

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 620

Software Reverse Engineering Techniques for Evaluating Anti-Forensic

Encryption Tools: A Framework Development and Analysis

Zakariyya Hassan Abdullahi1, Shailendra Kumar Singh2*, Moin Hasan3

Submitted: 24/06/2023 Revised: 06/08/2023 Accepted: 27/08/2023

Abstract: The digitalization of the world has led to increased cybercrimes, resulting in the growth of digital forensic tools. To counter,

anti-forensic tools have also been developed to hinder their effectiveness and digital evidence recovery. Software reverse engineering is

assumed to be a potential technique to be able to assess anti-forensic tools. Software reverse engineering is the process of analyzing a

computer program or software application in order to understand its functionality, design, and behavior. This article explores software

reverse engineering techniques to evaluate anti-forensic encryption tools, specifically focusing on the VeraCrypt. VeraCrypt is free, open-

source disk encryption software that provides strong on-the-fly encryption for various storage devices. Moreover, a novel framework is

proposed for assessing such tools, emphasizing practical applicability, data driven analysis, and comparative assessment. The proposed

framework works in multiple phases to assess/examine the VeraCrypt and is able to take different decisions conditionally. Extensive

experiments are performed to evaluate the proposed framework and the obtained results reinforce the proposal.

Keywords: Digital forensic; anti-forensic; encryption; software reverse engineering; VeraCrypt

1. Introduction

For the last few decades, the word has seen an exponential

growth towards the digitization. Along with that, the rate

of cybercrimes has also increased, resulting in the

emergence of numerous digital forensic tools/software.

As a counter attack, several anti-forensic tools have also

been developed to hinder their effectiveness and digital

evidence recovery [1]– [4]. Therefore, it is highly

important to understand the structure and behavior of such

tools [5].

Rather than conventional digital forensic, software reverse

engineering is assumed to be a potential technique for the

assessment/evaluation/examination of anti-forensic tools

[3], [6], [7]. Software reverse engineering is the process

of analyzing a software program, binary executable, or

codebase to understand its functionality, behavior, and

underlying design, often with the intent of extracting

valuable information, modifying its behavior, or

recreating its source code [8]. This practice involves

deconstructing the compiled or executed software into its

constituent parts, such as assembly code, data structures,

algorithms, and high-level logic, in order to gain insights

into how the software operates [9]. Software reverse

engineering can be applied to various purposes, including:

▪ Understanding: Reverse engineering helps

researchers, analysts, and developers comprehend the

inner workings of a software application when the

original source code is unavailable or insufficiently

documented.

▪ Security Analysis: It is used to identify vulnerabilities,

security weaknesses, and potential exploits in software

systems. By dissecting the code, security professionals

can uncover flaws that could be exploited by malicious

actors.

▪ Interoperability: In cases where documentation is

missing or incomplete, reverse engineering can aid in

creating compatibility between software systems,

allowing different programs to communicate

effectively.

▪ Legacy System Maintenance: Reverse engineering

can be used to maintain and update outdated or

unsupported software systems by understanding their

functionality and making necessary modifications.

▪ Competitive Analysis: Businesses might engage in

reverse engineering to study competitors' software

products and gain insights into their features, design,

and strategies.

▪ Copyright and Patent Infringement: In legal contexts,

reverse engineering can help determine whether a

software product infringes upon copyrights or patents,

as it can reveal similarities or code reuse.

The process of software reverse engineering typically

involves tasks such as disassembling binary code,

analyzing memory structures, identifying function calls

and control flow, reconstructing data structures, and

1,2School of Computer Science and Engineering, Lovely Professional

university, phagwara, India
3Department of computer Science and Engineering, Jain Deemed-to-be-

University, Bengaluru, India

hassanzakariyya78@gmail.com1, drsksingh.cse@gmail.com2,

mmoinhhasan@gmail.com3

*Correspondence Author: drsksingh.cse@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 621

ultimately creating a higher-level representation of the

software's logic and behavior [10], [11]. It often requires

knowledge of low-level programming languages,

assembly languages, debugging tools, and familiarity with

software architecture and design principles [12].

To this advantage, in this article, we explore software

reverse engineering techniques to evaluate antiforensic

encryption tools, specifically focusing on the VeraCrypt.

VeraCrypt is free, open-source disk encryption software

that provides strong on-the-fly encryption for various

storage devices, such as hard drives, USB drives, and

virtual disk images [13], [14]. It is a successor to the

TrueCrypt project, which was a popular disk encryption

tool until its development was discontinued in 2014 [15]–

[17]. VeraCrypt offers several features and enhancements

over TrueCrypt, including:

▪ Improved Security: VeraCrypt uses a variety of

encryption algorithms, including AES, Serpent, and

Twofish, to encrypt data on-the-fly [18]–[20]. It also

supports various encryption modes, key derivation

functions, and hash algorithms [21], allowing users to

customize their security settings.

▪ Hidden Volumes: One of the notable features of

VeraCrypt is its ability to create hidden encrypted

volumes within a larger encrypted volume. This

allows users to have a plausible deniability option,

where they can reveal a password that unlocks only the

outer encrypted volume, while keeping the existence

of the hidden volume confidential.

▪ Cross-Platform Support: VeraCrypt is available for

multiple operating systems, including Windows,

macOS, and Linux. This cross-platform compatibility

makes it a versatile encryption solution.

