: epsilon (), which determines the 

maximum distance between neighboring points, and 

MinPts, the minimum number of points required to form a 

dense region. 

DBSCAN functions by defining neighborhoods and 

density-based data point relationships. Initially, a distance 

function is employed to calculate the distance between any 

two data points, typically employing metrics such as 

Euclidean distance. The epsilon-neighborhood of a point P, 

which includes P and all points within a distance of P, is 

then determined. 

DBSCAN determines core points as those with a sufficient 

number of points in their epsilon-neighborhood, equal to or 

greater than MinPts. These central points serve as the 

genesis of clusters. The algorithm expands the cluster from 

each core point by iteratively locating density-reachable 

points, which are points within the epsilon-neighborhood. A 

point Q is directly density-reachable from a core point P if 

it is in P's epsilon-neighbourhoods. It is possible for density-

reachability to extend to additional points, creating a chain 

of density-reachable points. 

By connecting density-reachable points and their 

corresponding density-reachable chains, DBSCAN clusters 

are formed. Points that cannot be reached by density from 

any core point are referred to as noise points. The algorithm 

continues until all data points are categorized as clusters or 

noise points. 

These models are simulated based on initial values of 

minimum support, minimum samples, and error tolerance, 

on given datasets, and Intercluster Variance is estimated via 

equation 1, 
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Where, 𝐶 represents centroid of the clusters. Similarly, the 

Intracluster Variance is estimated via equation 2, 
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Where, 𝐶𝑉 & 𝑁𝑆 represents Cluster Sample Value, and 

Number of Samples in the Clusters. Based on these values, 

an augmented Q Level is estimated via equation 3, 

𝑄 =
𝐼𝐶

𝐼𝑛𝐶
… (3) 

The values for minimum support, minimum samples, and 

error tolerance are updated via equation 4, 5 & 6 as follows, 

𝑚𝑖𝑛𝑆𝑢𝑝(𝑁𝑒𝑤) = 𝑚𝑖𝑛𝑆𝑢𝑝(𝑂𝑙𝑑) + 𝑆𝑇𝑂𝐶𝐻…(4) 

𝑚𝑖𝑛𝑆𝑎𝑚𝑝(𝑁𝑒𝑤) = 𝑚𝑖𝑛𝑆𝑎𝑚𝑝(𝑂𝑙𝑑) + 𝑆𝑇𝑂𝐶𝐻… (5) 

𝑒𝑟𝑟𝑇(𝑁𝑒𝑤) = 𝑒𝑟𝑟𝑇(𝑂𝑙𝑑) + 𝑆𝑇𝑂𝐶𝐻… (6) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents an augmented Markovian 

stochastic process. Based on these New Values of 

Hyperparameters, updated clusters are formed, and new Q 

Value is estimated after the clustering process. Using this Q 

Value, the change in hyperparameters is controlled using an 

Iterative reward value, which is estimated via equation 7, 

𝑟 =
𝑄(𝑁𝑒𝑤) − 𝑄(𝑂𝑙𝑑)

𝐿𝑅
− 𝑑 ∗ 𝑀𝑎𝑥(𝑄) + 𝑄(𝑂𝑙𝑑)… (7) 

Where, 𝐿𝑅 & 𝑑 represents the Learning Rate & Discount 

Factor for the Q Learning process. Based on the reward 

value, new hyperparameters are evaluated via equations 8, 

9 & 10 as follows, 

𝑚𝑖𝑛𝑆𝑢𝑝(𝑁𝑒𝑤) = 𝑚𝑖𝑛𝑆𝑢𝑝(𝑂𝑙𝑑) + 𝑟 ∗ 𝑠𝑔𝑛(𝑄)… (8) 

𝑚𝑖𝑛𝑆𝑎𝑚𝑝(𝑁𝑒𝑤) = 𝑚𝑖𝑛𝑆𝑎𝑚𝑝(𝑂𝑙𝑑) + 𝑟 ∗ 𝑠𝑔𝑛(𝑄)… (9) 

𝑒𝑟𝑟𝑇(𝑁𝑒𝑤) = 𝑒𝑟𝑟𝑇(𝑂𝑙𝑑) + 𝑟 ∗ 𝑠𝑔𝑛(𝑄)… (10) 