▪ System Partition Encryption: VeraCrypt can encrypt

the entire system partition, including the operating

system files, boot loader, and user data. This provides

a high level of security for protecting sensitive

information on a computer.

▪ Portable Mode: VeraCrypt offers a portable mode,

allowing users to run the application directly from a

removable storage device without the need for

installation on the host system.

▪ Volume Formats: VeraCrypt supports various volume

formats, including standard encrypted volumes,

hidden volumes, and even entire operating system

partitions.

▪ Plausible Deniability: As mentioned earlier,

VeraCrypt's hidden volume feature provides an

element of plausible deniability, where an observer

cannot determine if a hidden volume exists within the

outer volume [22].

Due to its strong encryption capabilities and the ability to

create hidden volumes, VeraCrypt is often used by

individuals, businesses, and organizations that require

secure data storage and protection against unauthorized

access. A snapshot of VeraCrypt software is shown in Fig.

1.

Fig.1 Snapshot of VeraCrypt

In this research, a novel framework is proposed for

assessing such tools, emphasizing practical applicability,

data-driven analysis, and comparative assessment. The

proposed framework works in multiple phases; viz.,

system structuring, system characterization, static

analysis, dynamic analysis, and document generation; to

assess/examine the VeraCrypt and is able to take different

decisions conditionally. To evaluate the performance,

extensive experiments are performed and the obtained

results reinforce the proposal.

The article is organized as follows: Section 2 discusses the

related works in detail. Section 3 explains the proposed

framework followed by the experimental evaluation in

Section 4. Section 5 finally concludes the article along

with some future research scope.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 622

2. Related Works

The field of reverse engineering in the context of digital

forensics has garnered significant attention from

researchers, leading to a wide array of studies exploring

its potential and effectiveness in various domains. In this

section, we present a comprehensive overview of related

works, highlighting the significance of reverse

engineering in digital investigations, legacy program

comprehension, anti-forensics techniques, legal

challenges, data security, and encryption.

Software forensics and reverse engineering have been a

subject of extensive research in recent years. Ekanem and

Meye [23] emphasized the importance of using reverse

engineering in software forensics to uncover changes

made by infringers, enabling prosecuting teams to present

strong evidence in court. Their study underscored the

necessity of automating reverse engineering processes to

improve efficiency and accuracy. Singh [24] conducted a

comprehensive review of reverse engineering theories and

tools, highlighting their potential in addressing challenges

arising from legacy program code without adequate

documentation. The review encompassed various

methodologies and tools used in reverse engineering,

contributing to the field's overall understanding and

application. Müller and Kienle [25] delved into the realm

of software reverse engineering, offering insights into

analyzing legacy systems to synthesize valuable

information about the target system. They discussed the

process of reverse engineering, which ranges from code-

centric approaches to domain knowledge-centric

approaches. The study served as a valuable resource for

understanding the diverse aspects of software reverse

engineering and its relevance in program comprehension.

Addressing anti-forensics techniques is another critical

area of research in digital forensics. Gobel and Baier [26]

highlighted data hiding within the filesystem layer as a

significant anti-forensic technique employed by cyber-

criminals. They explored the implications of data hiding

and its impact on digital forensic analysis, emphasizing

the need for effective countermeasures to detect hidden

data and thwart anti-forensic efforts. Conlan et al. [10]

presented an extended, granular taxonomy for anti-

forensics, categorizing various techniques used by cyber-

criminals to hinder investigations. The taxonomy

provided a structured framework for understanding the

different anti-forensics methodologies and their potential

impact on digital forensic analysis. Bhat et al. [12]

examined computer forensic tools' ability to detect file

system anti-forensic attacks. Their study employed a six-

stage testing methodology to evaluate the effectiveness of

these tools in real-world scenarios. The findings revealed

that most anti-forensic attacks went unnoticed,

highlighting the need for aggressive research to address

the pitfalls and improve the efficacy of computer forensic

tools in countering anti-forensic challenges. Their work

shed light on the significance of continuously evolving

computer forensic tools to keep up with the evolving

tactics used by cyber-criminals.

Legal challenges and regulation in digital forensics have

also been a focal point of research. Stoykova et al. [27]

discussed the legal and technical questions surrounding

file system reverse engineering for law enforcement.

Their study addressed concerns related to the legality of

reverse engineering file systems, intellectual property

protection, and confidentiality obligations. They

emphasized the importance of striking a balance between

the need for digital evidence in legal proceedings and

respecting individuals' rights to privacy and data

protection. The research offered valuable insights into the

challenges faced by law enforcement agencies in utilizing

reverse engineering techniques while adhering to legal

and ethical standards. Authors in [28] explored gaps in

digital forensic methodology and raised concerns about

trade secrets and vulnerability disclosure. Their study

highlighted the need for further development in regulatory

frameworks to address these challenges and improve the

effectiveness of digital forensic investigations. The paper

underscored the importance of standardizing digital

forensic practices to ensure consistency and reliability in

the investigation process.

Data security and encryption have been areas of interest in

the context of digital forensics [29]. Al-Dhaqm et al. [30]

examined different areas of digital forensics and identified

a lack of standard practices. They proposed a

metamodeling approach as a potential solution to address

this issue and suggested testing its effectiveness in real-

world scenarios. Their work laid the foundation for future

research to establish standardized practices in digital

forensics, promoting uniformity and credibility in digital

forensic investigations. Singh and Singh [31] introduced

a novel encryption technique using floating-point

numbers to enhance data security. The novel approach

involved generating different numbers for repeated words

and increasing key length to augment encryption strength.

The authors in [32] examines machine learning's impact

on software engineering, offering practical insights and

resources for researchers applying it to source code

analysis tasks. The research offered a promising

encryption technique that could find application in real-

world scenarios to safeguard digital data. Harahap et al.

[33] presented a crypto-system hybrid method using

symmetrical algorithms and a neural network for secure

file encryption. The method demonstrated high accuracy

in generating public keys, and its potential application

with AES, Blowfish, and hybrid algorithms could

strengthen file encryption and data security. Their work

opened avenues for exploring advanced encryption

techniques to counter cybersecurity threats and protect

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 623

digital data from unauthorized access. Ahmad et al. [34]

develop optimized image encryption using particle swarm

optimization and chaotic map for secure image

communication, requiring further research.

Various researchers have explored the applications of

reverse engineering in digital forensics beyond software

forensics. Muttoo and Sushil [35] discussed

steganography as a technique for hiding secret messages

in digital audio, images, and video files. Their research

addressed the challenges posed by steganography in

digital forensics investigations, including hacking,

duplication, and malicious usage. The study offered

insights into capacity and trade-offs between hiding

significant information and ensuring that cover alteration

remains undetectable, contributing to the advancement of

steganalysis techniques in digital investigations. Muller et

al. [36] examined how the Rigi project helps in reverse

engineering by creating mental models from abstractions

that match the maintainers' understanding, thereby

enhancing software comprehension for maintenance, re-

engineering, and evolution purposes. D. Binkley [37]

provided an in-depth evaluation of source code analysis

investigations and presented a strategy for progress in the

field. The research examined the current state of source

code analysis research, identified potential advancements,

applications, techniques, and difficulties in software

analysis in the upcoming years. Their work provided

valuable knowledge for researchers, practitioners, and

developers engaged in software analysis, contributing to

the continuous evolution and improvement of source code

analysis methodologies. Tonella et al. [38] highlighted the

evolution of reverse engineering from legacy systems to

software-related problems. Their study advocated for

empirical evaluation of reverse engineering methods to

understand their effects and demonstrate positive cost-

benefit trade-offs. The research provided a roadmap for

future investigations, including defining a reference

taxonomy, clarifying investigation scope, and adopting a

common experiment execution framework. Their work

contributed to the establishment of standardized practices

in reverse engineering, promoting efficient and effective

use of the technique in digital forensic investigations.

Chikofsky et al. [39] presents a comprehensive taxonomy

of reverse engineering and recovery techniques,

categorizing methods used to understand and recover

information from software systems. It offers insights into

code analysis, program comprehension, and design and

architectural information recovery, contributing to the

advancement of reverse engineering practices.

The extensive range of studies presented in this section

underscores the significant impact of reverse engineering

within the realm of digital forensics. Researchers have

delved into various dimensions of this field, revealing its

potential and effectiveness in addressing critical

challenges. From software forensics to ant forensics

techniques, legal considerations to data security and

encryption, the research contributions have collectively

illuminated the multifaceted nature of reverse

engineering's role in digital investigations. As evidenced

by the diverse methodologies, tools, and strategies

explored by scholars, it is evident that reverse engineering

stands as a crucial pillar in the arsenal of digital forensic

practitioners. These studies collectively lay the

groundwork for future developments, emphasizing the

importance of ongoing research and innovation to

navigate the evolving landscape of cybersecurity threats

and ensure the integrity, privacy, and security of digital

data. Table 1 gives a comparative analysis of the related

works discussed above.

Table 1: Comparative analysis of the related works

Authors/Refere

nces

Year Contribution Key features Limitation

 Chikofsky et al.

[39]

1990 Presents a

comprehensive

taxonomy of reverse

engineering and recovery

techniques

Provides a structured

framework for

understanding reverse

engineering techniques

The taxonomy is

outdated, and some of

the techniques are no

longer used

D. Binkley, [37] 2007 Provided an in-depth

evaluation of source code

analysis investigations

and presented a strategy

for progress in the field

Provides a roadmap for

future research in

source code analysis

The study focused on

source code analysis, and

the findings may not be

generalizable to other

types of reverse

engineering

Tonella et al.

[38]

2007 Highlighted the evolution

of reverse engineering

from legacy systems to

Provides an overview

of the history of

reverse engineering

The study focused on the

evolution of reverse

engineering, and the

findings may not be

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 624

software related

problems

relevant to the current

state of the field

Muttoo and

Sushil [35]

2008 Discussed steganography

as a technique for hiding

secret messages in digital

audio, images, and video

files

Provides an overview

of steganography and

its applications

The study focused on

steganography in digital

forensics, and the

findings may not be

generalizable to other

applications of

steganography

H. A. Müller

[25]

2009 Investigate how the Rigi

project helps in reverse

engineering by creating

mental models from

abstractions that match

the maintainers'

understanding

Offers insights into

how reverse

engineering can be

used to improve

software

comprehension

The study focused on the

Rigi project, and the

findings may not be

generalizable to other

reverse engineering tools

and techniques

Singh and Singh

[31]