Where, 𝑠𝑔𝑛(𝑄) is the sign of Q Level, which is estimated 

via equation 11, 

𝑠𝑔𝑛(𝑄) = 𝑠𝑔𝑛(𝑄(𝑁𝑒𝑤) − 𝑄(𝑂𝑙𝑑))… (11) 

Based on this evaluation, new hyperparameters are 

estimated, and the automatic clustering process is evaluated 

for continuous optimizations. Due to this, the model is 

capable of improving the precision, accuracy & recall of 

clustering, while minimizing the delay needed during 

clustering process. Results of this model are estimated on 

different datasets, and compared with existing models in the 

next section of this text. 

4. Result Analysis & Comparison 

The proposed model uses an augmented fusion of multiple 

rule mining engines, which assists in representing data 

samples as rules. These rules are clustered via use of an 

efficient DBSCAN based clustering process. The results of 

these models are tuned by an Iterative Q Learning (IQL) 

Model, which assists in identification of optimal 

hyperparameters for efficient rule-based clustering 

operations. To validate performance of this model, it was 

evaluated on the following datasets & samples, 

• Iris Dataset: 

The Iris dataset contains measurements of various features 

of iris flowers, such as sepal length, sepal width, petal 

length, and petal widths. 

Number of Instances: 150 

Link: https://archive.ics.uci.edu/ml/datasets/iris 

• Wine Dataset: 
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The Wine dataset comprises chemical l analysis results of 

wines from three different cultivars. The features include 

attributes such as alcohol content, malic acid, ash, etc. 

Number of Instances: 178 

Link: https://archive.ics.uci.edu/dataset/109/wine 

• Seeds Dataset & Samples 

Description: The Seeds dataset includes measurements of 

various geometrical properties of kernels belonging to three 

different wheat varieties & types. 

Number of Instances: 210 

Link: https://archive.ics.uci.edu/dataset/236/seeds 

• Credit Card Fraud Detection Dataset: 

The Credit Card Fraud Detection dataset contains 

anonymized credit card transactions, including a mixture of 

legitimate and fraudulent transactions. 

Number of Instances: Varies (large dataset) 

Link: https://www.kaggle.com/mlg-ulb/creditcardfraud 

These datasets were combined to produce a total of 400k 

data samples, out of which 75k were used for validation, 

250k for training, and 75k for testing operations. Results of 

the clustering process can be observed from figure 2 as 

follows, 

 

Fig 2. Results of the clustering process (different colors 

represent different clusters) 

Using this method, the precision (P) was calculated using 

equation 16, 
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Where tp, tn, fp, fn are total true & false rates, and NC are 

total number of clusters used for different evaluations. 

Similarly, the Accuracy, & Recall, were determined using 

equations 17 & 18 as follows, 
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On the basis of this evaluation, the efficiency levels for 

clustering process were estimated and compared with 

CAMP [2], EFCA [4], and SMMP [5] were estimated using 

comparable datasets and samples. Based on this strategy, 

the precision of automatic clustering can be observed from 

figure 3 as follows, 

 

Fig 3. Precision for automatic clustering process 

In comparison to CAMP [2], EFCA [4], and SMMP [5] 

methods, the proposed model improves automatic 

clustering precision by 23.5%, 29.4%, and 40.5%, 

respectively, in real-time scenarios. This accuracy is 

enhanced by the application of high-performance DBSCAN 

and IQL Process, which aid in the extraction of 

hyperparameters and precise prediction of clusters for 

various datasets & samples. Similarly, figure 4 depicts the 

accuracy achieved during these evaluations, 
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Fig 4. Accuracy for automatic clustering process 

Based on this evaluation, it is evident that, under real-time 

conditions, the proposed model improves automatic 

clustering accuracy by 29.4% relative to CAMP [2], 31.5% 

relative to EFCA [4], and 38.5% relative to SMMP [5] for 

different scenarios. The application of the DBSCAN and the 

use of IQL, which aid in the accurate prediction of clusters 

for various datasets & samples, increase these accuracy 

levels. Similarly, the recall obtained during these 

evaluations can be seen in the following figure 5, 

 