2010 Introduced a novel

encryption technique

using floating-point

numbers to enhance data

security

Offers a promising

encryption technique

that could be used to

protect digital data

The technique has not

been evaluated in real-

world scenarios, and its

effectiveness may be

limited

 Ramandeep

Singh [24]

2013 Reviewed reverse

engineering theories and

tools

Provides a

comprehensive

overview of reverse

engineering techniques

Some of the tools and

techniques are outdated

 Shao and

Balogun [28]

2013 Explored gaps in digital

forensic methodology

and raised concerns

about trade secrets and

vulnerability disclosure

Provides insights into

the challenges of

digital forensic

investigations

The study focused on

gaps in digital forensic

methodology, and the

findings may not be

generalizable to other

challenges faced by

digital forensic

investigators

Conlan et al.

[10]

2016 Presented an extended,

granular taxonomy for

anti-forensics

Provides a structured

framework for

understanding

antiforensics

techniques

Can be complex and

difficult to use

Global and

Baier [26]

2018 Highlighted data hiding

within the filesystem

layer as a significant

anti- forensics’ technique

Can be used to detect

hidden data

Requires specialized

knowledge and tools

Ahmad et al.

[34]

2018 Develop optimized

image encryption using

particle swarm

optimization and chaotic

map for secure image

communication

Offers a promising

image encryption

technique that could be

used to protect digital

images

The technique has not

been evaluated in real-

world scenarios, and its

effectiveness may be

limited

M Dayalan [36] 2019 Discussed the process of

reverse engineering,

Offers a holistic view

of reverse engineering

Can be complex and

timeconsuming

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 625

which ranges from code-

centric approaches to

domain knowledge-

centric approaches

Harahap et al.

[33]

2019 Presented a crypto-

system hybrid method

using symmetrical

algorithms and a neural

network for secure file

encryption

Offers a secure file

encryption method that

could be used to

protect digital data

The method has not been

evaluated in real-world

scenarios, and its

effectiveness may be

limited

 Bhat et al. [12] 2020 Examined computer

forensic tools’ ability to

detect file system anti-

forensic attacks

Provides insights into

the effectiveness of

computer forensic tools

The study was conducted

in a lab environment, and

the results may not be

generalizable to real-

world scenarios

Ekane and Meye

[23]

2021 Used reverse engineering

to uncover changes made

by infringers in software

Can be used to identify

copyright infringement

Requires manual

analysis, which can be

time-consuming and

error-prone

Al-Dhaqm et al.

[30]

2021 Proposed a

metamodeling approach

as a potential solution to

address the lack of

standard practices in

digital forensics

Provides a roadmap for

future research in

digital forensics

The study was

conceptual in nature, and

the effectiveness of the

metamodeling approach

has not been empirically

evaluated

Stoykova et al

[27]

2022 Discussed the legal and

technical questions

surrounding file system

reverse engineering for

law enforcement

Provides an overview

of the legal and ethical

issues surrounding

reverse engineering

The study focused on file

system reverse

engineering for law

enforcement, and the

findings may not be

generalizable to other

types of reverse

engineering

3. Proposed Framework

The methodology employed in this research aims to

provide a comprehensive framework (Fig. 2) for reverse

engineering to a target software system, specifically

focusing on VeraCrypt. Reverse engineering involves the

systematic analysis of the software's design, functionality,

and inner workings to gain insights into its components,

behavior, vulnerabilities, and interactions. The detailed

steps of the reverse engineering process employed in the

framework are given as follows:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 626

Fig. 2. Proposed Software Reverse Engineering Framework

▪ System Structuring: The first step, System

Structuring, involves a meticulous process of preparing

the target system, VeraCrypt, for in-depth analysis. This

is achieved by utilizing IDA Pro, a powerful disassembler

and debugger tool. VeraCrypt software is uploaded into

IDA Pro to create a controlled environment where every

aspect of the software can be observed and analyzed.

Placing the software in such an environment enables to

dissect its architecture, components, and execution flow

systematically. This structured approach provides a

foundation for subsequent analyses and facilitates a

comprehensive understanding of the software's inner

workings.

▪ System characterization: The next step is to

characterize the system by identifying its components,

such as modules, functions, and data structures. It also

includes identifying the system's entry points and exit

points, as well as its communication channels. This

information is used to create a high-level overview of the

system's architecture and behavior.

▪ Static analysis: In this step, a static analysis of

the system to identify potential vulnerabilities is

performed. This analysis involves examining the system's

code without executing it. The purpose is to

look for common security vulnerabilities, such as buffer

overflows, format strings, and SQL injection. Suspicious

code patterns, such as code obfuscation and anti-

debugging techniques are also looked for. Static analysis

is a fundamental technique in reverse engineering. It

involves an exhaustive examination of the software's

binaries without executing them. This technique unveils

critical insights into the software's code structure, logic,

and potential vulnerabilities. Static analysis encompasses

various sub-steps, including source code examination,

decompilation, and disassembly.

Source Code Examination - If the source code for the

software is available, the framework examines it to gain a

better understanding of the software's design and

functionality. This information can be used to guide the

static analysis of the binaries.

Decompilation - If the source code is not available, the

framework tries to decompile the binaries to create a

human-readable version of the code. This can be helpful

for identifying potential vulnerabilities and understanding

the software's inner workings.

Disassembly - If both the source code and decompiled

code are not available, the framework disassembles the

binaries to create a low-level representation of the code.

This can be a challenging task, but it is often necessary to

identify potential vulnerabilities.

▪ Dynamic analysis: Once the static analysis is

complete, the framework performs a dynamic analysis of

the system. This involves executing the system and

observing its behavior. For this purpose, a debugger to

step through the code line by line and inspect the values

of variables and registers is used. It also uses a memory

analysis tool to track the flow of data in memory. This

information is used to identify potential vulnerabilities

that were not detected during the static analysis.

▪ System Information Store Analysis: The fifth

step, System Information Store Analysis, involves

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 627

exploring and analyzing a repository or database within

the VeraCrypt software. This repository contains crucial

information about the software's configuration, settings,

and interactions with the underlying system. Reverse

engineers delve into this repository to decipher how the

software interacts with hardware components, system

resources, and external dependencies. This analysis aids

in comprehending the software's runtime environment,

system-level interactions, and potential points of

vulnerability. Following entities are analyzed during this

step:

Configuration files - Framework examines the software's

configuration files to learn about its default settings and

how it can be configured. This information can be used to

identify potential vulnerabilities, such as default

passwords or weak encryption keys.

Log files - Framework examines the software's log files to

learn about its activities and interactions with the user.

This information can be used to identify potential

vulnerabilities, such as errors or unexpected behavior.

Databases - Framework examines the software's

databases to learn about its data storage and retrieval

mechanisms. This information can be used to identify

potential vulnerabilities, such as unauthorized access to

sensitive data.

▪ Document Generation: Document Generation,

the final step, plays a pivotal role in capturing and

organizing the insights obtained during the reverse

engineering process. The framework creates a

comprehensive documentation that outlines the findings,

analyses, and observations from each preceding step. This

documentation serves as a reference for traceability,

allowing future researchers or developers to understand

the rationale behind decisions, vulnerabilities detected,

and enhancements proposed. The documentation also aids

in knowledge transfer, enabling efficient collaboration

and informed decision-making throughout the reverse

engineering process.

The above steps are algorithmically explained in

Algorithm 1 as follows. The methodology presented in

this research offers a structured and thorough approach to

reverse engineering a target software system, with a

specific focus on VeraCrypt. The outlined framework

incorporates a sequence of meticulously designed steps

that progressively delve into the intricacies of the

software's architecture and functionality. The

methodology also serves as a valuable guide for reverse

engineering practitioners seeking to comprehensively

dissect and understand complex software systems like

VeraCrypt. By blending a structured approach with a

range of analytical techniques, the framework equips

researchers, developers, and security professionals with a

robust toolkit to uncover vulnerabilities, enhance

comprehension, and promote the overall security and

reliability of software systems.

3.1. Complexity Analysis

The first step, System Structuring, is essentially a data

gathering step. The complexity of this step can be

expressed as O(n), where n is the size of the VeraCrypt

file. The second step, System Characterization, is also a

data gathering step. The complexity of this step can also

be expressed as O(n), where n is the size of the VeraCrypt

file. The third step, Static Analysis, is a more

computationally intensive step. The complexity of this

step depends on the size and complexity of the VeraCrypt

file, as well as the tools that are used for static analysis.

For a small and simple VeraCrypt file, the complexity of

this step may be O(n). However, for a large and complex

VeraCrypt file, the complexity of this step may be O(n2).

The fourth step, Dynamic Analysis, is also a

computationally intensive step. The complexity of this

step depends on the size and complexity of the VeraCrypt

file, as well as the tools that are used for dynamic analysis.

For a small and simple VeraCrypt file, the complexity of

this step may be O(n). However, for a large and complex

VeraCrypt file, the complexity of this step may be O(n2).

The fifth step, System Information Store Analysis, is

essentially a data gathering step. The complexity of this

step can be expressed as O(n), where n is the size of the

VeraCrypt file. The sixth step, Document Generation, is a

relatively straightforward step. The complexity of this

step can be expressed as O(n), where n is the amount of

data that needs to be documented.

Hence, the overall complexity of the above algorithm can

be expressed as O(n2), where n is the size of the VeraCrypt

file. This is because the most computationally intensive

steps, Static Analysis and Dynamic Analysis, both have a

complexity of O(n2). Algorithm 1

Algorithm 1

def reverse_engineer_veracrypt(veracrypt_file):

Args: veracrypt_file - The VeraCrypt file to be reverse

engineered.

Returns: A dictionary of findings, including identified

vulnerabilities and suspicious code patterns.