Fig 5. Recall for automatic clustering process 

This evaluation demonstrates that the proposed model 

outperforms CAMP [2], EFCA [4], and SMMP [5] in terms 

of recall for automatic clustering in real-time scenarios by 

38.3%, 40.5%, and 43.5%, respectively for different use 

cases. Using high-efficiency IQL Process & DBSCAN 

Model Process, along with incremental learning operations 

assists in improving recall levels for cluster analysis for 

various datasets & samples. These results were also 

estimated for delay needed during these evaluations, and 

can be observed from figure 6 as follows, 

 

Fig 6. Delay Needed During the Clustering Process 

In comparison to CAMP [2], EFCA [4], and SMMP [5] 

methods, the proposed model improves speed of clustering 

by 24.5%, 28.3% & 39.5% respectively, in real-time 

scenarios. This speed is enhanced by the application of 

high-performance DBSCAN and IQL Process, which aid in 

the extraction of hyperparameters and the high-speed 

prediction of clusters for various datasets & samples. Due 

to these characteristics, the proposed model is useful for an 

extensive & wide variety of real-time automatic clustering 

application deployment scenarios. 

5. Conclusion and Future work 

In conclusion, the paper titled "Design of an Incremental Q 

Learning Model for improving efficiency of rule-mining 

based automatic clustering architectures" presents a novel 

model that significantly enhances the efficiency and 

accuracy of rule-mining-based automatic clustering 

architectures. The proposed model surpasses existing 

methods, namely CAMP, EFCA, and SMMP, in terms of 

clustering precision, recall, and speed in real-time scenarios. 

The experimental results demonstrate a substantial 

improvement in automatic clustering precision compared to 

the existing methods. The proposed model outperforms 

CAMP by 23.5%, EFCA by 29.4%, and SMMP by 40.5%. 

This improvement is achieved through the utilization of 

high-performance DBSCAN and the implementation of the 

Incremental Q Learning (IQL) process, which effectively 

extract hyperparameters and enable precise cluster 

prediction for various datasets and samples. 
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The evaluation also reveals that the proposed model exhibits 

superior recall rates in automatic clustering. It surpasses 

CAMP by 38.3%, EFCA by 40.5%, and SMMP by 43.5% 

in terms of recall, indicating its effectiveness in capturing 

all relevant clusters in real-time scenarios. The combination 

of the IQL process and the DBSCAN model process 

contributes to enhancing the recall levels and improving 

cluster analysis for diverse datasets and samples. 

Furthermore, the proposed model demonstrates remarkable 

speed improvements in the clustering process. It achieves a 

speed enhancement of 24.5% compared to CAMP, 28.3% 

compared to EFCA, and 39.5% compared to SMMP. This 

acceleration is attributed to the high-performance DBSCAN 

and the efficient IQL process, which facilitate the extraction 

of hyperparameters and enable high-speed cluster 

prediction. Consequently, the proposed model is well-suited 

for a wide range of real-time automatic clustering 

applications. 

The future scope of this research encompasses several 

potential directions for further advancement. Firstly, 

researchers can explore the applicability of the proposed 

model to larger and more complex datasets, thereby 

evaluating its scalability and generalizability. 

Secondly, the integration of other advanced machine 

learning techniques and algorithms can be investigated to 

further enhance the efficiency and accuracy of automatic 

clustering. This may involve incorporating deep learning 

models or other reinforcement learning approaches to 

improve clustering performance. 

Moreover, the interpretability and explainability of the 

proposed model could be explored to gain insights into the 

decision-making process and enhance the trustworthiness of 

the clustering results. Visualization techniques and methods 

for understanding the learned rules and patterns can 

contribute to broader adoption of the proposed model. 

Additionally, conducting comparative studies with other 

state-of-the-art clustering methods on various real-world 

datasets can provide a comprehensive understanding of the 

strengths and limitations of the proposed model. This can 

help identify specific scenarios or domains where the model 

excels and where further improvements are required. 

In summary, the proposed incremental Q learning model 

presents significant advancements in the field of automatic 

clustering. Its improvements in precision, recall, and speed, 

coupled with its potential for real-time applications, 

position it as a promising approach for enhancing clustering 

performance. The future scope lies in expanding its 

applicability, exploring additional techniques, ensuring 

interpretability, and conducting comprehensive 

comparative studies to further establish its effectiveness. 
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