Remaining steps of Algorithm 1 is shown in Table 2

along with the different functions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 628

Table 2: Shows the steps and functions of Algorithm 1

Step 1: System Structuring

ida_pro.open(veracrypt_file) identify_components()

identify_entry_points_and_exit_points()

identify_communication_channels()

Step 2: System Characterization
identify_modules() identify_functions()

identify_data_structures()

Step 3: Static Analysis
identify_security_vulnerabilities()

identify_suspicious_code_patterns()

Step 4: Dynamic Analysis debug_veracrypt() track_data_flow()

Step 5: System Information Store Analysis
examine_configuration_files() examine_log_files()

examine_databases()

Step 6: Document Generation generate_documentation() return findings

4. Experimental Evaluation

The proposed framework is implemented in C++ on

Visual Studio Platform. System configuration is given as

follows:

▪ Processor: Intel Core i5 3217U

▪ Frequency: 1.8 GHz

▪ Memory (RAM): 8 GB

▪ Operating System: Windows 10 Home Edition

For system structuring, IDA pro is used. IDA Pro is

considered a fundamental tool in the field of reverse

engineering due to its advanced disassembly capabilities

and a wide range of features that aid in understanding and

analyzing complex binary code [40]. Fig. 3 and Fig 4

show the snapshots of IDA View and Hex View generated

by IDA Pro.

Fig. 3. IDA View of VeraCrypt structured by IDA Pro

Fig. 4 Hex View of VeraCrypt structured by IDA Pro

After system structuring, rest of the steps are performed.

The performance of the framework is evaluated in terms

of accuracy and time consumption. Accuracy is defined as

a percentage of modules/functions identified in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 629

VeraCrypt's architecture during the course of framework

execution. Fig 5 shows the accuracy of framework with

respect to the file size. File size is varied from 1000 to

5000 and the obtained results show proportional increase

in the accuracy. As the file size increases, the framework

gets more information to explore and examine. Therefore,

the accuracy is increasing correspondingly.

On the other hand, time consumed by the framework to

evaluate the structured VeraCrypt by IDA is evaluated

with respect to the file size varied similar as above.

Results (Fig. 6) show that the time consumption is

acquiring stability as the file size increases. It is because

as the file size increases, the framework already got

adapted to the similar instances which consequently speed

up the process.

5. Conclusions and Future Scope of

Research

The advancement of digitalization has led to a surge in

cybercrimes, prompting the development of digital

forensic tools. In response, the emergence of anti-forensic

tools aims to thwart these tools' effectiveness and hinder

digital evidence recovery. To counter these techniques,

software reverse engineering stands as a promising

avenue for evaluation. This article explores the use of

software reverse engineering techniques to assess anti-

forensic encryption tools, with a specific focus on

VeraCrypt—a free, open-source disk encryption software

renowned for its robust on-the-fly encryption capabilities

across various storage devices.

A novel framework is proposed herein, emphasizing

practical applicability, data-driven analysis, and

comparative assessment. This framework operates

through a multi-phase process, namely system structuring,

system characterization, static analysis, dynamic analysis,

system information store analysis, and document

generation. It leverages the potency of IDA Pro, a

powerful disassembler and debugger tool, for meticulous

examination. By systematically dissecting the

architecture, components, and execution flow, the

framework establishes a strong foundation for subsequent

analyses.

Fig. 5. Accuracy Vs File Size

Fig. 6. Time Consumption Vs File Size

Extensive experiments are conducted to evaluate the

framework's performance. Findings reveal that accuracy

increases proportionally with the size of the analyzed

files. Moreover, the framework exhibits a stabilization of

time consumption as file size grows, indicating its

efficiency in handling larger-scale analyses.

In conclusion, the proposed framework presents a

comprehensive approach for evaluating anti-forensic

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 630

encryption tools, particularly exemplified through the

analysis of VeraCrypt. By fusing the power of software

reverse engineering and sophisticated disassembly tools,

the framework offers a promising solution to the evolving

challenges posed by anti-forensic techniques. As digital

forensics continues to grapple with cybersecurity threats,

this framework offers a valuable contribution to the

arsenal of techniques available for safeguarding digital

evidence and ensuring a secure digital landscape. Further

research and development in this area hold the potential to

fortify cybersecurity measures and empower digital

investigators in their pursuit of truth and justice.

The presented research lays the foundation for a multitude

of promising future research directions. Firstly, exploring

the integration of machine learning and artificial

intelligence techniques into the proposed framework

could enhance the accuracy and efficiency of anti-forensic

tool evaluation. Leveraging these technologies could

automate pattern recognition, anomaly detection, and

decision-making processes, thereby reducing manual

efforts and expanding the framework's capabilities.

Additionally, extending the framework's applicability to

other encryption tools and software systems would

provide a broader understanding of its effectiveness and

versatility. Further research could delve into real-world

case studies, simulating various threat scenarios to

validate the framework's practical applicability and

resilience against sophisticated anti-forensic techniques.

Moreover, investigations into emerging encryption

methodologies, quantum-resistant encryption, and

blockchain technology could offer insights into adapting

the framework for future security challenges.

Collaboration with legal experts to address ethical and

legal considerations associated with software reverse

engineering in anti-forensic evaluations is also a crucial

avenue for exploration. As the digital landscape evolves,

this research paves the way for ongoing innovation and

adaptation, aligning with the ever-evolving dynamics of

cyber threats and the imperative to safeguard digital

evidence and security.

Conflict of Interest Statement

We, the authors, want to emphasize that we have no

conflicts of interest related to publishing this article. Our

research was conducted impartially, and there are no

financial or personal connections that could affect our

results.

References

[1] M. K. Rogers and K. Seigfried, “The future of

computer forensics: A needs analysis survey,”

Comput. Secur., vol. 23, no. 1, pp. 12–16, 2004, doi:

10.1016/j.cose.2004.01.003.

[2] M. A. Wani, A. AlZahrani, and W. A. Bhat, “File

system anti-forensics – types, techniques and tools,”

Comput. Fraud Secur., vol. 2020, no. 3, pp. 14–19,

Mar. 2020, doi: 10.1016/S1361-3723(20)30030-0.

[3] J. P. A. Yaacoub, H. N. Noura, O. Salman, and A.

Chehab, “Advanced digital forensics and anti-digital

forensics for IoT systems: Techniques, limitations

and recommendations,” Internet of Things, vol. 19,

p. 100544, Aug. 2022, doi:

10.1016/J.IOT.2022.100544.

[4] N. Goel and D. Ganotra, “An approach for anti-

forensic contrast enhancement detection using grey

level co-occurrence matrix and Zernike moments,”

Int. J. Inf. Technol., vol. 15, no. 3, pp. 1625–1636,

2023, doi: 10.1007/s41870-023-01191-0.

[5] P. Nerurkar, M. Chandane, and S. Bhirud,

“Understanding structure and behavior of systems: a

network perspective,” Int. J. Inf. Technol., vol. 14,

no. 2, pp. 1145–1159, 2019, doi: 10.1007/s41870-

019-003542.

[6] H. Majed, H. N. Noura, and A. Chehab, “Overview

of digital forensics and anti-forensics Techniques,”

in 8th International Symposium on Digital Forensics

and Security, ISDFS 2020, 2020, no. June. doi:

10.1109/ISDFS49300.2020.9116399.

[7] P. Minetola, L. Iuliano, and F. Calignano, “A

customer-oriented methodology for reverse

engineering software selection in the computer aided

inspection scenario,” Comput. Ind., vol. 67, pp. 54–

71, Feb. 2015, doi:

10.1016/J.COMPIND.2014.11.002.

[8] M. Gül and E. Kugu, “A survey on anti-forensics

techniques,” in IDAP 2017 - International Artificial

Intelligence and Data Processing Symposium, 2017,

no. September 2017. doi:

10.1109/IDAP.2017.8090341.

[9] M. A. Qureshi and E. S. M. El-Alfy, “Bibliography

of digital image anti-forensics and anti-antiforensics

techniques,” IET Image Process., vol. 13, no. 11, pp.

1811–1823, 2019, doi: 10.1049/ietipr.2018.6587.

[10] K. Conlan, I. Baggili, and F. Breitinger, “Anti-

forensics: Furthering digital forensic science

through a new extended, granular taxonomy,” Digit.

Investig., vol. 18, pp. S66–S75, 2016, doi:

10.1016/j.diin.2016.04.006.

[11] K. Saleh and A. Boujarwah, “Communications

software reverse engineering: a semi-automatic

approach,” Inf. Softw. Technol., vol. 38, no. 6, pp.

379–390, Jun. 1996, doi:

10.1016/09505849(95)01061-0.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 631

[12] W. A. Bhat, A. AlZahrani, and M. A. Wani, “Can

computer forensic tools be trusted in digital

investigations,” Sci. &Justice, vol. 61, no. 2, pp.

198–203, 2020, doi: 10.1016/j.scijus.2020.10.002.

[13] G. C. Kessler, “Anti-forensics and the digital

investigator,” in Proceedings of the 5th Australian

Digital Forensics Conference, 2007, pp. 1–7.

[14] “GitHub - veracrypt/VeraCrypt: Disk encryption

with strong security based on TrueCrypt.”

https://github.com/veracrypt/VeraCrypt (accessed

Aug. 18, 2023).

[15] “TrueCrypt.” https://truecrypt.sourceforge.net/

(accessed Aug. 18, 2023).

[16] A. Tomlinson and R. Holloway, “Detecting the use

of TrueCrypt Forensic investigations : Detecting

evidence of the use of TrueCrypt,” R. Hollow. Inf.

Secur. Thesis Ser. | Detect. use TrueCrypt Forensic,

2018.

[17] A. R. Mothukur, A. Balla, D. H. Taylor, S. Teja

Sirimalla, and K. Elleithy, “Investigation of

countermeasures to anti-forensic methods,” in 2019

IEEE Long Island Systems, Applications and

Technology Conference, LISAT 2019, 2019, pp. 1–6.

doi: 10.1109/LISAT.2019.8816826.

[18] A. K. Mandal, C. Parakash, and A. Tiwari,

“Performance evaluation of cryptographic

algorithms: DES and AES,” in 2012 IEEE Students’

Conference on Electrical, Electronics and Computer

Science: Innovation for Humanity, SCEECS 2012,

2012. doi: 10.1109/SCEECS.2012.6184991.

[19] M. Panda, “Performance Evaluation of Symmetric

Encryption Algorithms for Information Security,”

Int. J. Adv. Res. Trends Eng. Technol., vol. 4, no. 11,

pp. 37–41, 2017.

[20] K. Patel, “Performance analysis of AES, DES and

Blowfish cryptographic algorithms on small and

large data files,” Int. J. Inf. Technol., vol. 11, no. 4,

pp. 813–819, 2019, doi: 10.1007/s41870-018-0271-

4.

[21] D. Gligoroski, “Cryptographic hash functions,” A

Multidiscip. Introd. to Inf. Secur., no. May, pp. 49–

72, 2011, doi: 10.1587/essfr.4.57.

[22] H. Evkan et al., “Security evaluation of VeraCrypt,”

2018.

[23] B. A. Ekanem and J. Meye, “Application of reverse

engineering technique in software forensic analysis

to detect infringements,” in World Congress on

Engineering, 2021, pp. 191–194.

[24] Ramandeep Singh, “A Review of Reverse

Engineering Theories and Tools,” Int. J. Eng. Sci.

Invent., vol. 2, no. 1, pp. 1–4, 2013.

[25] H. A. Müller and H. M. Kienle, “A Small Primer on

Software Reverse Engineering A Small Primer on

Software Reverse Engineering,” Reverse Eng., no.

March, 2009.

[26] T. Göbel and H. Baier, “Anti-forensic capacity and

detection rating of hidden data in the ext4

filesystem,” IFIP Adv. Inf. Commun. Technol., vol.

532, no. August 2018, pp. 87–110, 2018, doi:

10.1007/978-3-319-99277-8_6.

[27] R. Stoykova, R. Nordvik, M. Ahmed, K. Franke, S.

Axelsson, and F. Toolan, “Legal and technical

questions of file system reverse engineering,”

Comput. Law Secur. Rev., vol. 46, 2022, doi:

10.1016/j.clsr.2022.105725.

[28] Adedayo M and Shoa Ying, “Privacy Impacts of

Data Encryption on the Efficiency of Digital

Forensics Technology,” Int. J. Adv. Comput. Sci.

Appl., vol. 4, no. 5, pp. 36–40, 2013, doi:

10.14569/ijacsa.2013.040506.

[29] M. Tajammul and R. Parveen, “Auto encryption

algorithm for uploading data on cloud storage,” Int.

J. Inf. Technol., vol. 12, no. 3, pp. 831–837, 2020,

doi: 10.1007/s41870-020-00441-9.

[30] A. Al-Dhaqm et al., “Digital forensics subdomains:

the state of the art and future directions,” IEEE

Access, vol. 9, pp. 152476–152502, 2021, doi:

10.1109/ACCESS.2021.3124262.

[31] Dilbag Singh and Alit Singh “An Effective

Technique for Data Security in Modern

Cryptosystem,” Int. J. Inf. Technol., vol. 2, no. 1, pp.

189–194, 2010.

[32] T. Sharma et al., “A Survey on Machine Learning

Techniques for Source Code Analysis,” vol. 0, no. 0,

2021.

[33] Christnatalis, A. M. Husein, M. Harahap, A.

Dharma, and A. M. Simarmata, “Hybrid-AES-

Blowfish algorithm: key exchange using neural

network,” in International Conference of Computer

Science and Information Technology, ICoSNIKOM

2019, 2019, pp. 4–7. doi:

10.1109/ICoSNIKOM48755.2019.9111500.

[34] M. Ahmad, M. Z. Alam, Z. Umayya, S. Khan, and

F. Ahmad, “An image encryption approach using

particle swarm optimization and chaotic map,” Int.

J. Inf. Technol., vol. 10, no. 3, pp. 247–255, 2018,

doi: 10.1007/s41870-018-0099-y.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 620–632 | 632

[35] Kumar, S.K.Muttoo and Sushil, “Data Hiding in

JPEG Images,” Int. J. Inf. Technol., vol. 1, no. 1, pp.

13–16, 2009.

[36] H. A. MÜLLER, K. WONG, and S. R. TILLEY,

“Understanding Software Systems Using Reverse

Engineering Technology,” Object-Oriented

Technol. Database Softw. Syst., pp. 240–252, 2000,

doi:10.1142/9789812831163_0016.

[37] D. Binkley, “Source code analysis: A road map,”

FoSE 2007 Futur. Softw. Eng., pp. 104–119, 2007,

doi: 10.1109/FOSE.2007.27.

[38] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä,

“Empirical studies in reverse engineering: state of

the art and future trends,” Empir. Softw. Eng., vol.

12, no. 5, pp. 551–571, 2007, doi:

10.1007/s10664007-9037-5.

[39] E. J. Chikofsky and J. H. Cross, “Reverse

engineering and design recovery: a taxonomy,”

IEEE Softw., vol. 7, no. 1, pp. 13–17, 1990.

[40] “Hex Rays - State-of-the-art binary code analysis

solutions.” https://hex-rays.com/ida-pro/ (accessed

Aug. 19, 2023).

[41] Paul Garcia, Ian Martin, Laura López, Sigurðsson

Ólafur, Matti Virtanen. Deep Learning Models for

Intelligent Tutoring Systems. Kuwait Journal of

Machine Learning, 2(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/vi

ew/167

[42] Khem, D. ., Panchal, S. ., & Bhatt, C. . (2023). An

Overview of Context Capturing Techniques in NLP.

International Journal on Recent and Innovation

Trends in Computing and Communication, 11(4s),

193–198.

https://doi.org/10.17762/ijritcc.v11i4s.6440

[43] Sherje, N. P., Agrawal, S. A., Umbarkar, A. M.,

Dharme, A. M., & Dhabliya, D. (2021).

Experimental evaluation of mechatronics based

cushioning performance in hydraulic cylinder.

Materials Today: Proceedings,

doi:10.1016/j.matpr.2020.12.1021

